SlideShare a Scribd company logo
1
10. Joint Moments and Joint Characteristic
Functions
Following section 6, in this section we shall introduce
various parameters to compactly represent the information
contained in the joint p.d.f of two r.vs. Given two r.vs X and
Y and a function define the r.v
Using (6-2), we can define the mean of Z to be
(10-1)
)
,
( Y
X
g
Z 
),
,
( y
x
g
.
)
(
)
( 





 dz
z
f
z
Z
E Z
Z
 (10-2)
PILLAI
2
However, the situation here is similar to that in (6-13), and
it is possible to express the mean of in terms
of without computing To see this, recall from
(5-26) and (7-10) that
where is the region in xy plane satisfying the above
inequality. From (10-3), we get
As covers the entire z axis, the corresponding regions
are nonoverlapping, and they cover the entire xy plane.
   
 
















z
D
y
x
XY
Z
y
x
y
x
f
z
z
Y
X
g
z
P
z
z
f
z
z
Z
z
P
)
,
(
)
,
(
)
,
(
)
(
(10-3)
z
D
)
,
( Y
X
g
Z 
)
,
( y
x
fXY ).
(z
fZ
( , )
( ) ( , ) ( , ) .
z
Z XY
x y D
z f z z g x y f x y x y


   
  (10-4)
z
D
z

PILLAI
3
By integrating (10-4), we obtain the useful formula
or
If X and Y are discrete-type r.vs, then
Since expectation is a linear operator, we also get
( ) ( ) ( , ) ( , ) .
Z XY
E Z z f z dz g x y f x y dxdy
  
  
 
   (10-5)
(10-6)
[ ( , )] ( , ) ( , ) .
XY
E g X Y g x y f x y dxdy
 
 
  
[ ( , )] ( , ) ( , ).
i j i j
i j
E g X Y g x y P X x Y y
  
 (10-7)
( , ) [ ( , )].
k k k k
k k
E a g X Y a E g X Y
 

 
 
  (10-8)
PILLAI
4
If X and Y are independent r.vs, it is easy to see that
and are always independent of each other. In that
case using (10-7), we get the interesting result
However (10-9) is in general not true (if X and Y are not
independent).
In the case of one random variable (see (10- 6)), we defined
the parameters mean and variance to represent its average
behavior. How does one parametrically represent similar
cross-behavior between two random variables? Towards
this, we can generalize the variance definition given in
(6-16) as shown below:
)
(X
g
Z 
)].
(
[
)]
(
[
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)]
(
)
(
[
Y
h
E
X
g
E
dy
y
f
y
h
dx
x
f
x
g
dxdy
y
f
x
f
y
h
x
g
Y
h
X
g
E
Y
X
Y
X





 
















(10-9)
)
(Y
h
W 
PILLAI
5
Covariance: Given any two r.vs X and Y, define
By expanding and simplifying the right side of (10-10), we
also get
It is easy to see that
To see (10-12), let so that
.
)
(
)
(
)
(
)
(
)
,
(
__
__
____
Y
X
XY
Y
E
X
E
XY
E
XY
E
Y
X
Cov Y
X





 

(10-10)
(10-12)
 .
)
(
)
(
)
,
( Y
X Y
X
E
Y
X
Cov 
 


(10-11)
,
Y
aX
U 

.
)
(
)
(
)
,
( Y
Var
X
Var
Y
X
Cov 
 
 
.
0
)
(
)
,
(
2
)
(
)
(
)
(
)
(
2
2








Y
Var
Y
X
Cov
a
X
Var
a
Y
X
a
E
U
Var Y
X 

(10-13)
PILLAI
6
The right side of (10-13) represents a quadratic in the
variable a that has no distinct real roots (Fig. 10.1). Thus the
roots are imaginary (or double) and hence the discriminant
must be non-positive, and that gives (10-12). Using (10-12),
we may define the normalized parameter
or
and it represents the correlation
coefficient between X and Y.
(10-14)
  )
(
)
(
)
,
(
2
Y
Var
X
Var
Y
X
Cov 
,
1
1
,
)
,
(
)
(
)
(
)
,
(




 XY
Y
X
XY
Y
X
Cov
Y
Var
X
Var
Y
X
Cov




a
)
(U
Var
Fig. 10.1
Y
X
XY
Y
X
Cov 



)
,
( (10-15)
PILLAI
7
Uncorrelated r.vs: If then X and Y are said to be
uncorrelated r.vs. From (11), if X and Y are uncorrelated,
then
Orthogonality: X and Y are said to be orthogonal if
From (10-16) - (10-17), if either X or Y has zero mean, then
orthogonality implies uncorrelatedness also and vice-versa.
Suppose X and Y are independent r.vs. Then from (10-9)
with we get
and together with (10-16), we conclude that the random
variables are uncorrelated, thus justifying the original
definition in (10-10). Thus independence implies
uncorrelatedness.
(10-16)
,
0

XY

,
)
(
,
)
( Y
Y
h
X
X
g 

).
(
)
(
)
( Y
E
X
E
XY
E 
.
0
)
( 
XY
E
(10-17)
),
(
)
(
)
( Y
E
X
E
XY
E 
PILLAI
8
Naturally, if two random variables are statistically
independent, then there cannot be any correlation between
them However, the converse is in general not
true. As the next example shows, random variables can be
uncorrelated without being independent.
Example 10.1: Let   Suppose X and Y
are independent. Define Z = X + Y, W = X - Y . Show that Z
and W are dependent, but uncorrelated r.vs.
Solution: gives the only solution set to be
Moreover
and
),
1
,
0
(
U
X ).
1
,
0
(
U
Y
|
|
,
2
,
2
,
1
1
,
2
0 w
z
w
z
w
z
w
z 









.
2
/
1
|
)
,
(
| 
w
z
J
.
2
,
2
w
z
y
w
z
x




y
x
w
y
x
z 


 ,
).
0
( 
XY

PILLAI
9


 










,
otherwise
,
0
,
|
|
,
2
,
2
,
1
1
,
2
0
,
2
/
1
)
,
(
z
w
w
z
w
z
w
z
w
z
fZW
(10-18)
Thus (see the shaded region in Fig. 10.2)
and hence
or by direct computation ( Z = X + Y )
Fig. 10.2
1

1
w
z
2




















,
2
1
,
2
2
1
,
1
0
,
2
1
)
,
(
)
(
2
2
z
z
dw
z
z
dw
dw
w
z
f
z
f
-z
z-
z
z
ZW
Z
PILLAI
10
and
Clearly Thus Z and W are not
independent. However
and
and hence
implying that Z and W are uncorrelated random variables.













,
otherwise
,
0
,
2
1
,
2
,
1
0
,
)
(
)
(
)
( z
z
z
z
z
f
z
f
z
f Y
X
Z
(10-19)
(10-20)
).
(
)
(
)
,
( w
f
z
f
w
z
f W
Z
ZW 
(10-21)
  ,
0
)
(
)
(
)
)(
(
)
( 2
2





 Y
E
X
E
Y
X
Y
X
E
ZW
E
0
)
(
)
(
)
(
)
,
( 

 W
E
Z
E
ZW
E
W
Z
Cov (10-22)


 





 


.
otherwise
,
0
,
1
1
|,
|
1
2
1
)
,
(
)
(
|
|
2 w
w
dz
dz
w
z
f
w
f
w
|w|
ZW
W
,
0
)
(
)
( 

 Y
X
E
W
E
PILLAI
11
Example 10.2: Let Determine the variance of Z
in terms of and
Solution:
and using (10-15)
In particular if X and Y are independent, then and
(10-23) reduces to
Thus the variance of the sum of independent r.vs is the sum
of their variances
(10-23)
,
0

XY

.
bY
aX
Z 

Y
X 
 , .
XY

( ) ( )
Z X Y
E Z E aX bY a b
  
    
 
 
2
2 2
2 2 2 2
2 2 2 2
( ) ( ) ( ) ( )
( ) 2 ( )( ) ( )
2 .
Z Z X Y
X X Y Y
X XY X Y Y
Var Z E Z E a X b Y
a E X abE X Y b E Y
a ab b
   
   
    
 
 
      
   
      
  
.
2
2
2
2
2
Y
X
Z b
a 

 
 (10-24)
).
1
( 
 b
a PILLAI
12
Moments:
represents the joint moment of order (k,m) for X and Y.
Following the one random variable case, we can define the
joint characteristic function between two random variables
which will turn out to be useful for moment calculations.
Joint characteristic functions:
The joint characteristic function between X and Y is defined
as
Note that
,
)
,
(
]
[  








 dy
dx
y
x
f
y
x
Y
X
E XY
m
k
m
k
(10-25)
 
( ) ( )
( , ) ( , ) .
j Xu Yv j Xu Yv
XY XY
u v E e e f x y dxdy
 
 
 
     (10-26)
.
1
)
0
,
0
(
)
,
( 


 XY
XY v
u
PILLAI
13
It is easy to show that
If X and Y are independent r.vs, then from (10-26), we obtain
Also
More on Gaussian r.vs :
From Lecture 7, X and Y are said to be jointly Gaussian
as if their joint p.d.f has the form in (7-
23). In that case, by direct substitution and simplification,
we obtain the joint characteristic function of two jointly
Gaussian r.vs to be
.
)
,
(
1
)
(
0
,
0
2
2







v
u
XY
v
u
v
u
j
XY
E (10-27)
).
(
)
(
)
(
)
(
)
,
( v
u
e
E
e
E
v
u Y
X
jvY
juX
XY 



 (10-28)
( ) ( ,0), ( ) (0, ).
X XY Y XY
u u v v
      (10-29)
),
,
,
,
,
( 2
2




 Y
X
Y
X
N
PILLAI
14
.
)
(
)
,
(
)
2
(
2
1
)
(
)
(
2
2
2
2
v
uv
u
v
u
j
Yv
Xu
j
XY
Y
Y
X
X
Y
X
e
e
E
v
u





 






 (10-30)
Equation (10-14) can be used to make various conclusions.
Letting in (10-30), we get
and it agrees with (6-47).
From (7-23) by direct computation using (10-11), it is easy
to show that for two jointly Gaussian random variables
Hence from (10-14), in represents
the actual correlation coefficient of the two jointly Gaussian
r.vs in (7-23). Notice that implies
0

v
,
)
0
,
(
)
(
2
2
2
1
u
u
j
XY
X
X
X
e
u
u

 



 (10-31)
)
,
,
,
,
( 2
2




 Y
X
Y
X
N

.
)
,
( Y
X
Y
X
Cov 



0


PILLAI
15
Thus if X and Y are jointly Gaussian, uncorrelatedness does
imply independence between the two random variables.
Gaussian case is the only exception where the two concepts
imply each other.
Example 10.3: Let X and Y be jointly Gaussian r.vs with
parameters Define
Determine
Solution: In this case we can make use of characteristic
function to solve this problem.
).
,
,
,
,
( 2
2




 Y
X
Y
X
N .
bY
aX
Z 

).
(z
fZ
).
,
(
)
(
)
(
)
(
)
( )
(
bu
au
e
E
e
E
e
E
u
XY
jbuY
jauX
u
bY
aX
j
jZu
Z





 

(10-32)
).
(
)
(
)
,
( y
f
x
f
Y
X
f Y
X
XY 
PILLAI
16
From (10-30) with u and v replaced by au and bu
respectively we get
where
Notice that (10-33) has the same form as (10-31), and hence
we conclude that is also Gaussian with mean and
variance as in (10-34) - (10-35), which also agrees with (10-
23).
From the previous example, we conclude that any linear
combination of jointly Gaussian r.vs generate a Gaussian r.v.
,
)
(
2
2
2
2
2
2
2
2
1
)
2
(
2
1
)
( u
u
j
u
b
ab
a
u
b
a
j
Z
Z
Z
Y
Y
X
X
Y
X
e
e
u








 







(10-33)
(10-34)
(10-35)
bY
aX
Z 

.
2
,
2
2
2
2
2
Y
Y
X
X
Z
Y
X
Z
b
ab
a
b
a
















PILLAI
17
In other words, linearity preserves Gaussianity. We can use
the characteristic function relation to conclude an even more
general result.
Example 10.4: Suppose X and Y are jointly Gaussian r.vs as
in the previous example. Define two linear combinations
what can we say about their joint distribution?
Solution: The characteristic function of Z and W is given by
As before substituting (10-30) into (10-37) with u and v
replaced by au + cv and bu + dv respectively, we get
.
, dY
cX
W
bY
aX
Z 


 (10-36)
).
,
(
)
(
)
(
)
(
)
,
(
)
(
)
(
)
(
)
(
)
(
dv
bu
cv
au
e
E
e
E
e
E
v
u
XY
dv
bu
jY
cv
au
jX
v
dY
cX
j
u
bY
aX
j
Wv
Zu
j
ZW















(10-37)
PILLAI
18
,
)
,
(
)
2
(
2
1
)
( 2
2
2
2
v
uv
u
v
u
j
ZW
W
Y
X
ZW
Z
W
Z
e
v
u






 




 (10-38)
where
and
From (10-38), we conclude that Z and W are also jointly
distributed Gaussian r.vs with means, variances and
correlation coefficient as in (10-39) - (10-43).
,
2
,
2
,
,
2
2
2
2
2
2
2
2
2
2
Y
Y
X
X
W
Y
Y
X
X
Z
Y
X
W
Y
X
Z
d
cd
c
b
ab
a
d
c
b
a

























 (10-39)
(10-40)
(10-41)
(10-42)
.
)
( 2
2
W
Z
Y
Y
X
X
ZW
bd
bc
ad
ac










 (10-43)
PILLAI
19
To summarize, any two linear combinations of jointly
Gaussian random variables (independent or dependent) are
also jointly Gaussian r.vs.
Of course, we could have reached the same conclusion by
deriving the joint p.d.f using the technique
developed in section 9 (refer (7-29)).
Gaussian random variables are also interesting because of
the following result:
Central Limit Theorem: Suppose are a set of
zero mean independent, identically distributed (i.i.d) random
Linear
operator
Gaussian input Gaussian output
)
,
( w
z
fZW
n
X
X
X ,
,
, 2
1 
Fig. 10.3
PILLAI
20
variables with some common distribution. Consider their
scaled sum
Then asymptotically (as )
Proof: Although the theorem is true under even more
general conditions, we shall prove it here under the
independence assumption. Let represent their common
variance. Since
we have
.
2
1
n
X
X
X
Y n





(10-44)


n
).
,
0
( 2

N
Y 
2

,
0
)
( 
i
X
E
.
)
(
)
( 2
2


 i
i X
E
X
Var
(10-45)
(10-46)
(10-47)
PILLAI
21
Consider
where we have made use of the independence of the
r.vs But
where we have made use of (10-46) - (10-47). Substituting
(10-49) into (10-48), we obtain
and as
 













n
i
X
n
i
n
u
jX
n
u
X
X
X
j
jYu
Y
n
u
e
E
e
E
e
E
u
i
i
n
1
1
/
/
)
(
)
/
(
)
(
)
(
)
( 2
1 
(10-48)
.
,
,
, 2
1 n
X
X
X 
,
1
2
1
!
3
!
2
1
)
( 2
/
3
2
2
2
/
3
3
3
3
2
2
2
/






















n
o
n
u
n
u
X
j
n
u
X
j
n
u
jX
E
e
E i
i
i
n
u
jXi

 (10-49)
,
1
2
1
)
( 2
/
3
2
2 n
Y
n
o
n
u
u 















 (10-50)
2 2
/ 2
lim ( ) ,
u
Y
n
u e 


  (10-51)
PILLAI
22
.
1
lim x
n
n
e
n
x 









 (10-52)
[Note that terms in (10-50) decay faster than
But (10-51) represents the characteristic function of a zero
mean normal r.v with variance and (10-45) follows.
The central limit theorem states that a large sum of
independent random variables each with finite variance
tends to behave like a normal random variable. Thus the
individual p.d.fs become unimportant to analyze the
collective sum behavior. If we model the noise phenomenon
as the sum of a large number of independent random
variables (eg: electron motion in resistor components), then
this theorem allows us to conclude that noise behaves like a
Gaussian r.v.
3/ 2
(1/ )
o n 3/ 2
1/ ].
n
2

since
PILLAI
23
It may be remarked that the finite variance assumption is
necessary for the theorem to hold good. To prove its
importance, consider the r.vs to be Cauchy distributed, and
let
where each  Then since
substituting this into (10-48), we get
which shows that Y is still Cauchy with parameter
In other words, central limit theorem doesn’t hold good for
a set of Cauchy r.vs as their variances are undefined.
.
2
1
n
X
X
X
Y n




 (10-53)
).
(
C
Xi
,
)
( |
|u
X e
u
i



 (10-54)
 
n
| |/
1
( ) ( / ) ~ ( ),
n
u n
Y X
i
u u n e C n




   
 (10-55)
.
n

PILLAI
24
Joint characteristic functions are useful in determining the
p.d.f of linear combinations of r.vs. For example, with X and
Y as independent Poisson r.vs with parameters and
respectively, let
Then
But from (6-33)
so that

i.e., sum of independent Poisson r.vs is also a Poisson
random variable.
.
Y
X
Z 
 (10-56)
).
(
)
(
)
( u
u
u Y
X
Z 


 (10-57)
)
1
(
)
1
( 2
1
)
(
,
)
( 





ju
ju
e
Y
e
X e
u
e
u 

(10-58)
)
(
)
( 2
1
)
1
)(
( 2
1






 

P
e
u
ju
e
Z
(10-59)
1
 2

PILLAI

More Related Content

Similar to Joint moment and joint character lectr10a.ppt

Unified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-Connection
Unified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-ConnectionUnified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-Connection
Unified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-Connection
iosrjce
 
Function of a random variable lect5a.ppt
Function of a random variable lect5a.pptFunction of a random variable lect5a.ppt
Function of a random variable lect5a.ppt
sadafshahbaz7777
 
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
IOSR Journals
 
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Neeraj Bhandari
 
L5 & l6 relations
L5 & l6 relationsL5 & l6 relations
L5 & l6 relations
Mohammad Umar Rehman
 
Random variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.pptRandom variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.ppt
sadafshahbaz7777
 
1807.02591v3.pdf
1807.02591v3.pdf1807.02591v3.pdf
1807.02591v3.pdf
rogerkeinwood1
 
Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...
Asma CHERIF
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
The Statistical and Applied Mathematical Sciences Institute
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
Matlab Assignment Experts
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
SEENET-MTP
 
201977 1-1-4-pb
201977 1-1-4-pb201977 1-1-4-pb
201977 1-1-4-pb
AssociateProfessorKM
 
Co vand corr
Co vand corrCo vand corr
Co vand corr
Shehzad Rizwan
 
paper
paperpaper
paper
3ashmawy
 
Pullbacks and Pushouts in the Category of Graphs
Pullbacks and Pushouts in the Category of GraphsPullbacks and Pushouts in the Category of Graphs
Pullbacks and Pushouts in the Category of Graphs
iosrjce
 
Cs229 notes9
Cs229 notes9Cs229 notes9
Cs229 notes9
VuTran231
 
Spanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimationSpanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimation
jemille6
 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ijrap
 
Triple Integral
Triple IntegralTriple Integral
Triple Integral
HusseinAli272
 
4_Correlation and and Regression (1).pptx
4_Correlation and and Regression (1).pptx4_Correlation and and Regression (1).pptx
4_Correlation and and Regression (1).pptx
sahibkoh
 

Similar to Joint moment and joint character lectr10a.ppt (20)

Unified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-Connection
Unified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-ConnectionUnified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-Connection
Unified Contact Riemannian Manifold Admitting SemiSymmetric Metric S-Connection
 
Function of a random variable lect5a.ppt
Function of a random variable lect5a.pptFunction of a random variable lect5a.ppt
Function of a random variable lect5a.ppt
 
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
 
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
 
L5 & l6 relations
L5 & l6 relationsL5 & l6 relations
L5 & l6 relations
 
Random variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.pptRandom variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.ppt
 
1807.02591v3.pdf
1807.02591v3.pdf1807.02591v3.pdf
1807.02591v3.pdf
 
Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...Probability and statistics - Discrete Random Variables and Probability Distri...
Probability and statistics - Discrete Random Variables and Probability Distri...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
201977 1-1-4-pb
201977 1-1-4-pb201977 1-1-4-pb
201977 1-1-4-pb
 
Co vand corr
Co vand corrCo vand corr
Co vand corr
 
paper
paperpaper
paper
 
Pullbacks and Pushouts in the Category of Graphs
Pullbacks and Pushouts in the Category of GraphsPullbacks and Pushouts in the Category of Graphs
Pullbacks and Pushouts in the Category of Graphs
 
Cs229 notes9
Cs229 notes9Cs229 notes9
Cs229 notes9
 
Spanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimationSpanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimation
 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
 
Triple Integral
Triple IntegralTriple Integral
Triple Integral
 
4_Correlation and and Regression (1).pptx
4_Correlation and and Regression (1).pptx4_Correlation and and Regression (1).pptx
4_Correlation and and Regression (1).pptx
 

More from sadafshahbaz7777

PastandpresentofPunjabi 24567642245(1).pdf
PastandpresentofPunjabi 24567642245(1).pdfPastandpresentofPunjabi 24567642245(1).pdf
PastandpresentofPunjabi 24567642245(1).pdf
sadafshahbaz7777
 
resham_localgovts and powers and functions.pptx
resham_localgovts and powers and functions.pptxresham_localgovts and powers and functions.pptx
resham_localgovts and powers and functions.pptx
sadafshahbaz7777
 
ITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.pptITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.ppt
sadafshahbaz7777
 
IOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptxIOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptx
sadafshahbaz7777
 
Ch5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.pptCh5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.ppt
sadafshahbaz7777
 
Lecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .pptLecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .ppt
sadafshahbaz7777
 
social_media_for_research 234664445.pptx
social_media_for_research 234664445.pptxsocial_media_for_research 234664445.pptx
social_media_for_research 234664445.pptx
sadafshahbaz7777
 
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
sadafshahbaz7777
 
Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888
sadafshahbaz7777
 
160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx
sadafshahbaz7777
 
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.pptC3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
sadafshahbaz7777
 
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
sadafshahbaz7777
 
373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf
sadafshahbaz7777
 
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdfChoudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
sadafshahbaz7777
 
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptxAdverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
sadafshahbaz7777
 
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
sadafshahbaz7777
 
Lecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555pptLecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555ppt
sadafshahbaz7777
 
First financial management 23566432245556
First financial management 23566432245556First financial management 23566432245556
First financial management 23566432245556
sadafshahbaz7777
 
lecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptlecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.ppt
sadafshahbaz7777
 
CECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptxCECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptx
sadafshahbaz7777
 

More from sadafshahbaz7777 (20)

PastandpresentofPunjabi 24567642245(1).pdf
PastandpresentofPunjabi 24567642245(1).pdfPastandpresentofPunjabi 24567642245(1).pdf
PastandpresentofPunjabi 24567642245(1).pdf
 
resham_localgovts and powers and functions.pptx
resham_localgovts and powers and functions.pptxresham_localgovts and powers and functions.pptx
resham_localgovts and powers and functions.pptx
 
ITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.pptITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.ppt
 
IOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptxIOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptx
 
Ch5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.pptCh5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.ppt
 
Lecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .pptLecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .ppt
 
social_media_for_research 234664445.pptx
social_media_for_research 234664445.pptxsocial_media_for_research 234664445.pptx
social_media_for_research 234664445.pptx
 
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
 
Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888
 
160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx
 
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.pptC3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
 
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
 
373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf
 
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdfChoudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
 
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptxAdverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
 
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
 
Lecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555pptLecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555ppt
 
First financial management 23566432245556
First financial management 23566432245556First financial management 23566432245556
First financial management 23566432245556
 
lecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptlecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.ppt
 
CECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptxCECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptx
 

Recently uploaded

美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】
美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】
美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】
brunasordi905
 
Writting professional emails A professional and easy way
Writting professional emails A professional and easy wayWritting professional emails A professional and easy way
Writting professional emails A professional and easy way
Sanket Shikhar
 
High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...
High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...
High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...
Banerescorts
 
Counter Terrorism Department Jobs 2024 | CTD Jobs in Punjab Police
Counter Terrorism Department Jobs 2024 | CTD Jobs in Punjab PoliceCounter Terrorism Department Jobs 2024 | CTD Jobs in Punjab Police
Counter Terrorism Department Jobs 2024 | CTD Jobs in Punjab Police
Merrie rp
 
LinkedIn Strategic Guidelines for June 2024
LinkedIn Strategic Guidelines  for June 2024LinkedIn Strategic Guidelines  for June 2024
LinkedIn Strategic Guidelines for June 2024
Bruce Bennett
 
Top Recruitment Agencies in Pakistan - Delta International Recruitment Agency
Top Recruitment Agencies in Pakistan -  Delta International Recruitment AgencyTop Recruitment Agencies in Pakistan -  Delta International Recruitment Agency
Top Recruitment Agencies in Pakistan - Delta International Recruitment Agency
Delta International Recruitment Agency
 
Tara E Browne, DTM - Administrative Manager (Resume)
Tara E Browne, DTM - Administrative Manager (Resume)Tara E Browne, DTM - Administrative Manager (Resume)
Tara E Browne, DTM - Administrative Manager (Resume)
Tara E. Browne, DTM
 
一比一原版(ukc学位证书)肯特大学毕业证如何办理
一比一原版(ukc学位证书)肯特大学毕业证如何办理一比一原版(ukc学位证书)肯特大学毕业证如何办理
一比一原版(ukc学位证书)肯特大学毕业证如何办理
uecoxy
 
一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理
一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理
一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理
eaoko
 
一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理
一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理
一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理
zukou
 
Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...
Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...
Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...
tigerdon8470
 
GUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdf
GUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdfGUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdf
GUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdf
ProexportColombia1
 
一比一原版加拿大特伦特大学毕业证如何办理
一比一原版加拿大特伦特大学毕业证如何办理一比一原版加拿大特伦特大学毕业证如何办理
一比一原版加拿大特伦特大学毕业证如何办理
ofogyhw
 
Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...
Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...
Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...
uthkarshkumar987000
 
欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】
欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】
欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】
concepsionchomo153
 
Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11
Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11 Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11
Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11
sunilverma7884
 
欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】
欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】
欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】
landrielgabriel274
 
一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理
一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理
一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理
uhynup
 
欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】
欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】
欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】
ahmedendrise81
 
Indore ℂall Girl Book 00000000 ℂall Girl Service In Indore
Indore ℂall Girl Book 00000000 ℂall Girl Service In IndoreIndore ℂall Girl Book 00000000 ℂall Girl Service In Indore
Indore ℂall Girl Book 00000000 ℂall Girl Service In Indore
babesbookhot
 

Recently uploaded (20)

美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】
美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】
美洲杯买球-尽享激情盛宴,美洲杯买球投注网站官网为你开启精彩|【​网址​🎉ac55.net🎉​】
 
Writting professional emails A professional and easy way
Writting professional emails A professional and easy wayWritting professional emails A professional and easy way
Writting professional emails A professional and easy way
 
High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...
High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...
High Class Call Girls Chandigarh ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl S...
 
Counter Terrorism Department Jobs 2024 | CTD Jobs in Punjab Police
Counter Terrorism Department Jobs 2024 | CTD Jobs in Punjab PoliceCounter Terrorism Department Jobs 2024 | CTD Jobs in Punjab Police
Counter Terrorism Department Jobs 2024 | CTD Jobs in Punjab Police
 
LinkedIn Strategic Guidelines for June 2024
LinkedIn Strategic Guidelines  for June 2024LinkedIn Strategic Guidelines  for June 2024
LinkedIn Strategic Guidelines for June 2024
 
Top Recruitment Agencies in Pakistan - Delta International Recruitment Agency
Top Recruitment Agencies in Pakistan -  Delta International Recruitment AgencyTop Recruitment Agencies in Pakistan -  Delta International Recruitment Agency
Top Recruitment Agencies in Pakistan - Delta International Recruitment Agency
 
Tara E Browne, DTM - Administrative Manager (Resume)
Tara E Browne, DTM - Administrative Manager (Resume)Tara E Browne, DTM - Administrative Manager (Resume)
Tara E Browne, DTM - Administrative Manager (Resume)
 
一比一原版(ukc学位证书)肯特大学毕业证如何办理
一比一原版(ukc学位证书)肯特大学毕业证如何办理一比一原版(ukc学位证书)肯特大学毕业证如何办理
一比一原版(ukc学位证书)肯特大学毕业证如何办理
 
一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理
一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理
一比一原版(lincoln学位证书)英国林肯大学毕业证如何办理
 
一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理
一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理
一比一原版(kcl毕业证书)英国金斯顿大学毕业证如何办理
 
Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...
Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...
Call Girls Service Marathahalli ✔ 7014168258 ✔ Hi I Am Divya Vip Call Girl Se...
 
GUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdf
GUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdfGUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdf
GUIA_LEGAL_CHAPTER_12_GOVERNMENT PROCUREMENT.pdf
 
一比一原版加拿大特伦特大学毕业证如何办理
一比一原版加拿大特伦特大学毕业证如何办理一比一原版加拿大特伦特大学毕业证如何办理
一比一原版加拿大特伦特大学毕业证如何办理
 
Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...
Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...
Cheap Rates Call Girls Bangalore 9024918724 Just CALL ME Book Beautiful Girls...
 
欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】
欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】
欧洲杯买球-欧洲杯买球买球推荐-欧洲杯买球买球推荐网站|【​网址​🎉ac10.net🎉​】
 
Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11
Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11 Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11
Kolkata Call Girls 👉 7374876321 🔝 👈 Top Escorts Experiences With Foreignerj11
 
欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】
欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】
欧洲杯外围-欧洲杯外围下注网址-欧洲杯外围下注网站|【​网址​🎉ac44.net🎉​】
 
一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理
一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理
一比一原版(dmu毕业证书)英国德蒙福特大学毕业证如何办理
 
欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】
欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】
欧洲杯足彩-欧洲杯足彩投注网-欧洲杯足彩投注网站|【​网址​🎉ac123.net🎉​】
 
Indore ℂall Girl Book 00000000 ℂall Girl Service In Indore
Indore ℂall Girl Book 00000000 ℂall Girl Service In IndoreIndore ℂall Girl Book 00000000 ℂall Girl Service In Indore
Indore ℂall Girl Book 00000000 ℂall Girl Service In Indore
 

Joint moment and joint character lectr10a.ppt

  • 1. 1 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the information contained in the joint p.d.f of two r.vs. Given two r.vs X and Y and a function define the r.v Using (6-2), we can define the mean of Z to be (10-1) ) , ( Y X g Z  ), , ( y x g . ) ( ) (        dz z f z Z E Z Z  (10-2) PILLAI
  • 2. 2 However, the situation here is similar to that in (6-13), and it is possible to express the mean of in terms of without computing To see this, recall from (5-26) and (7-10) that where is the region in xy plane satisfying the above inequality. From (10-3), we get As covers the entire z axis, the corresponding regions are nonoverlapping, and they cover the entire xy plane.                       z D y x XY Z y x y x f z z Y X g z P z z f z z Z z P ) , ( ) , ( ) , ( ) ( (10-3) z D ) , ( Y X g Z  ) , ( y x fXY ). (z fZ ( , ) ( ) ( , ) ( , ) . z Z XY x y D z f z z g x y f x y x y         (10-4) z D z  PILLAI
  • 3. 3 By integrating (10-4), we obtain the useful formula or If X and Y are discrete-type r.vs, then Since expectation is a linear operator, we also get ( ) ( ) ( , ) ( , ) . Z XY E Z z f z dz g x y f x y dxdy            (10-5) (10-6) [ ( , )] ( , ) ( , ) . XY E g X Y g x y f x y dxdy        [ ( , )] ( , ) ( , ). i j i j i j E g X Y g x y P X x Y y     (10-7) ( , ) [ ( , )]. k k k k k k E a g X Y a E g X Y          (10-8) PILLAI
  • 4. 4 If X and Y are independent r.vs, it is easy to see that and are always independent of each other. In that case using (10-7), we get the interesting result However (10-9) is in general not true (if X and Y are not independent). In the case of one random variable (see (10- 6)), we defined the parameters mean and variance to represent its average behavior. How does one parametrically represent similar cross-behavior between two random variables? Towards this, we can generalize the variance definition given in (6-16) as shown below: ) (X g Z  )]. ( [ )] ( [ ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) ( [ Y h E X g E dy y f y h dx x f x g dxdy y f x f y h x g Y h X g E Y X Y X                        (10-9) ) (Y h W  PILLAI
  • 5. 5 Covariance: Given any two r.vs X and Y, define By expanding and simplifying the right side of (10-10), we also get It is easy to see that To see (10-12), let so that . ) ( ) ( ) ( ) ( ) , ( __ __ ____ Y X XY Y E X E XY E XY E Y X Cov Y X         (10-10) (10-12)  . ) ( ) ( ) , ( Y X Y X E Y X Cov      (10-11) , Y aX U   . ) ( ) ( ) , ( Y Var X Var Y X Cov      . 0 ) ( ) , ( 2 ) ( ) ( ) ( ) ( 2 2         Y Var Y X Cov a X Var a Y X a E U Var Y X   (10-13) PILLAI
  • 6. 6 The right side of (10-13) represents a quadratic in the variable a that has no distinct real roots (Fig. 10.1). Thus the roots are imaginary (or double) and hence the discriminant must be non-positive, and that gives (10-12). Using (10-12), we may define the normalized parameter or and it represents the correlation coefficient between X and Y. (10-14)   ) ( ) ( ) , ( 2 Y Var X Var Y X Cov  , 1 1 , ) , ( ) ( ) ( ) , (      XY Y X XY Y X Cov Y Var X Var Y X Cov     a ) (U Var Fig. 10.1 Y X XY Y X Cov     ) , ( (10-15) PILLAI
  • 7. 7 Uncorrelated r.vs: If then X and Y are said to be uncorrelated r.vs. From (11), if X and Y are uncorrelated, then Orthogonality: X and Y are said to be orthogonal if From (10-16) - (10-17), if either X or Y has zero mean, then orthogonality implies uncorrelatedness also and vice-versa. Suppose X and Y are independent r.vs. Then from (10-9) with we get and together with (10-16), we conclude that the random variables are uncorrelated, thus justifying the original definition in (10-10). Thus independence implies uncorrelatedness. (10-16) , 0  XY  , ) ( , ) ( Y Y h X X g   ). ( ) ( ) ( Y E X E XY E  . 0 ) (  XY E (10-17) ), ( ) ( ) ( Y E X E XY E  PILLAI
  • 8. 8 Naturally, if two random variables are statistically independent, then there cannot be any correlation between them However, the converse is in general not true. As the next example shows, random variables can be uncorrelated without being independent. Example 10.1: Let   Suppose X and Y are independent. Define Z = X + Y, W = X - Y . Show that Z and W are dependent, but uncorrelated r.vs. Solution: gives the only solution set to be Moreover and ), 1 , 0 ( U X ). 1 , 0 ( U Y | | , 2 , 2 , 1 1 , 2 0 w z w z w z w z           . 2 / 1 | ) , ( |  w z J . 2 , 2 w z y w z x     y x w y x z     , ). 0 (  XY  PILLAI
  • 9. 9               , otherwise , 0 , | | , 2 , 2 , 1 1 , 2 0 , 2 / 1 ) , ( z w w z w z w z w z fZW (10-18) Thus (see the shaded region in Fig. 10.2) and hence or by direct computation ( Z = X + Y ) Fig. 10.2 1  1 w z 2                     , 2 1 , 2 2 1 , 1 0 , 2 1 ) , ( ) ( 2 2 z z dw z z dw dw w z f z f -z z- z z ZW Z PILLAI
  • 10. 10 and Clearly Thus Z and W are not independent. However and and hence implying that Z and W are uncorrelated random variables.              , otherwise , 0 , 2 1 , 2 , 1 0 , ) ( ) ( ) ( z z z z z f z f z f Y X Z (10-19) (10-20) ). ( ) ( ) , ( w f z f w z f W Z ZW  (10-21)   , 0 ) ( ) ( ) )( ( ) ( 2 2       Y E X E Y X Y X E ZW E 0 ) ( ) ( ) ( ) , (    W E Z E ZW E W Z Cov (10-22)              . otherwise , 0 , 1 1 |, | 1 2 1 ) , ( ) ( | | 2 w w dz dz w z f w f w |w| ZW W , 0 ) ( ) (    Y X E W E PILLAI
  • 11. 11 Example 10.2: Let Determine the variance of Z in terms of and Solution: and using (10-15) In particular if X and Y are independent, then and (10-23) reduces to Thus the variance of the sum of independent r.vs is the sum of their variances (10-23) , 0  XY  . bY aX Z   Y X   , . XY  ( ) ( ) Z X Y E Z E aX bY a b             2 2 2 2 2 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) 2 ( )( ) ( ) 2 . Z Z X Y X X Y Y X XY X Y Y Var Z E Z E a X b Y a E X abE X Y b E Y a ab b                                       . 2 2 2 2 2 Y X Z b a      (10-24) ). 1 (   b a PILLAI
  • 12. 12 Moments: represents the joint moment of order (k,m) for X and Y. Following the one random variable case, we can define the joint characteristic function between two random variables which will turn out to be useful for moment calculations. Joint characteristic functions: The joint characteristic function between X and Y is defined as Note that , ) , ( ] [            dy dx y x f y x Y X E XY m k m k (10-25)   ( ) ( ) ( , ) ( , ) . j Xu Yv j Xu Yv XY XY u v E e e f x y dxdy            (10-26) . 1 ) 0 , 0 ( ) , (     XY XY v u PILLAI
  • 13. 13 It is easy to show that If X and Y are independent r.vs, then from (10-26), we obtain Also More on Gaussian r.vs : From Lecture 7, X and Y are said to be jointly Gaussian as if their joint p.d.f has the form in (7- 23). In that case, by direct substitution and simplification, we obtain the joint characteristic function of two jointly Gaussian r.vs to be . ) , ( 1 ) ( 0 , 0 2 2        v u XY v u v u j XY E (10-27) ). ( ) ( ) ( ) ( ) , ( v u e E e E v u Y X jvY juX XY      (10-28) ( ) ( ,0), ( ) (0, ). X XY Y XY u u v v       (10-29) ), , , , , ( 2 2      Y X Y X N PILLAI
  • 14. 14 . ) ( ) , ( ) 2 ( 2 1 ) ( ) ( 2 2 2 2 v uv u v u j Yv Xu j XY Y Y X X Y X e e E v u               (10-30) Equation (10-14) can be used to make various conclusions. Letting in (10-30), we get and it agrees with (6-47). From (7-23) by direct computation using (10-11), it is easy to show that for two jointly Gaussian random variables Hence from (10-14), in represents the actual correlation coefficient of the two jointly Gaussian r.vs in (7-23). Notice that implies 0  v , ) 0 , ( ) ( 2 2 2 1 u u j XY X X X e u u        (10-31) ) , , , , ( 2 2      Y X Y X N  . ) , ( Y X Y X Cov     0   PILLAI
  • 15. 15 Thus if X and Y are jointly Gaussian, uncorrelatedness does imply independence between the two random variables. Gaussian case is the only exception where the two concepts imply each other. Example 10.3: Let X and Y be jointly Gaussian r.vs with parameters Define Determine Solution: In this case we can make use of characteristic function to solve this problem. ). , , , , ( 2 2      Y X Y X N . bY aX Z   ). (z fZ ). , ( ) ( ) ( ) ( ) ( ) ( bu au e E e E e E u XY jbuY jauX u bY aX j jZu Z         (10-32) ). ( ) ( ) , ( y f x f Y X f Y X XY  PILLAI
  • 16. 16 From (10-30) with u and v replaced by au and bu respectively we get where Notice that (10-33) has the same form as (10-31), and hence we conclude that is also Gaussian with mean and variance as in (10-34) - (10-35), which also agrees with (10- 23). From the previous example, we conclude that any linear combination of jointly Gaussian r.vs generate a Gaussian r.v. , ) ( 2 2 2 2 2 2 2 2 1 ) 2 ( 2 1 ) ( u u j u b ab a u b a j Z Z Z Y Y X X Y X e e u                  (10-33) (10-34) (10-35) bY aX Z   . 2 , 2 2 2 2 2 Y Y X X Z Y X Z b ab a b a                 PILLAI
  • 17. 17 In other words, linearity preserves Gaussianity. We can use the characteristic function relation to conclude an even more general result. Example 10.4: Suppose X and Y are jointly Gaussian r.vs as in the previous example. Define two linear combinations what can we say about their joint distribution? Solution: The characteristic function of Z and W is given by As before substituting (10-30) into (10-37) with u and v replaced by au + cv and bu + dv respectively, we get . , dY cX W bY aX Z     (10-36) ). , ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ( ) ( dv bu cv au e E e E e E v u XY dv bu jY cv au jX v dY cX j u bY aX j Wv Zu j ZW                (10-37) PILLAI
  • 18. 18 , ) , ( ) 2 ( 2 1 ) ( 2 2 2 2 v uv u v u j ZW W Y X ZW Z W Z e v u              (10-38) where and From (10-38), we conclude that Z and W are also jointly distributed Gaussian r.vs with means, variances and correlation coefficient as in (10-39) - (10-43). , 2 , 2 , , 2 2 2 2 2 2 2 2 2 2 Y Y X X W Y Y X X Z Y X W Y X Z d cd c b ab a d c b a                           (10-39) (10-40) (10-41) (10-42) . ) ( 2 2 W Z Y Y X X ZW bd bc ad ac            (10-43) PILLAI
  • 19. 19 To summarize, any two linear combinations of jointly Gaussian random variables (independent or dependent) are also jointly Gaussian r.vs. Of course, we could have reached the same conclusion by deriving the joint p.d.f using the technique developed in section 9 (refer (7-29)). Gaussian random variables are also interesting because of the following result: Central Limit Theorem: Suppose are a set of zero mean independent, identically distributed (i.i.d) random Linear operator Gaussian input Gaussian output ) , ( w z fZW n X X X , , , 2 1  Fig. 10.3 PILLAI
  • 20. 20 variables with some common distribution. Consider their scaled sum Then asymptotically (as ) Proof: Although the theorem is true under even more general conditions, we shall prove it here under the independence assumption. Let represent their common variance. Since we have . 2 1 n X X X Y n      (10-44)   n ). , 0 ( 2  N Y  2  , 0 ) (  i X E . ) ( ) ( 2 2    i i X E X Var (10-45) (10-46) (10-47) PILLAI
  • 21. 21 Consider where we have made use of the independence of the r.vs But where we have made use of (10-46) - (10-47). Substituting (10-49) into (10-48), we obtain and as                n i X n i n u jX n u X X X j jYu Y n u e E e E e E u i i n 1 1 / / ) ( ) / ( ) ( ) ( ) ( 2 1  (10-48) . , , , 2 1 n X X X  , 1 2 1 ! 3 ! 2 1 ) ( 2 / 3 2 2 2 / 3 3 3 3 2 2 2 /                       n o n u n u X j n u X j n u jX E e E i i i n u jXi   (10-49) , 1 2 1 ) ( 2 / 3 2 2 n Y n o n u u                  (10-50) 2 2 / 2 lim ( ) , u Y n u e      (10-51) PILLAI
  • 22. 22 . 1 lim x n n e n x            (10-52) [Note that terms in (10-50) decay faster than But (10-51) represents the characteristic function of a zero mean normal r.v with variance and (10-45) follows. The central limit theorem states that a large sum of independent random variables each with finite variance tends to behave like a normal random variable. Thus the individual p.d.fs become unimportant to analyze the collective sum behavior. If we model the noise phenomenon as the sum of a large number of independent random variables (eg: electron motion in resistor components), then this theorem allows us to conclude that noise behaves like a Gaussian r.v. 3/ 2 (1/ ) o n 3/ 2 1/ ]. n 2  since PILLAI
  • 23. 23 It may be remarked that the finite variance assumption is necessary for the theorem to hold good. To prove its importance, consider the r.vs to be Cauchy distributed, and let where each  Then since substituting this into (10-48), we get which shows that Y is still Cauchy with parameter In other words, central limit theorem doesn’t hold good for a set of Cauchy r.vs as their variances are undefined. . 2 1 n X X X Y n      (10-53) ). ( C Xi , ) ( | |u X e u i     (10-54)   n | |/ 1 ( ) ( / ) ~ ( ), n u n Y X i u u n e C n          (10-55) . n  PILLAI
  • 24. 24 Joint characteristic functions are useful in determining the p.d.f of linear combinations of r.vs. For example, with X and Y as independent Poisson r.vs with parameters and respectively, let Then But from (6-33) so that  i.e., sum of independent Poisson r.vs is also a Poisson random variable. . Y X Z   (10-56) ). ( ) ( ) ( u u u Y X Z     (10-57) ) 1 ( ) 1 ( 2 1 ) ( , ) (       ju ju e Y e X e u e u   (10-58) ) ( ) ( 2 1 ) 1 )( ( 2 1          P e u ju e Z (10-59) 1  2  PILLAI