SlideShare a Scribd company logo
1 of 22
Download to read offline
1
Solid Mechanics Review
Deformation and the concept of
stress and strain
MCE 508 – Advanced Mechanics of Material
1
Deformation
 Deformation: Change of microstructure resulting from loading.
 Loading types: Tension, compression, and torsion or combination of
two or all.
 Mechanical property: Measured material response to applied loads.
2
2
Deformation
 Materials are usually assumed to be
 Continuous (no cracks or voids).
 Homogeneous (identical properties at all points).
 Isotropic (particular property does not vary with
direction). Anisotropy in property exists if the
property changes with the direction.
 Most polycrystalline materials especially metals that
have equiaxed grains show isotropy in mechanical
properties.
 In deformation, two measured property are very
important: stress and strain.
3
Stress
A

 dA
A
P
dA
P 




σ is the average stress and A is the cross-sectional area.
Internal resisting force
4
3
Stress
 If the applied load is normal to the acted area then the
stress is called normal stress and represented by S or σ
(engineering and true stresses).
 If the load is parallel to the area then the stress is called
shear stress and represented by t.
 For both stresses, normal and shear, the stress is simply
found dividing the load by the area.
 It is assumed that stress is constant, therefore the
calculated stress is an average stress, which does not
represent stress in micro scale such as stress around voids
and etc.
5
Stress
 Fracture is normally driven by normal stresses and
plastic deformation (viscous flow-change in shape) is
driven by shear stresses (see Fig. given below, points
reorient atoms).
6
4
Stress
A
cos
.
P
A
Pz 



A
sin
.
sin
.
P
A
P
A
cos
.
sin
.
P
A
P
A
sin
.
P
x
zx
y
zy




t




t


t
For a given plane there is only one normal stress and there may be two
shear stresses acting on it. 7
Stress-units
GPa
Pa
MPa
Pa
Pa
Pascal
m
N
m
kg
A
P
1
10
,
1
10
)
(
9
6
2
2







8
5
Strain
)
(
)
( strain
Normal
L
L
L
L
length
initial
elongation
strain
e
o
o
o 




9
Strain
)
(
tan strain
Shear
h
a


 


10
6
Tensile test
1. ELASTIC DEFORMATION
2. PLASTIC DEFORMATION 11
Elastic deformation
•Stress proportional to strainknown as Hooke’s Law:
Material obeying Hooke’s law called linear elastic or
Hokean solids.
Hooke’s Law is not valid for every material, such as Rubber
E is the Elastic Modulus or Young’s Modulus.
12
7
Elastic deformation
Reversible Process; upon releasing the load strain goes back to
zero. Immediate response Linear elastic.
time dependent elastic recovery  viscoelastic materials.
13
Elastic deformation
During elastic deformation volume of the material changes: atomic
distance increases/decreases with increasing loading
0
V 

E is structure insensitive property; metallurgical processes have
little effect on it. It is mainly determined by the binding forces
between atoms. (E decreases with increasing temperature)
For shear stress and strain (t) Hooke’s law still valid but in
this case the relation becomes

t




t G
.
G



E
14
8
Onset of plastic deformation
Elastic limit: requires
precise instruments
such as strain gages
and strain measuring
systems.
Proportional limit:
stress at which S-e
curve deviates from
linearity.
Yield strength: (offset yield strength or proof strength) stress
that produces a small amount of permanent deformation,
generally at 0.002 (0.2%) offset strain. 15
Plastic deformation
 Permanent deformation
(irreversible)
  Density changes little with
plastic deformation and
therefore it is assumed that
volume change is zero
(compare with elastic
deformation). Plastic
deformation changes only the
shape of the material.


 p
e
t e
e
e e
t
p e
e
e 

0
V 

16
9
Plastic deformation
 Plastic deformation
proceeds by breaking
and reestablishing the
atomic bonds.
 In metals, plastic
deformation occurs via
dislocation motion.
17
Necking
 Necking starts
when the maximum
load is reached
(Ultimate Tensile
Strength (UTS)).
 Deformation then
proceeds in the
necked region until
the material fails
(fracture).
0
dA
.
d
.
A
dP
A
P 







A
dA
d




18
10
True stress-strain



L
dL
d
o
L
o
L L
L
ln
L
dL




(true or logarithmic strain)
)
e
1
ln(
L
)
L
(
ln
o
o 





L
L
A
A
A
A
L
L
AL
L
A
0
V o
o
o
o
o
o 







)
1
( e
S
L
L
Ao
P
A
P
o





For small strains
 =S and =e
19
Ductility
 Percent elongation
 Percent reduction in area
 It shows material ability to deform plastically
o
o
f
L
L
L
E
%


o
f
o
A
A
A
A
%


20
11
Stress at a point
 3-Normal stresses:
x,y,z
 6 shear stresses: txy, txz
,tyx ,tyz ,tzx ,tzy
 Notation: x: Normal
stress acting in x-
direction. txy: x is the
plane on which the stress
acts and y is the
direction. Plane Direction Value
- - +
+ - -
- + -
+ + +
Value of shear stress
21
Stress at a point
 Summation of the moments of forces about z axis;
y
z
x
yx
x
z
y
xy )
(
)
( 


t




t yx
xy t

t zy
yz
zx
xz , t

t
t

t
 State of stress at a point is described completely by six
components of stress; 3 normal and 3 shear stresses.
22
12
Plane stress
plane stress condition: z=0, txz=tyz=0, L and w >>t
0
Fx 






t




sin
m
,
cos
l
sin
.
A
.
cos
.
A
.
A
S yx
x
x
m
.
A
.
l
.
A
.
A
.
S yx
x
x t



l
.
A
.
m
.
A
.
A
.
S xy
y
y t



l
.
m
.
S xy
y
y t



m
.
S
l
.
S
sin
.
S
cos
.
S
' y
x
y
x
x 






m
.
l
.
S yx
x
x t



(A)
23


t








 sin
.
cos
.
.
2
sin
.
cos
.
)
(
' xy
2
y
2
x
x
Plane stress
m
).
m
.
l
.
(
l
).
l
.
m
.
(
m
.
S
l
.
S yx
x
xy
y
x
y
'
y
'
x t



t





t









t


t cos
.
sin
).
(
)
sin
(cos
)
( x
y
2
2
xy
'
y
'
x
)
2
sin(
).
2
cos(
.
.
2
)
2
(
sin
.
)
2
(
cos
.
)
2
(
' xy
2
y
2
x
x






t

















t








 sin
.
cos
.
.
2
cos
.
sin
.
)
(
' xy
2
y
2
x
y
2
2
cos
1
sin
2
1
2
cos
cos 2
2 















 2
cos
sin
cos
2
sin
cos
.
sin
.
2 2
2

t











 2
sin
.
2
cos
.
2
2
)
(
' xy
y
x
y
x
x

t











 2
sin
.
2
cos
.
2
2
)
(
' xy
y
x
y
x
y

t







t 2
cos
.
2
sin
.
2
)
( xy
x
y
'
y
'
x 24
13
-40
-20
0
20
40
60
80
100
0 40 80 120 160
stress(MPa)
Teta
max
min
max
min
t
t
45
o
45
o
 Max. and min normal stresses occur when t=0
 Max. and min. values  and t occur 90o apart
 tmax at an angle halfway between max and min
  and t change in the form of sine wave, with a period of 180o
25
Example
-15
-10
-5
0
5
10
15
0 40 80 120 160
stress(MPa)
Teta
max
min
max
min
t
t
45
o
26
14
Example
-40
-20
0
20
40
60
0 60 120 180
stress(MPa)
Teta
max
min
max
min
t
t
45
o
25 MPa
x=50 MPa
27
Principal planes and stresses
 Principle Plane: plane on which no shear stress
acts (shear stress=0), plane of maximum and
minimum normal stresses.
 Normal stresses acting on principle planes are
called principle stresses.
 For 2D case: max=1 and min=2
 For 3D case: max=1 and min=3
 The direction of principal stresses are the
principal directions and shown as 1, 2, and 3.
28
15
Principal planes and stresses
Since there is no shear stresses on the principal
plane;
2
2
2
tan
0
2
cos
.
2
sin
2
)
(
1
2
1
'
'






t


t




t
n
and
root
two
with
y
x
xy
xy
x
y
y
x









29
Principal planes and stresses
o
o
o
o
y
x
xy
and 05
.
172
90
5
.
82
5
.
82
90
95
.
7
95
.
7
15
2
70
20
10
80
)
10
.
2
(
2
2
tan
2
,
1
2
,
1 

























t

x=80 MPa
y=10 MPa
txy=-10 MPa
o
o
max 180
135
between 

o
2
o
1 5
.
82
and
05
.
172 



30
16
Principal planes and stresses
y
x
xy


t



2
2
tan
2
y
x
2
xy
xy
)
2
(
2
sin




t
t


2
y
x
2
xy
y
x
)
2
(
2
)
(
2
cos




t





2
y
x
2
xy
xy
xy
2
y
x
2
xy
y
x
y
x
y
x
x
)
2
(
.
)
2
(
2
)
(
.
2
2
)
(
'




t
t
t





t













2
y
x
2
xy
y
x
2
,
1
min
max, )
2
(
2




t








2
31
Maximum and minimum shear
stresses
 To find tmax,min
0
2
sin
.
.
2
)
(
0
d
d
xy
y
x
'
y
'
x


t







t
xy
y
x
s
t



2
2
tan



2
y
x
2
xy
min
max,
s
'
y
'
x )
2
(
)
(




t


t


t
max
min
max
2
t




32
17
Example
x=80 MPa
y=10 MPa
txy=-10 MPa
2
y
x
2
xy
y
x
2
,
1
min
max, )
2
(
2




t








2
)
2
10
80
(
)
10
(
2
10
80 2
2
,
1







4
.
36
45
2
,
1 

 MPa
4
.
81
4
.
36
45
1 



MPa
6
.
8
4
.
36
45
2 



MPa
4
.
36
min
max, 

t
33
Strain at a point
x
u
dx
dx
dx
x
u
dx
exx








y
v
eyy



z
w
ezz



z
e
y
e
x
e
w
z
e
y
e
x
e
v
z
e
y
e
x
e
u
zz
zy
zx
yz
yy
yx
xz
xy
xx









j
ij
i x
e
u  where i free suffix and jdummy suffix (x,y,z)
34
18
Strain at a point
z
w
y
w
x
w
z
v
y
v
x
v
z
u
y
u
x
u
e
e
e
e
e
e
e
e
e
e
zz
zy
zx
yz
yy
yx
xz
xy
xx
ij




















exy=eyxPure shear
exy=-eyxpure rotation
ij
ij
ji
ij
ji
ij
ij )
e
e
(
2
1
)
e
e
(
2
1
e 







xy
i
j
j
i
ij )
x
v
y
u
(
2
1
)
x
u
x
u
(
2
1















xy
i
j
j
i
ij )
x
v
y
u
(
2
1
)
x
u
x
u
(
2
1















Displacement
tensor
35
Strain at a point
x
v
y
u
xy







x
w
z
u
xz







z
v
y
w
yz







ij
ij 2


z
w
)
y
w
z
v
(
2
1
)
x
w
z
u
(
2
1
)
y
w
z
v
(
2
1
y
v
)
x
v
y
u
(
2
1
)
x
w
z
u
(
2
1
)
x
v
y
u
(
2
1
x
u
zz
zy
zx
yz
yy
yx
xz
xy
xx
ij
















































0
)
y
w
z
v
(
2
1
)
x
w
z
u
(
2
1
)
y
w
z
v
(
2
1
0
)
x
v
y
u
(
2
1
)
x
w
z
u
(
2
1
)
x
v
y
u
(
2
1
0
zz
zy
zx
yz
yy
yx
xz
xy
xx
ij













































36
19
Poissons’ ratio
x
x E


E
v
v
E x
x
z
y
x
x













Where v Poisson’s Ratio
 Perfectly isotropic material v=0.25
 For most metals v~0.33
x
y
v




37
Uniaxial tension or compression.
Constitutive Equations
 
)
(
v
E
1
z
y
x
x 






 
)
(
v
E
1
x
z
y
y 






 
)
(
v
E
1
y
x
z
z 





 xy
xy G

t
yz
yz G

t
xz
xz G

t
 )
m
z
y
x
z
y
x
E
v
E
v







3
2
1
2
1





 









 



38
20
Bulk and Shear Modulus
 Stress-strain relation for isotropic material
involves three constants, E, G, and v.
 Bulk Modulus (K)









1
P
strain
volume
pressure
c
hydrostati
K m
)
v
2
1
(
3
E
K


 Shear
Modulus (G): )
v
1
(
2
E
G


39
Constitutive Equations
)
(
E
v
E
)
v
1
(
E
v
E
v
E
v
E
v
E
z
y
x
x
x
x
z
y
x
x 



















ij
kk
ij
ij
E
v
)
E
v
1
( 






)
1
)(
(
E
v
E
)
v
1
(
zz
yy
xx
xx
xx 









i=j=x
 
)
(
v
E
1
zz
yy
xx
xx 






)
0
)(
(
E
v
E
)
v
1
(
2
kk
xy
xy
xy 

t





i=x and j=y
)
v
1
(
2
E
G
)
v
1
(
2
E
E
)
v
1
(
2
xx
xy
xy
xy




t



t



40
21
Constitutive Equations

)
(
)
v
2
1
(
E
)
( z
y
x
z
y
x 











)
(
E
v
E
)
v
1
(
z
y
x
x
x 









)
(
)
v
2
1
)(
v
1
(
vE
)
v
1
(
E
z
y
x
x
x 











ij
kk
ij
ij
)
v
2
1
)(
v
1
(
vE
)
v
1
(
E









t
tan
cons
s
'
Lame
)
v
2
1
)(
v
1
(
vE




ij
kk
ij
ij
)
v
1
(
E






 














 x
z
y
x
x
x G
2
)
1
)(
(
)
v
1
(
E
'
G
2
'
v
1
E
' ij
ij
ij 





kk
kk
ii K
3
v
2
1
E






41
Constitutive Equations
kl
ijkl
ij S 
 
kl
ijkl
ij C 


where Sijkl is the compliance and Cijkl stiffness tensors.
S and C are fourth rank tensors with 81 (34) constants.
12
31
23
33
22
11
12
13
23
33
22
11
G
0
0
0
0
0
0
G
0
0
0
0
0
0
G
0
0
0
0
0
0
)
v
1
)(
v
2
1
(
)
v
1
(
E
)
v
1
)(
v
2
1
(
)
v
1
(
E
)
v
1
)(
v
2
1
(
)
v
1
(
E
0
0
0
)
v
1
)(
v
2
1
(
)
v
1
(
E
)
v
1
)(
v
2
1
(
)
v
1
(
E
)
v
1
)(
v
2
1
(
)
v
1
(
E
0
0
0
)
v
1
)(
v
2
1
(
Ev
)
v
1
)(
v
2
1
(
Ev
)
v
1
)(
v
2
1
(
)
v
1
(
E
































t
t
t



42
22
Constitutive Equations
12
31
23
33
22
11
12
13
23
33
22
11
G
/
1
0
0
0
0
0
0
G
/
1
0
0
0
0
0
0
G
/
1
0
0
0
0
0
0
E
/
1
E
/
v
E
/
v
0
0
0
E
/
v
E
/
1
E
/
v
0
0
0
E
/
v
E
/
v
E
/
1



















43

More Related Content

Similar to A Review of the Recent Development in Machining Parameter Optimization

Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...
Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...
Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...manohar3970
 
Eng.Materials-mechanical-properties-6.pdf
Eng.Materials-mechanical-properties-6.pdfEng.Materials-mechanical-properties-6.pdf
Eng.Materials-mechanical-properties-6.pdforvanbestunsaeedfara
 
Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02Priyabrata Behera
 
1. simple stress and strains
1. simple stress and strains1. simple stress and strains
1. simple stress and strainsMahesh_infomatica
 
Em321 lesson 08b solutions ch6 - mechanical properties of metals
Em321 lesson 08b solutions   ch6 - mechanical properties of metalsEm321 lesson 08b solutions   ch6 - mechanical properties of metals
Em321 lesson 08b solutions ch6 - mechanical properties of metalsusna12345
 
Mechanical Properties of Metals
Mechanical Properties of MetalsMechanical Properties of Metals
Mechanical Properties of Metalsguesteed04b
 
Tensile Strength
Tensile StrengthTensile Strength
Tensile StrengthVICTOR ROY
 
Tensile Strengthy
Tensile StrengthyTensile Strengthy
Tensile StrengthyVICTOR ROY
 
Chapter ii tension & compression 1
Chapter ii tension & compression 1Chapter ii tension & compression 1
Chapter ii tension & compression 1MARTIN ATHIYO
 
Elements_of_the_theory_of_plasticity.pptx
Elements_of_the_theory_of_plasticity.pptxElements_of_the_theory_of_plasticity.pptx
Elements_of_the_theory_of_plasticity.pptxArnabHazra16
 
Diploma sem 2 applied science physics-unit 2-chap-1 elasticity
Diploma sem 2 applied science physics-unit 2-chap-1 elasticityDiploma sem 2 applied science physics-unit 2-chap-1 elasticity
Diploma sem 2 applied science physics-unit 2-chap-1 elasticityRai University
 
Mc testing Lec 2.pptx
Mc testing Lec 2.pptxMc testing Lec 2.pptx
Mc testing Lec 2.pptxDrAjitKatkar
 
Chapter-1 Concept of Stress and Strain.pdf
Chapter-1 Concept of Stress and Strain.pdfChapter-1 Concept of Stress and Strain.pdf
Chapter-1 Concept of Stress and Strain.pdfBereketAdugna
 
2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And MeasurementPedro Craggett
 
3- shear and torsion.pdf
3- shear and torsion.pdf3- shear and torsion.pdf
3- shear and torsion.pdfssuserf48c97
 
Som complete unit 01 notes
Som complete unit 01 notesSom complete unit 01 notes
Som complete unit 01 notessistec
 

Similar to A Review of the Recent Development in Machining Parameter Optimization (20)

Ch7_mechanical_properties_1.ppt
Ch7_mechanical_properties_1.pptCh7_mechanical_properties_1.ppt
Ch7_mechanical_properties_1.ppt
 
Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...
Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...
Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram...
 
Eng.Materials-mechanical-properties-6.pdf
Eng.Materials-mechanical-properties-6.pdfEng.Materials-mechanical-properties-6.pdf
Eng.Materials-mechanical-properties-6.pdf
 
Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02
 
1. simple stress and strains
1. simple stress and strains1. simple stress and strains
1. simple stress and strains
 
Em321 lesson 08b solutions ch6 - mechanical properties of metals
Em321 lesson 08b solutions   ch6 - mechanical properties of metalsEm321 lesson 08b solutions   ch6 - mechanical properties of metals
Em321 lesson 08b solutions ch6 - mechanical properties of metals
 
Mechanical Properties of Metals
Mechanical Properties of MetalsMechanical Properties of Metals
Mechanical Properties of Metals
 
Tensile Strength
Tensile StrengthTensile Strength
Tensile Strength
 
Tensile Strengthy
Tensile StrengthyTensile Strengthy
Tensile Strengthy
 
Chapter ii tension & compression 1
Chapter ii tension & compression 1Chapter ii tension & compression 1
Chapter ii tension & compression 1
 
Elements_of_the_theory_of_plasticity.pptx
Elements_of_the_theory_of_plasticity.pptxElements_of_the_theory_of_plasticity.pptx
Elements_of_the_theory_of_plasticity.pptx
 
Stress strain curve
Stress strain curveStress strain curve
Stress strain curve
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Diploma sem 2 applied science physics-unit 2-chap-1 elasticity
Diploma sem 2 applied science physics-unit 2-chap-1 elasticityDiploma sem 2 applied science physics-unit 2-chap-1 elasticity
Diploma sem 2 applied science physics-unit 2-chap-1 elasticity
 
Mc testing Lec 2.pptx
Mc testing Lec 2.pptxMc testing Lec 2.pptx
Mc testing Lec 2.pptx
 
Chapter-1 Concept of Stress and Strain.pdf
Chapter-1 Concept of Stress and Strain.pdfChapter-1 Concept of Stress and Strain.pdf
Chapter-1 Concept of Stress and Strain.pdf
 
2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement
 
Som ppt
Som pptSom ppt
Som ppt
 
3- shear and torsion.pdf
3- shear and torsion.pdf3- shear and torsion.pdf
3- shear and torsion.pdf
 
Som complete unit 01 notes
Som complete unit 01 notesSom complete unit 01 notes
Som complete unit 01 notes
 

Recently uploaded

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 

Recently uploaded (20)

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 

A Review of the Recent Development in Machining Parameter Optimization

  • 1. 1 Solid Mechanics Review Deformation and the concept of stress and strain MCE 508 – Advanced Mechanics of Material 1 Deformation  Deformation: Change of microstructure resulting from loading.  Loading types: Tension, compression, and torsion or combination of two or all.  Mechanical property: Measured material response to applied loads. 2
  • 2. 2 Deformation  Materials are usually assumed to be  Continuous (no cracks or voids).  Homogeneous (identical properties at all points).  Isotropic (particular property does not vary with direction). Anisotropy in property exists if the property changes with the direction.  Most polycrystalline materials especially metals that have equiaxed grains show isotropy in mechanical properties.  In deformation, two measured property are very important: stress and strain. 3 Stress A   dA A P dA P      σ is the average stress and A is the cross-sectional area. Internal resisting force 4
  • 3. 3 Stress  If the applied load is normal to the acted area then the stress is called normal stress and represented by S or σ (engineering and true stresses).  If the load is parallel to the area then the stress is called shear stress and represented by t.  For both stresses, normal and shear, the stress is simply found dividing the load by the area.  It is assumed that stress is constant, therefore the calculated stress is an average stress, which does not represent stress in micro scale such as stress around voids and etc. 5 Stress  Fracture is normally driven by normal stresses and plastic deformation (viscous flow-change in shape) is driven by shear stresses (see Fig. given below, points reorient atoms). 6
  • 4. 4 Stress A cos . P A Pz     A sin . sin . P A P A cos . sin . P A P A sin . P x zx y zy     t     t   t For a given plane there is only one normal stress and there may be two shear stresses acting on it. 7 Stress-units GPa Pa MPa Pa Pa Pascal m N m kg A P 1 10 , 1 10 ) ( 9 6 2 2        8
  • 6. 6 Tensile test 1. ELASTIC DEFORMATION 2. PLASTIC DEFORMATION 11 Elastic deformation •Stress proportional to strainknown as Hooke’s Law: Material obeying Hooke’s law called linear elastic or Hokean solids. Hooke’s Law is not valid for every material, such as Rubber E is the Elastic Modulus or Young’s Modulus. 12
  • 7. 7 Elastic deformation Reversible Process; upon releasing the load strain goes back to zero. Immediate response Linear elastic. time dependent elastic recovery  viscoelastic materials. 13 Elastic deformation During elastic deformation volume of the material changes: atomic distance increases/decreases with increasing loading 0 V   E is structure insensitive property; metallurgical processes have little effect on it. It is mainly determined by the binding forces between atoms. (E decreases with increasing temperature) For shear stress and strain (t) Hooke’s law still valid but in this case the relation becomes  t     t G . G    E 14
  • 8. 8 Onset of plastic deformation Elastic limit: requires precise instruments such as strain gages and strain measuring systems. Proportional limit: stress at which S-e curve deviates from linearity. Yield strength: (offset yield strength or proof strength) stress that produces a small amount of permanent deformation, generally at 0.002 (0.2%) offset strain. 15 Plastic deformation  Permanent deformation (irreversible)   Density changes little with plastic deformation and therefore it is assumed that volume change is zero (compare with elastic deformation). Plastic deformation changes only the shape of the material.    p e t e e e e t p e e e   0 V   16
  • 9. 9 Plastic deformation  Plastic deformation proceeds by breaking and reestablishing the atomic bonds.  In metals, plastic deformation occurs via dislocation motion. 17 Necking  Necking starts when the maximum load is reached (Ultimate Tensile Strength (UTS)).  Deformation then proceeds in the necked region until the material fails (fracture). 0 dA . d . A dP A P         A dA d     18
  • 10. 10 True stress-strain    L dL d o L o L L L ln L dL     (true or logarithmic strain) ) e 1 ln( L ) L ( ln o o       L L A A A A L L AL L A 0 V o o o o o o         ) 1 ( e S L L Ao P A P o      For small strains  =S and =e 19 Ductility  Percent elongation  Percent reduction in area  It shows material ability to deform plastically o o f L L L E %   o f o A A A A %   20
  • 11. 11 Stress at a point  3-Normal stresses: x,y,z  6 shear stresses: txy, txz ,tyx ,tyz ,tzx ,tzy  Notation: x: Normal stress acting in x- direction. txy: x is the plane on which the stress acts and y is the direction. Plane Direction Value - - + + - - - + - + + + Value of shear stress 21 Stress at a point  Summation of the moments of forces about z axis; y z x yx x z y xy ) ( ) (    t     t yx xy t  t zy yz zx xz , t  t t  t  State of stress at a point is described completely by six components of stress; 3 normal and 3 shear stresses. 22
  • 12. 12 Plane stress plane stress condition: z=0, txz=tyz=0, L and w >>t 0 Fx        t     sin m , cos l sin . A . cos . A . A S yx x x m . A . l . A . A . S yx x x t    l . A . m . A . A . S xy y y t    l . m . S xy y y t    m . S l . S sin . S cos . S ' y x y x x        m . l . S yx x x t    (A) 23   t          sin . cos . . 2 sin . cos . ) ( ' xy 2 y 2 x x Plane stress m ). m . l . ( l ). l . m . ( m . S l . S yx x xy y x y ' y ' x t    t      t          t   t cos . sin ). ( ) sin (cos ) ( x y 2 2 xy ' y ' x ) 2 sin( ). 2 cos( . . 2 ) 2 ( sin . ) 2 ( cos . ) 2 ( ' xy 2 y 2 x x       t                  t          sin . cos . . 2 cos . sin . ) ( ' xy 2 y 2 x y 2 2 cos 1 sin 2 1 2 cos cos 2 2                  2 cos sin cos 2 sin cos . sin . 2 2 2  t             2 sin . 2 cos . 2 2 ) ( ' xy y x y x x  t             2 sin . 2 cos . 2 2 ) ( ' xy y x y x y  t        t 2 cos . 2 sin . 2 ) ( xy x y ' y ' x 24
  • 13. 13 -40 -20 0 20 40 60 80 100 0 40 80 120 160 stress(MPa) Teta max min max min t t 45 o 45 o  Max. and min normal stresses occur when t=0  Max. and min. values  and t occur 90o apart  tmax at an angle halfway between max and min   and t change in the form of sine wave, with a period of 180o 25 Example -15 -10 -5 0 5 10 15 0 40 80 120 160 stress(MPa) Teta max min max min t t 45 o 26
  • 14. 14 Example -40 -20 0 20 40 60 0 60 120 180 stress(MPa) Teta max min max min t t 45 o 25 MPa x=50 MPa 27 Principal planes and stresses  Principle Plane: plane on which no shear stress acts (shear stress=0), plane of maximum and minimum normal stresses.  Normal stresses acting on principle planes are called principle stresses.  For 2D case: max=1 and min=2  For 3D case: max=1 and min=3  The direction of principal stresses are the principal directions and shown as 1, 2, and 3. 28
  • 15. 15 Principal planes and stresses Since there is no shear stresses on the principal plane; 2 2 2 tan 0 2 cos . 2 sin 2 ) ( 1 2 1 ' '       t   t     t n and root two with y x xy xy x y y x          29 Principal planes and stresses o o o o y x xy and 05 . 172 90 5 . 82 5 . 82 90 95 . 7 95 . 7 15 2 70 20 10 80 ) 10 . 2 ( 2 2 tan 2 , 1 2 , 1                           t  x=80 MPa y=10 MPa txy=-10 MPa o o max 180 135 between   o 2 o 1 5 . 82 and 05 . 172     30
  • 16. 16 Principal planes and stresses y x xy   t    2 2 tan 2 y x 2 xy xy ) 2 ( 2 sin     t t   2 y x 2 xy y x ) 2 ( 2 ) ( 2 cos     t      2 y x 2 xy xy xy 2 y x 2 xy y x y x y x x ) 2 ( . ) 2 ( 2 ) ( . 2 2 ) ( '     t t t      t              2 y x 2 xy y x 2 , 1 min max, ) 2 ( 2     t         2 31 Maximum and minimum shear stresses  To find tmax,min 0 2 sin . . 2 ) ( 0 d d xy y x ' y ' x   t        t xy y x s t    2 2 tan    2 y x 2 xy min max, s ' y ' x ) 2 ( ) (     t   t   t max min max 2 t     32
  • 17. 17 Example x=80 MPa y=10 MPa txy=-10 MPa 2 y x 2 xy y x 2 , 1 min max, ) 2 ( 2     t         2 ) 2 10 80 ( ) 10 ( 2 10 80 2 2 , 1        4 . 36 45 2 , 1    MPa 4 . 81 4 . 36 45 1     MPa 6 . 8 4 . 36 45 2     MPa 4 . 36 min max,   t 33 Strain at a point x u dx dx dx x u dx exx         y v eyy    z w ezz    z e y e x e w z e y e x e v z e y e x e u zz zy zx yz yy yx xz xy xx          j ij i x e u  where i free suffix and jdummy suffix (x,y,z) 34
  • 18. 18 Strain at a point z w y w x w z v y v x v z u y u x u e e e e e e e e e e zz zy zx yz yy yx xz xy xx ij                     exy=eyxPure shear exy=-eyxpure rotation ij ij ji ij ji ij ij ) e e ( 2 1 ) e e ( 2 1 e         xy i j j i ij ) x v y u ( 2 1 ) x u x u ( 2 1                xy i j j i ij ) x v y u ( 2 1 ) x u x u ( 2 1                Displacement tensor 35 Strain at a point x v y u xy        x w z u xz        z v y w yz        ij ij 2   z w ) y w z v ( 2 1 ) x w z u ( 2 1 ) y w z v ( 2 1 y v ) x v y u ( 2 1 ) x w z u ( 2 1 ) x v y u ( 2 1 x u zz zy zx yz yy yx xz xy xx ij                                                 0 ) y w z v ( 2 1 ) x w z u ( 2 1 ) y w z v ( 2 1 0 ) x v y u ( 2 1 ) x w z u ( 2 1 ) x v y u ( 2 1 0 zz zy zx yz yy yx xz xy xx ij                                              36
  • 19. 19 Poissons’ ratio x x E   E v v E x x z y x x              Where v Poisson’s Ratio  Perfectly isotropic material v=0.25  For most metals v~0.33 x y v     37 Uniaxial tension or compression. Constitutive Equations   ) ( v E 1 z y x x          ) ( v E 1 x z y y          ) ( v E 1 y x z z        xy xy G  t yz yz G  t xz xz G  t  ) m z y x z y x E v E v        3 2 1 2 1                      38
  • 20. 20 Bulk and Shear Modulus  Stress-strain relation for isotropic material involves three constants, E, G, and v.  Bulk Modulus (K)          1 P strain volume pressure c hydrostati K m ) v 2 1 ( 3 E K    Shear Modulus (G): ) v 1 ( 2 E G   39 Constitutive Equations ) ( E v E ) v 1 ( E v E v E v E v E z y x x x x z y x x                     ij kk ij ij E v ) E v 1 (        ) 1 )( ( E v E ) v 1 ( zz yy xx xx xx           i=j=x   ) ( v E 1 zz yy xx xx        ) 0 )( ( E v E ) v 1 ( 2 kk xy xy xy   t      i=x and j=y ) v 1 ( 2 E G ) v 1 ( 2 E E ) v 1 ( 2 xx xy xy xy     t    t    40
  • 21. 21 Constitutive Equations  ) ( ) v 2 1 ( E ) ( z y x z y x             ) ( E v E ) v 1 ( z y x x x           ) ( ) v 2 1 )( v 1 ( vE ) v 1 ( E z y x x x             ij kk ij ij ) v 2 1 )( v 1 ( vE ) v 1 ( E          t tan cons s ' Lame ) v 2 1 )( v 1 ( vE     ij kk ij ij ) v 1 ( E                        x z y x x x G 2 ) 1 )( ( ) v 1 ( E ' G 2 ' v 1 E ' ij ij ij       kk kk ii K 3 v 2 1 E       41 Constitutive Equations kl ijkl ij S    kl ijkl ij C    where Sijkl is the compliance and Cijkl stiffness tensors. S and C are fourth rank tensors with 81 (34) constants. 12 31 23 33 22 11 12 13 23 33 22 11 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 ) v 1 )( v 2 1 ( ) v 1 ( E ) v 1 )( v 2 1 ( ) v 1 ( E ) v 1 )( v 2 1 ( ) v 1 ( E 0 0 0 ) v 1 )( v 2 1 ( ) v 1 ( E ) v 1 )( v 2 1 ( ) v 1 ( E ) v 1 )( v 2 1 ( ) v 1 ( E 0 0 0 ) v 1 )( v 2 1 ( Ev ) v 1 )( v 2 1 ( Ev ) v 1 )( v 2 1 ( ) v 1 ( E                                 t t t    42