SlideShare a Scribd company logo
1 of 69
Download to read offline
NLTK, Gensim
( : )
PyCon Korea 2015
2015-08-29
Lucy Park ( )
1 / 69
KoNLPy
,
? !
NLTK
,
Gensim
, .
bag-of-words, document embedding
, KoNLPy, NLTK, Gensim
.
KoNLPy: http://konlpy.org
NLTK: http://nltk.org
Gensim: http://radimrehurek.com/gensim
2 / 69
(a.k.a. lucypark,
echojuliett, e9t)
.
CAVEAT: KoNLPy
Just another yak shaver...
11:49 <@sanxiyn> 또다시 yak shaving의 신비한 세계
11:51 <@sanxiyn> yak shaving이 뭔지 다 아시죠?
11:51 <디토군> 방금 찾아보고 왔음
11:51 <@mana> (조용히 설명을 기대중)
11:51 <@sanxiyn> 나무를 베려고 하는데
11:52 <@sanxiyn> 도끼질을 하다가
11:52 <@sanxiyn> 도끼가 더 잘 들면 나무를 쉽게 벨텐데 해서
11:52 <@sanxiyn> 도끼 날을 세우다가
11:52 <@sanxiyn> 도끼 가는 돌이 더 좋으면 도끼 날을 더 빨리 세울텐데 해서
11:52 <@sanxiyn> 좋은 숫돌이 있는 곳을 수소문해 보니
11:52 <@mana> …
11:52 <&홍민희> 그거 전형적인 제 행동이네요
11:52 <@sanxiyn> 저 멀이 어디에 세계 최고의 숫돌이 난다고
11:52 <@sanxiyn> 거기까지 야크를 타고 가려다가
11:52 <@mana> 항상하던 짓이라서 타이핑을 할 수 없었습니다
11:52 <@sanxiyn> 야크 털을 깎아서…
11:52 <@sanxiyn> etc.
3 / 69
/
KoNLPy, NLTK, Gensim (?)
!
Gensim ,
.
,
.
.
?
3
4 / 69
1997
20 ...
5 / 69
IBM .
6 / 69
. ,
.
.
-- Bengio et al., Deep Learning 1 , Book in preparation for MIT Press, 2015.
7 / 69
" "
Representations of text
8 / 69
?
, .
" " .
9 / 69
{ , }
≈
⊂
10 / 69
, ,
(binary)
set
one-hot vector
1-of-V
= , = , = , . . . =w
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
1
0
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
w ( )
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
0
1
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
w
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
0
0
1
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
w
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
0
0
0
⋮
1
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
wi
i
|V|
11 / 69
.
ex: " " " ", " " " " 0 .
( = ( = 0w )⊤
w w )⊤
w
* BOW (discrete) (local representation) .
(distributed representation) 12 / 69
,
bag of words(BOW)
/ ( "term existance" )
n (a.k.a. term frequency (TF))
ex: term frequency–inverse document frequency (TF-IDF)
=d1
binary
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
1
1
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
=d1
tf
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
3
1
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
13 / 69
.*
.
.
" ".
* : Vincent Spruyt, The Curse of Dimensionality in classification, 2014. 14 / 69
" ?"
(WordNet) X is-a Y (hypernym)
(DAG; directed acyclic graph) . ( : .)
from nltk.corpus import wordnet as wn
wn.synsets('computer') # "computer"
#=> [Synset('computer.n.01'), Synset('calculator.n.01')]
: ( ) /
15 / 69
:
1. , .
from nltk.corpus import wordnet as wn
wn.synsets('nginx')
#=> []
2. .
wn.synsets('yolo') # : you only live once
#=> []
3. NLTK ... ( !)
wn.synsets(' ', lang='kor')
#=> WordNetError: Language is not supported.
16 / 69
.. . ?
17 / 69
.
18 / 69
.
You shall know a word by the company it keeps.
-- J.R. Firth (1957)
19 / 69
1: ?
__ .
, __ .
__ .
: [ ]
20 / 69
2: " " ?
?
21 / 69
.
?
SO .
22 / 69
;;
23 / 69
, (context)
.
(context) := (window) /
1-8 , 3-17 *
" "
ex: "PyCon" "R" "Python" ?
* Jurafsky, Martin, Speech and Language Processing 3rd Ed. 19.1 , Book in preparation, 2015. 24 / 69
"Co-occurrence"
25 / 69
Co-occurrence
documents = [[" ", " ", " ", " "],
[" ", "R", " ", " "]]
1. Term-document matrix ( ):
Computation (!)
x_td = [[1, 1], #
[1, 0], #
[0, 1], # R
[1, 1], #
[1, 1]] #
1. Term-term matrix ( ):
syntactic, semantic
( ==5):
x_tt = [[0, 1, 1, 2, 0], #
[1, 0, 0, 1, 1], #
[1, 0, 0, 1, 1], # R
[2, 1, 1, 0, 2], #
[0, 1, 1, 2, 0]] #
∈Xtd ℝ|V|×M
M
∈Xtt ℝ|V|×|V|
26 / 69
Co-occurrence matrix
.
import math
def dot_product(v1, v2):
return sum(map(lambda x: x[0] * x[1], zip(v1, v2)))
def cosine_measure(v1, v2):
prod = dot_product(v1, v2)
len1 = math.sqrt(dot_product(v1, v1))
len2 = math.sqrt(dot_product(v2, v2))
return prod / (len1 * len2)
:
skewed ( , )
discriminative (ex: list(' '))
?
27 / 69
Neural embeddings
: !
(language model)
ex: [" ", " ", " ", " "] ? (ex: "!", "." "?")
, .
Neural network language model (NNLM)*
* Bengio, Ducharme, Vincent, A Neural Probabilistic Language Model, {NIPS, 2000; JMLR, 2003}. 28 / 69
word2vec *
T. Mikolov word2vec neural embedding
! (n -> m )
* Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of NIPS, 2013. 29 / 69
: word2vec *
* , , , (1946-2015) , 49 2 , 2015. 30 / 69
neural embedding ?
31 / 69
doc2vec *
: ( ) !
.
.
|V|
* Le, Mikolov, Distributed Representations of Sentences and Documents, ICML, 2014. ( doc2vec paragraph vector
) 32 / 69
: Term frequency -> . .
documents = [
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' ']
]
words = set(sum(documents, []))
print(words)
# => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '}
def term_frequency(document):
# do something
return vector
vectors = [term_frequency(doc) for doc in documents]
print(vectors)
# => {
# 'S1': [1, 1, 0, 1, 0, 0, 1, 1],
# 'S2': [1, 1, 0, 1, 0, 0, 1, 1],
# 'S3': [1, 0, 0, 1, 1, 1, 1, 0],
# 'S4': [1, 1, 0, 1, 1, 1, 0, 0],
# 'S5': [1, 0, 1, 1, 1, 0, 1, 0],
# 'S6': [1, 1, 1, 1, 1, 0, 0, 0]
# }
|V|
33 / 69
: doc2vec -> . .
documents = [
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' ']
]
words = set(sum(documents, []))
print(words)
# => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '}
def doc2vec(document):
# do something else ( Gensim !)
return vector
vectors = [doc2vec(doc) for doc in documents]
print(vectors)
# => {
# 'S1': [-0.01599941, 0.02135301, 0.0927715],
# 'S2': [0.02333261, 0.00211833, 0.00254255],
# 'S3': [-0.00117272, -0.02043504, 0.00593186],
# 'S4': [0.0089237, -0.00397806, -0.13199195],
# 'S5': [0.02555059, 0.01561624, 0.03603476],
# 'S6': [-0.02114407, -0.01552016, 0.01289922]
# }
|V|
34 / 69
.
:
Sparse, long vectors Dense, short vectors
1-hot-vectors word2vec
bag-of-words
(term existance, TF, TF-IDF )
doc2vec
.
35 / 69
Sentiment analysis for Korean movie reviews
36 / 69
, ?
37 / 69
!
38 / 69
Naver sentiment movie corpus v1.0
Maas et al., 2011
:
100 140 ( ' ')
20 ( 64 )
ratings_train.txt: 15 , ratings_test.txt: 5
/ (i.e., random guess yields 50%
accuracy)
: 19MB
URL: http://github.com/e9t/nsmc/
39 / 69
README coming soon
40 / 69
$ cat ratings_train.txt | head -n 25
id document label
9976970 .. 0
3819312 ... .... 1
10265843 0
9045019 .. .. 0
6483659 !
5403919 3 1 8 . ... . 0
7797314 . 0
9443947 ..
7156791 1
5912145 ? .. ?
9008700 . ♥ 1
10217543 90 !! ~
5957425 0
8628627 . . .
9864035
6852435 1
9143163 .
4891476 0
7465483 !!♥
3989148 , . . 1
4581211 . 1
2718894 1
9705777 . ....
471131 . 1
41 / 69
, ?
1. KoNLPy
2. NLTK
3. Bag-of-words(term existence) classify
4. Gensim doc2vec classify
42 / 69
1. Data preprocessing (feat. KoNLPy)
def read_data(filename):
with open(filename, 'r') as f:
data = [line.split('t') for line in f.read().splitlines()]
data = data[1:] # header
return data
train_data = read_data('ratings_train.txt')
test_data = read_data('ratings_test.txt')
NOTE: pandas.read_csv() quoting parameter
csv.QUOTE_NONE (3) (ex:
)
43 / 69
1. Data preprocessing (feat. KoNLPy)
# row, column
print(len(train_data)) # nrows: 150000
print(len(train_data[0])) # ncols: 3
print(len(test_data)) # nrows: 50000
print(len(test_data[0])) # ncols: 3
44 / 69
1. Data preprocessing (feat. KoNLPy)
from konlpy.tag import Twitter
pos_tagger = Twitter()
def tokenize(doc):
# norm, stem optional
return ['/'.join(t) for t in pos_tagger.pos(doc, norm=True, stem=True)]
train_docs = [(tokenize(row[1]), row[2]) for row in train_data]
test_docs = [(tokenize(row[1]), row[2]) for row in test_data]
#
from pprint import pprint
pprint(train_docs[0])
# => [([' /Exclamation',
# ' /Noun',
# '../Punctuation',
# ' /Noun',
# ' /Noun',
# ' /Verb',
# ' /Noun'],
# '0')]
NOTE:
. 45 / 69
1. Data preprocessing (feat. KoNLPy)
" ?"
, x
*
" (POS) ?"
ex: ' /Josa' vs ' /Noun'
* https://github.com/karpathy/char-rnn 46 / 69
2. Data exploration (feat. NLTK)
!
Training data token
tokens = [t for d in train_docs for t in d[0]]
print(len(tokens))
# => 2194536
47 / 69
2. Data exploration (feat. NLTK)
nltk.Text() ! (Exploration )
document ,
.
import nltk
text = nltk.Text(tokens, name='NMSC')
print(text)
# => <Text: NMSC>
48 / 69
2. Data exploration (feat. NLTK)
Count tokens
print(len(text.tokens)) # returns number of tokens
# => 2194536
print(len(set(text.tokens))) # returns number of unique tokens
# => 48765
pprint(text.vocab().most_common(10)) # returns frequency distribution
# => [('./Punctuation', 68630),
# (' /Noun', 51365),
# (' /Verb', 50281),
# (' /Josa', 39123),
# (' /Verb', 34764),
# (' /Josa', 30480),
# ('../Punctuation', 29055),
# (' /Josa', 27108),
# (' /Josa', 26696),
# (' /Josa', 23481)]
49 / 69
2. Data exploration (feat. NLTK)
Plot tokens by frequency
text.plot(50) # Plot sorted frequency of top 50 tokens
;;
50 / 69
2. Data exploration (feat. NLTK)
!
Troubleshooting: For those who see rectangles instead of letters in the saved plot file,
include the following configurations before drawing the plot:
Some example fonts:
Mac OS: /Library/Fonts/AppleGothic.ttf
from matplotlib import font_manager, rc
font_fname = 'c:/windows/fonts/gulim.ttc' # A font of your choice
font_name = font_manager.FontProperties(fname=font_fname).get_name()
rc('font', family=font_name)
51 / 69
2. Data exploration (feat. NLTK)
. .
.
52 / 69
2. Data exploration (feat. NLTK)
Collocations ( ): (ex: "text" + "mining")
text.collocations() #
# => /Determiner /Noun; /Suffix /Josa; /Determiner /Noun; /Noun
# /Verb; /Noun /Josa; 10/Number /Noun; /Noun /Suffix; /Noun
# /Adjective; /Noun /Josa; /Noun /Josa; /Noun /Josa; /Suffix
# /Josa; /Noun /Noun; /Noun /Josa; /Suffix /Josa; /Noun
# /Josa; /Noun /Josa; /Suffix /Josa; /Noun /Suffix; /Noun
# /Josa
NOTE: nltk.Text() , source code API .
.
53 / 69
3. Sentiment classification with term-existance*
term .
# 2000
# WARNING: time/memory efficient
selected_words = [f[0] for f in text.vocab().most_common(2000)]
def term_exists(doc):
return {'exists({})'.format(word): (word in set(doc)) for word in selected_words}
# training corpus
train_docs = train_docs[:10000]
train_xy = [(term_exists(d), c) for d, c in train_docs]
test_xy = [(term_exists(d), c) for d, c in test_docs]
Try this:
. 50 ?
TF, TF-IDF ?
(sparse matrix) or scikit-learn TfidfVectorizer() !
* Natural Language Processing with Python Chapter 6. Learning to classify text 54 / 69
3. Sentiment classification with term-existance
. !
.
NLTK :
Naive Bayes Classifiers
Decision Tree Classifiers
Maximum Entropy Classifiers
.
scikit-learn .
NLTK Naive Bayes Classifier !
55 / 69
3. Sentiment classification with term-existance
Naive Bayes classifier
#
classifier = nltk.NaiveBayesClassifier.train(train_xy)
print(nltk.classify.accuracy(classifier, test_xy))
# => 0.80418
classifier.show_most_informative_features(10)
# => Most Informative Features
# exists( /Noun) = True 1 : 0 = 38.0 : 1.0
# exists( /Noun) = True 0 : 1 = 30.1 : 1.0
# exists(♥/Foreign) = True 1 : 0 = 24.5 : 1.0
# exists( /Noun) = True 0 : 1 = 22.1 : 1.0
# exists( /Noun) = True 0 : 1 = 19.5 : 1.0
# exists( /Noun) = True 0 : 1 = 19.4 : 1.0
# exists( /Noun) = True 1 : 0 = 18.9 : 1.0
# exists( /Noun) = True 0 : 1 = 16.9 : 1.0
# exists( /Noun) = True 1 : 0 = 16.9 : 1.0
# exists( /Noun) = True 1 : 0 = 15.9 : 1.0
/ baseline accuracy 0.50
1 accuracy 0.80 .
?
56 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
doc2vec / .
Gensim . *
: Radim Rehureck
* Gensim 0.12.0 . ! 57 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
!!!
Gensim ...
58 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
doc2vec .
doc2vec
from gensim.models.doc2vec import TaggedDocument OK
from collections import namedtuple
TaggedDocument = namedtuple('TaggedDocument', 'words tags')
# 15 training documents
tagged_train_docs = [TaggedDocument(d, [c]) for d, c in train_docs]
tagged_test_docs = [TaggedDocument(d, [c]) for d, c in test_docs]
59 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
from gensim.models import doc2vec
#
doc_vectorizer = doc2vec.Doc2Vec(size=300, alpha=0.025, min_alpha=0.025, seed=1234)
doc_vectorizer.build_vocab(tagged_train_docs)
# Train document vectors!
for epoch in range(10):
doc_vectorizer.train(tagged_train_docs)
doc_vectorizer.alpha -= 0.002 # decrease the learning rate
doc_vectorizer.min_alpha = doc_vectorizer.alpha # fix the learning rate, no decay
# To save
# doc_vectorizer.save('doc2vec.model')
Try this:
Vector size, epoch
60 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
! (1/3)
pprint(doc_vectorizer.most_similar(' /Noun'))
# => [(' /Noun', 0.5669919848442078),
# (' /Noun', 0.5522832274436951),
# (' /Noun', 0.5021427869796753),
# (' /Noun', 0.5000861287117004),
# (' /Noun', 0.4368450343608856),
# (' /Noun', 0.42848479747772217),
# (' /Noun', 0.42714330554008484),
# (' /Noun', 0.41590073704719543),
# (' /Noun', 0.41056352853775024),
# (' /Noun', 0.4052993059158325)]
... .
61 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
! (2/3)
pprint(doc_vectorizer.most_similar(' /KoreanParticle'))
# => [(' /KoreanParticle', 0.5768033862113953),
# (' /KoreanParticle', 0.4822016954421997),
# ('!!!!/Punctuation', 0.4395076632499695),
# ('!!!/Punctuation', 0.4077949523925781),
# ('!!/Punctuation', 0.4026390314102173),
# ('~/Punctuation', 0.40038347244262695),
# ('~~/Punctuation', 0.39946430921554565),
# ('!/Punctuation', 0.3899948000907898),
# ('^^/Punctuation', 0.3852730989456177),
# ('~^^/Punctuation', 0.3797937035560608)]
! .
62 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
, v(KING) – v(MAN) + v(WOMAN) = v(QUEEN)
?
63 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
! (3/3)
pprint(doc_vectorizer.most_similar(positive=[' /Noun', ' /Noun'], negative=[' /Noun']))
# => [(' /Noun', 0.32974398136138916),
# (' /Noun', 0.305545836687088),
# (' /Noun', 0.2899821400642395),
# (' /Noun', 0.2856029272079468),
# (' /Noun', 0.2840743064880371),
# (' /Noun', 0.28247544169425964),
# (' /Noun', 0.2795347571372986),
# (' /Noun', 0.2794691324234009),
# (' /Noun', 0.27567577362060547),
# (' /Noun', 0.2734225392341614)]
...? ?
64 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
, ;;
, . ? *
text.concordance(' /Noun', lines=10)
# => Displaying 10 of 145 matches:
# Josa /Noun /Josa ,,/Punctuation /Noun /Noun ...../Punctuation /Noun
# /Noun /Noun ../Punctuation /Noun /Noun /Noun /Noun /Noun /Josa /Nou
# nction /Noun /Josa /Adjective /Noun /Verb /Verb /Noun /Josa
# /Noun /Noun /Noun ?/Punctuation /Noun /Noun ./Punctuation /Noun /No
# b /Noun /Noun /KoreanParticle /Noun /Noun /Adjective ./Punctuation
# osa /Noun /Josa /Noun /Josa /Noun /Josa /Noun /Noun /Josa /Nou
# /Noun /Josa /Noun ./Punctuation /Noun ,/Punctuation /Noun /Noun /Suf
# Josa /Noun /Noun /Noun /Noun /Noun /Josa /Noun /Suffix /Josa /
# /Verb ./Punctuation /Adjective /Noun /Noun .../Punctuation /Noun
# tive /Noun /Noun .../Punctuation /Noun /Noun ../Punctuation /Noun /J
* Huang, Socher, Improving Word Representations via Global Context and Multiple Word Prototypes, ACL, 2012. 65 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
. .
train_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_train_docs]
train_y = [doc.tags[0] for doc in tagged_train_docs]
len(train_x) # term existance
# => 150000
len(train_x[0])
# => 300
test_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_test_docs]
test_y = [doc.tags[0] for doc in tagged_test_docs]
len(test_x)
# => 50000
len(test_x[0])
# => 300
66 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
scikit-learn LogisticRegression() .
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=1234)
classifier.fit(train_x, train_y)
classifier.score(test_x, test_y)
# => 0.78246000000000004
! Accuracy 0.78 .
Term existance accuracy 2% , .
, term existance , doc2vec
!
67 / 69
.
KoNLPy , NLTK , Gensim
.
Term existance document vector .
task apply
!
/ *
/
!
* , , , : , SNUDM Technical Reports, Apr 14,
2015. 68 / 69
:D
http://lucypark.kr
@echojuliett
69 / 69

More Related Content

What's hot

Mini Project 2 - 4-to-1 Multiplexer And 1-to-4 Demultiplexer With Enable
Mini Project 2 -  4-to-1 Multiplexer And 1-to-4 Demultiplexer With EnableMini Project 2 -  4-to-1 Multiplexer And 1-to-4 Demultiplexer With Enable
Mini Project 2 - 4-to-1 Multiplexer And 1-to-4 Demultiplexer With EnableAIMST University
 
Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...
Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...
Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...sveta7940
 
Контрольна робота по темі "Множення та ділення раціональних чисел"
Контрольна робота по темі "Множення та ділення раціональних чисел"Контрольна робота по темі "Множення та ділення раціональних чисел"
Контрольна робота по темі "Множення та ділення раціональних чисел"sveta7940
 
6 msz m_2014
6 msz m_20146 msz m_2014
6 msz m_20146klas
 
7 клас контрольна робота 1г (математика)
7 клас контрольна робота 1г (математика)7 клас контрольна робота 1г (математика)
7 клас контрольна робота 1г (математика)Andy Levkovich
 
Domain name system
Domain name systemDomain name system
Domain name systemfordcoppenz
 
Siemens Touch Panel (PXM40) Display
Siemens Touch Panel (PXM40) DisplaySiemens Touch Panel (PXM40) Display
Siemens Touch Panel (PXM40) DisplayCONTROLS & SYSTEMS
 
Human activity recognition
Human activity recognition Human activity recognition
Human activity recognition srikanthgadam
 
Computer Vision image classification
Computer Vision image classificationComputer Vision image classification
Computer Vision image classificationWael Badawy
 
Unnamed PL/SQL code block: Use of Control structure and Exception handling i...
 Unnamed PL/SQL code block: Use of Control structure and Exception handling i... Unnamed PL/SQL code block: Use of Control structure and Exception handling i...
Unnamed PL/SQL code block: Use of Control structure and Exception handling i...bhavesh lande
 
розвязування дробово раціональних рівнянь
розвязування дробово раціональних рівняньрозвязування дробово раціональних рівнянь
розвязування дробово раціональних рівняньonyschuk
 
Using Shader in cocos2d-x
Using Shader in cocos2d-xUsing Shader in cocos2d-x
Using Shader in cocos2d-xVu Hung Nguyen
 
Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...
Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...
Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...Dimitar Danailov
 
Competitive switching comparison cisco vs. hpe aruba vs. huawei vs. dell
Competitive switching comparison cisco vs. hpe aruba vs. huawei vs. dellCompetitive switching comparison cisco vs. hpe aruba vs. huawei vs. dell
Competitive switching comparison cisco vs. hpe aruba vs. huawei vs. dellIT Tech
 
Тригонометричні функції
Тригонометричні функціїТригонометричні функції
Тригонометричні функціїrussoua
 
SDN and Mininet: Some Basic Concepts
SDN and Mininet: Some Basic ConceptsSDN and Mininet: Some Basic Concepts
SDN and Mininet: Some Basic ConceptsEswar Publications
 
Теорема піфагора
Теорема піфагораТеорема піфагора
Теорема піфагораnatasha29091997
 
Геометричні перетворення графіків тригонометричних функцій
Геометричні перетворення графіків тригонометричних функційГеометричні перетворення графіків тригонометричних функцій
Геометричні перетворення графіків тригонометричних функційlulettta
 

What's hot (20)

Mini Project 2 - 4-to-1 Multiplexer And 1-to-4 Demultiplexer With Enable
Mini Project 2 -  4-to-1 Multiplexer And 1-to-4 Demultiplexer With EnableMini Project 2 -  4-to-1 Multiplexer And 1-to-4 Demultiplexer With Enable
Mini Project 2 - 4-to-1 Multiplexer And 1-to-4 Demultiplexer With Enable
 
Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...
Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...
Старова, Маркова "Математика, 5 клас" (конспекти уроків за підручником Тарасе...
 
Контрольна робота по темі "Множення та ділення раціональних чисел"
Контрольна робота по темі "Множення та ділення раціональних чисел"Контрольна робота по темі "Множення та ділення раціональних чисел"
Контрольна робота по темі "Множення та ділення раціональних чисел"
 
6 msz m_2014
6 msz m_20146 msz m_2014
6 msz m_2014
 
7 клас контрольна робота 1г (математика)
7 клас контрольна робота 1г (математика)7 клас контрольна робота 1г (математика)
7 клас контрольна робота 1г (математика)
 
Domain name system
Domain name systemDomain name system
Domain name system
 
Siemens Touch Panel (PXM40) Display
Siemens Touch Panel (PXM40) DisplaySiemens Touch Panel (PXM40) Display
Siemens Touch Panel (PXM40) Display
 
Human activity recognition
Human activity recognition Human activity recognition
Human activity recognition
 
Computer Vision image classification
Computer Vision image classificationComputer Vision image classification
Computer Vision image classification
 
Lect 2 i pv6-latest-rami
Lect 2 i pv6-latest-ramiLect 2 i pv6-latest-rami
Lect 2 i pv6-latest-rami
 
Unnamed PL/SQL code block: Use of Control structure and Exception handling i...
 Unnamed PL/SQL code block: Use of Control structure and Exception handling i... Unnamed PL/SQL code block: Use of Control structure and Exception handling i...
Unnamed PL/SQL code block: Use of Control structure and Exception handling i...
 
R-CNN
R-CNNR-CNN
R-CNN
 
розвязування дробово раціональних рівнянь
розвязування дробово раціональних рівняньрозвязування дробово раціональних рівнянь
розвязування дробово раціональних рівнянь
 
Using Shader in cocos2d-x
Using Shader in cocos2d-xUsing Shader in cocos2d-x
Using Shader in cocos2d-x
 
Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...
Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...
Социални мрежи и тяхното приложение при изграждане на уебсайтове и Facebook а...
 
Competitive switching comparison cisco vs. hpe aruba vs. huawei vs. dell
Competitive switching comparison cisco vs. hpe aruba vs. huawei vs. dellCompetitive switching comparison cisco vs. hpe aruba vs. huawei vs. dell
Competitive switching comparison cisco vs. hpe aruba vs. huawei vs. dell
 
Тригонометричні функції
Тригонометричні функціїТригонометричні функції
Тригонометричні функції
 
SDN and Mininet: Some Basic Concepts
SDN and Mininet: Some Basic ConceptsSDN and Mininet: Some Basic Concepts
SDN and Mininet: Some Basic Concepts
 
Теорема піфагора
Теорема піфагораТеорема піфагора
Теорема піфагора
 
Геометричні перетворення графіків тригонометричних функцій
Геометричні перетворення графіків тригонометричних функційГеометричні перетворення графіків тригонометричних функцій
Геометричні перетворення графіків тригонометричних функцій
 

Similar to KoNLPy, NLTK, Gensim for Sentiment Analysis of Korean Movie Reviews

Compiler Construction | Lecture 5 | Transformation by Term Rewriting
Compiler Construction | Lecture 5 | Transformation by Term RewritingCompiler Construction | Lecture 5 | Transformation by Term Rewriting
Compiler Construction | Lecture 5 | Transformation by Term RewritingEelco Visser
 
Natural Language Processing and Python
Natural Language Processing and PythonNatural Language Processing and Python
Natural Language Processing and Pythonanntp
 
CS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term RewritingCS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term RewritingEelco Visser
 
Python memory management_v2
Python memory management_v2Python memory management_v2
Python memory management_v2Jeffrey Clark
 
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary dataKernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary dataAnne Nicolas
 
Scala eXchange opening
Scala eXchange openingScala eXchange opening
Scala eXchange openingMartin Odersky
 
Yoyak ScalaDays 2015
Yoyak ScalaDays 2015Yoyak ScalaDays 2015
Yoyak ScalaDays 2015ihji
 
RNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsRNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsEmory NLP
 
python chapter 1
python chapter 1python chapter 1
python chapter 1Raghu nath
 
Python chapter 2
Python chapter 2Python chapter 2
Python chapter 2Raghu nath
 
Gpu programming with java
Gpu programming with javaGpu programming with java
Gpu programming with javaGary Sieling
 
Data Exploration and Visualization with R
Data Exploration and Visualization with RData Exploration and Visualization with R
Data Exploration and Visualization with RYanchang Zhao
 
Class 31: Deanonymizing
Class 31: DeanonymizingClass 31: Deanonymizing
Class 31: DeanonymizingDavid Evans
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingEelco Visser
 
Super Advanced Python –act1
Super Advanced Python –act1Super Advanced Python –act1
Super Advanced Python –act1Ke Wei Louis
 
Lies, Damned Lies, and Substrings
Lies, Damned Lies, and SubstringsLies, Damned Lies, and Substrings
Lies, Damned Lies, and SubstringsHaseeb Qureshi
 

Similar to KoNLPy, NLTK, Gensim for Sentiment Analysis of Korean Movie Reviews (20)

Compiler Construction | Lecture 5 | Transformation by Term Rewriting
Compiler Construction | Lecture 5 | Transformation by Term RewritingCompiler Construction | Lecture 5 | Transformation by Term Rewriting
Compiler Construction | Lecture 5 | Transformation by Term Rewriting
 
Natural Language Processing and Python
Natural Language Processing and PythonNatural Language Processing and Python
Natural Language Processing and Python
 
CS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term RewritingCS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term Rewriting
 
Python memory management_v2
Python memory management_v2Python memory management_v2
Python memory management_v2
 
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary dataKernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
 
Scala eXchange opening
Scala eXchange openingScala eXchange opening
Scala eXchange opening
 
Yoyak ScalaDays 2015
Yoyak ScalaDays 2015Yoyak ScalaDays 2015
Yoyak ScalaDays 2015
 
RNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsRNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq Models
 
Music as data
Music as dataMusic as data
Music as data
 
Alastair Butler - 2015 - Round trips with meaning stopovers
Alastair Butler - 2015 - Round trips with meaning stopoversAlastair Butler - 2015 - Round trips with meaning stopovers
Alastair Butler - 2015 - Round trips with meaning stopovers
 
python chapter 1
python chapter 1python chapter 1
python chapter 1
 
Python chapter 2
Python chapter 2Python chapter 2
Python chapter 2
 
Gpu programming with java
Gpu programming with javaGpu programming with java
Gpu programming with java
 
Python
PythonPython
Python
 
Python lecture 05
Python lecture 05Python lecture 05
Python lecture 05
 
Data Exploration and Visualization with R
Data Exploration and Visualization with RData Exploration and Visualization with R
Data Exploration and Visualization with R
 
Class 31: Deanonymizing
Class 31: DeanonymizingClass 31: Deanonymizing
Class 31: Deanonymizing
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term Rewriting
 
Super Advanced Python –act1
Super Advanced Python –act1Super Advanced Python –act1
Super Advanced Python –act1
 
Lies, Damned Lies, and Substrings
Lies, Damned Lies, and SubstringsLies, Damned Lies, and Substrings
Lies, Damned Lies, and Substrings
 

More from Eunjeong (Lucy) Park

파이썬과 커뮤니티와 한국어 오픈데이터
파이썬과 커뮤니티와 한국어 오픈데이터파이썬과 커뮤니티와 한국어 오픈데이터
파이썬과 커뮤니티와 한국어 오픈데이터Eunjeong (Lucy) Park
 
The beginner’s guide to 웹 크롤링 (스크래핑)
The beginner’s guide to 웹 크롤링 (스크래핑)The beginner’s guide to 웹 크롤링 (스크래핑)
The beginner’s guide to 웹 크롤링 (스크래핑)Eunjeong (Lucy) Park
 
자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLPEunjeong (Lucy) Park
 
대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안
대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안
대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안Eunjeong (Lucy) Park
 
On Semi-Supervised Learning and Beyond
On Semi-Supervised Learning and BeyondOn Semi-Supervised Learning and Beyond
On Semi-Supervised Learning and BeyondEunjeong (Lucy) Park
 
Introduction to Data Mining for Newbies
Introduction to Data Mining for NewbiesIntroduction to Data Mining for Newbies
Introduction to Data Mining for NewbiesEunjeong (Lucy) Park
 

More from Eunjeong (Lucy) Park (6)

파이썬과 커뮤니티와 한국어 오픈데이터
파이썬과 커뮤니티와 한국어 오픈데이터파이썬과 커뮤니티와 한국어 오픈데이터
파이썬과 커뮤니티와 한국어 오픈데이터
 
The beginner’s guide to 웹 크롤링 (스크래핑)
The beginner’s guide to 웹 크롤링 (스크래핑)The beginner’s guide to 웹 크롤링 (스크래핑)
The beginner’s guide to 웹 크롤링 (스크래핑)
 
자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP
 
대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안
대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안
대한민국을 위한 Open Linked Political Data 플랫폼, "정치in" 제안
 
On Semi-Supervised Learning and Beyond
On Semi-Supervised Learning and BeyondOn Semi-Supervised Learning and Beyond
On Semi-Supervised Learning and Beyond
 
Introduction to Data Mining for Newbies
Introduction to Data Mining for NewbiesIntroduction to Data Mining for Newbies
Introduction to Data Mining for Newbies
 

Recently uploaded

Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 217djon017
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPTBoston Institute of Analytics
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)jennyeacort
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfBoston Institute of Analytics
 
MK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxMK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxUnduhUnggah1
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.natarajan8993
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFAAndrei Kaleshka
 
Identifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanIdentifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanMYRABACSAFRA2
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
Defining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryDefining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryJeremy Anderson
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPramod Kumar Srivastava
 
9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home Service9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home ServiceSapana Sha
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectBoston Institute of Analytics
 

Recently uploaded (20)

Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
MK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxMK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docx
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFA
 
Identifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanIdentifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population Mean
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
Defining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryDefining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data Story
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
 
9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home Service9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home Service
 
Call Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort ServiceCall Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort Service
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis Project
 

KoNLPy, NLTK, Gensim for Sentiment Analysis of Korean Movie Reviews

  • 1. NLTK, Gensim ( : ) PyCon Korea 2015 2015-08-29 Lucy Park ( ) 1 / 69
  • 2. KoNLPy , ? ! NLTK , Gensim , . bag-of-words, document embedding , KoNLPy, NLTK, Gensim . KoNLPy: http://konlpy.org NLTK: http://nltk.org Gensim: http://radimrehurek.com/gensim 2 / 69
  • 3. (a.k.a. lucypark, echojuliett, e9t) . CAVEAT: KoNLPy Just another yak shaver... 11:49 <@sanxiyn> 또다시 yak shaving의 신비한 세계 11:51 <@sanxiyn> yak shaving이 뭔지 다 아시죠? 11:51 <디토군> 방금 찾아보고 왔음 11:51 <@mana> (조용히 설명을 기대중) 11:51 <@sanxiyn> 나무를 베려고 하는데 11:52 <@sanxiyn> 도끼질을 하다가 11:52 <@sanxiyn> 도끼가 더 잘 들면 나무를 쉽게 벨텐데 해서 11:52 <@sanxiyn> 도끼 날을 세우다가 11:52 <@sanxiyn> 도끼 가는 돌이 더 좋으면 도끼 날을 더 빨리 세울텐데 해서 11:52 <@sanxiyn> 좋은 숫돌이 있는 곳을 수소문해 보니 11:52 <@mana> … 11:52 <&홍민희> 그거 전형적인 제 행동이네요 11:52 <@sanxiyn> 저 멀이 어디에 세계 최고의 숫돌이 난다고 11:52 <@sanxiyn> 거기까지 야크를 타고 가려다가 11:52 <@mana> 항상하던 짓이라서 타이핑을 할 수 없었습니다 11:52 <@sanxiyn> 야크 털을 깎아서… 11:52 <@sanxiyn> etc. 3 / 69
  • 4. / KoNLPy, NLTK, Gensim (?) ! Gensim , . , . . ? 3 4 / 69
  • 7. . , . . -- Bengio et al., Deep Learning 1 , Book in preparation for MIT Press, 2015. 7 / 69
  • 9. ? , . " " . 9 / 69
  • 11. , , (binary) set one-hot vector 1-of-V = , = , = , . . . =w ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 1 0 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ w ( ) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 0 1 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ w ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 0 0 1 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ w ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 0 0 0 ⋮ 1 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ wi i |V| 11 / 69
  • 12. . ex: " " " ", " " " " 0 . ( = ( = 0w )⊤ w w )⊤ w * BOW (discrete) (local representation) . (distributed representation) 12 / 69
  • 13. , bag of words(BOW) / ( "term existance" ) n (a.k.a. term frequency (TF)) ex: term frequency–inverse document frequency (TF-IDF) =d1 binary ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 1 1 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ =d1 tf ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 3 1 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 13 / 69
  • 14. .* . . " ". * : Vincent Spruyt, The Curse of Dimensionality in classification, 2014. 14 / 69
  • 15. " ?" (WordNet) X is-a Y (hypernym) (DAG; directed acyclic graph) . ( : .) from nltk.corpus import wordnet as wn wn.synsets('computer') # "computer" #=> [Synset('computer.n.01'), Synset('calculator.n.01')] : ( ) / 15 / 69
  • 16. : 1. , . from nltk.corpus import wordnet as wn wn.synsets('nginx') #=> [] 2. . wn.synsets('yolo') # : you only live once #=> [] 3. NLTK ... ( !) wn.synsets(' ', lang='kor') #=> WordNetError: Language is not supported. 16 / 69
  • 17. .. . ? 17 / 69
  • 19. . You shall know a word by the company it keeps. -- J.R. Firth (1957) 19 / 69
  • 20. 1: ? __ . , __ . __ . : [ ] 20 / 69
  • 21. 2: " " ? ? 21 / 69
  • 24. , (context) . (context) := (window) / 1-8 , 3-17 * " " ex: "PyCon" "R" "Python" ? * Jurafsky, Martin, Speech and Language Processing 3rd Ed. 19.1 , Book in preparation, 2015. 24 / 69
  • 26. Co-occurrence documents = [[" ", " ", " ", " "], [" ", "R", " ", " "]] 1. Term-document matrix ( ): Computation (!) x_td = [[1, 1], # [1, 0], # [0, 1], # R [1, 1], # [1, 1]] # 1. Term-term matrix ( ): syntactic, semantic ( ==5): x_tt = [[0, 1, 1, 2, 0], # [1, 0, 0, 1, 1], # [1, 0, 0, 1, 1], # R [2, 1, 1, 0, 2], # [0, 1, 1, 2, 0]] # ∈Xtd ℝ|V|×M M ∈Xtt ℝ|V|×|V| 26 / 69
  • 27. Co-occurrence matrix . import math def dot_product(v1, v2): return sum(map(lambda x: x[0] * x[1], zip(v1, v2))) def cosine_measure(v1, v2): prod = dot_product(v1, v2) len1 = math.sqrt(dot_product(v1, v1)) len2 = math.sqrt(dot_product(v2, v2)) return prod / (len1 * len2) : skewed ( , ) discriminative (ex: list(' ')) ? 27 / 69
  • 28. Neural embeddings : ! (language model) ex: [" ", " ", " ", " "] ? (ex: "!", "." "?") , . Neural network language model (NNLM)* * Bengio, Ducharme, Vincent, A Neural Probabilistic Language Model, {NIPS, 2000; JMLR, 2003}. 28 / 69
  • 29. word2vec * T. Mikolov word2vec neural embedding ! (n -> m ) * Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013. 29 / 69
  • 30. : word2vec * * , , , (1946-2015) , 49 2 , 2015. 30 / 69
  • 32. doc2vec * : ( ) ! . . |V| * Le, Mikolov, Distributed Representations of Sentences and Documents, ICML, 2014. ( doc2vec paragraph vector ) 32 / 69
  • 33. : Term frequency -> . . documents = [ [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '] ] words = set(sum(documents, [])) print(words) # => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '} def term_frequency(document): # do something return vector vectors = [term_frequency(doc) for doc in documents] print(vectors) # => { # 'S1': [1, 1, 0, 1, 0, 0, 1, 1], # 'S2': [1, 1, 0, 1, 0, 0, 1, 1], # 'S3': [1, 0, 0, 1, 1, 1, 1, 0], # 'S4': [1, 1, 0, 1, 1, 1, 0, 0], # 'S5': [1, 0, 1, 1, 1, 0, 1, 0], # 'S6': [1, 1, 1, 1, 1, 0, 0, 0] # } |V| 33 / 69
  • 34. : doc2vec -> . . documents = [ [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '] ] words = set(sum(documents, [])) print(words) # => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '} def doc2vec(document): # do something else ( Gensim !) return vector vectors = [doc2vec(doc) for doc in documents] print(vectors) # => { # 'S1': [-0.01599941, 0.02135301, 0.0927715], # 'S2': [0.02333261, 0.00211833, 0.00254255], # 'S3': [-0.00117272, -0.02043504, 0.00593186], # 'S4': [0.0089237, -0.00397806, -0.13199195], # 'S5': [0.02555059, 0.01561624, 0.03603476], # 'S6': [-0.02114407, -0.01552016, 0.01289922] # } |V| 34 / 69
  • 35. . : Sparse, long vectors Dense, short vectors 1-hot-vectors word2vec bag-of-words (term existance, TF, TF-IDF ) doc2vec . 35 / 69
  • 36. Sentiment analysis for Korean movie reviews 36 / 69
  • 37. , ? 37 / 69
  • 39. Naver sentiment movie corpus v1.0 Maas et al., 2011 : 100 140 ( ' ') 20 ( 64 ) ratings_train.txt: 15 , ratings_test.txt: 5 / (i.e., random guess yields 50% accuracy) : 19MB URL: http://github.com/e9t/nsmc/ 39 / 69
  • 41. $ cat ratings_train.txt | head -n 25 id document label 9976970 .. 0 3819312 ... .... 1 10265843 0 9045019 .. .. 0 6483659 ! 5403919 3 1 8 . ... . 0 7797314 . 0 9443947 .. 7156791 1 5912145 ? .. ? 9008700 . ♥ 1 10217543 90 !! ~ 5957425 0 8628627 . . . 9864035 6852435 1 9143163 . 4891476 0 7465483 !!♥ 3989148 , . . 1 4581211 . 1 2718894 1 9705777 . .... 471131 . 1 41 / 69
  • 42. , ? 1. KoNLPy 2. NLTK 3. Bag-of-words(term existence) classify 4. Gensim doc2vec classify 42 / 69
  • 43. 1. Data preprocessing (feat. KoNLPy) def read_data(filename): with open(filename, 'r') as f: data = [line.split('t') for line in f.read().splitlines()] data = data[1:] # header return data train_data = read_data('ratings_train.txt') test_data = read_data('ratings_test.txt') NOTE: pandas.read_csv() quoting parameter csv.QUOTE_NONE (3) (ex: ) 43 / 69
  • 44. 1. Data preprocessing (feat. KoNLPy) # row, column print(len(train_data)) # nrows: 150000 print(len(train_data[0])) # ncols: 3 print(len(test_data)) # nrows: 50000 print(len(test_data[0])) # ncols: 3 44 / 69
  • 45. 1. Data preprocessing (feat. KoNLPy) from konlpy.tag import Twitter pos_tagger = Twitter() def tokenize(doc): # norm, stem optional return ['/'.join(t) for t in pos_tagger.pos(doc, norm=True, stem=True)] train_docs = [(tokenize(row[1]), row[2]) for row in train_data] test_docs = [(tokenize(row[1]), row[2]) for row in test_data] # from pprint import pprint pprint(train_docs[0]) # => [([' /Exclamation', # ' /Noun', # '../Punctuation', # ' /Noun', # ' /Noun', # ' /Verb', # ' /Noun'], # '0')] NOTE: . 45 / 69
  • 46. 1. Data preprocessing (feat. KoNLPy) " ?" , x * " (POS) ?" ex: ' /Josa' vs ' /Noun' * https://github.com/karpathy/char-rnn 46 / 69
  • 47. 2. Data exploration (feat. NLTK) ! Training data token tokens = [t for d in train_docs for t in d[0]] print(len(tokens)) # => 2194536 47 / 69
  • 48. 2. Data exploration (feat. NLTK) nltk.Text() ! (Exploration ) document , . import nltk text = nltk.Text(tokens, name='NMSC') print(text) # => <Text: NMSC> 48 / 69
  • 49. 2. Data exploration (feat. NLTK) Count tokens print(len(text.tokens)) # returns number of tokens # => 2194536 print(len(set(text.tokens))) # returns number of unique tokens # => 48765 pprint(text.vocab().most_common(10)) # returns frequency distribution # => [('./Punctuation', 68630), # (' /Noun', 51365), # (' /Verb', 50281), # (' /Josa', 39123), # (' /Verb', 34764), # (' /Josa', 30480), # ('../Punctuation', 29055), # (' /Josa', 27108), # (' /Josa', 26696), # (' /Josa', 23481)] 49 / 69
  • 50. 2. Data exploration (feat. NLTK) Plot tokens by frequency text.plot(50) # Plot sorted frequency of top 50 tokens ;; 50 / 69
  • 51. 2. Data exploration (feat. NLTK) ! Troubleshooting: For those who see rectangles instead of letters in the saved plot file, include the following configurations before drawing the plot: Some example fonts: Mac OS: /Library/Fonts/AppleGothic.ttf from matplotlib import font_manager, rc font_fname = 'c:/windows/fonts/gulim.ttc' # A font of your choice font_name = font_manager.FontProperties(fname=font_fname).get_name() rc('font', family=font_name) 51 / 69
  • 52. 2. Data exploration (feat. NLTK) . . . 52 / 69
  • 53. 2. Data exploration (feat. NLTK) Collocations ( ): (ex: "text" + "mining") text.collocations() # # => /Determiner /Noun; /Suffix /Josa; /Determiner /Noun; /Noun # /Verb; /Noun /Josa; 10/Number /Noun; /Noun /Suffix; /Noun # /Adjective; /Noun /Josa; /Noun /Josa; /Noun /Josa; /Suffix # /Josa; /Noun /Noun; /Noun /Josa; /Suffix /Josa; /Noun # /Josa; /Noun /Josa; /Suffix /Josa; /Noun /Suffix; /Noun # /Josa NOTE: nltk.Text() , source code API . . 53 / 69
  • 54. 3. Sentiment classification with term-existance* term . # 2000 # WARNING: time/memory efficient selected_words = [f[0] for f in text.vocab().most_common(2000)] def term_exists(doc): return {'exists({})'.format(word): (word in set(doc)) for word in selected_words} # training corpus train_docs = train_docs[:10000] train_xy = [(term_exists(d), c) for d, c in train_docs] test_xy = [(term_exists(d), c) for d, c in test_docs] Try this: . 50 ? TF, TF-IDF ? (sparse matrix) or scikit-learn TfidfVectorizer() ! * Natural Language Processing with Python Chapter 6. Learning to classify text 54 / 69
  • 55. 3. Sentiment classification with term-existance . ! . NLTK : Naive Bayes Classifiers Decision Tree Classifiers Maximum Entropy Classifiers . scikit-learn . NLTK Naive Bayes Classifier ! 55 / 69
  • 56. 3. Sentiment classification with term-existance Naive Bayes classifier # classifier = nltk.NaiveBayesClassifier.train(train_xy) print(nltk.classify.accuracy(classifier, test_xy)) # => 0.80418 classifier.show_most_informative_features(10) # => Most Informative Features # exists( /Noun) = True 1 : 0 = 38.0 : 1.0 # exists( /Noun) = True 0 : 1 = 30.1 : 1.0 # exists(♥/Foreign) = True 1 : 0 = 24.5 : 1.0 # exists( /Noun) = True 0 : 1 = 22.1 : 1.0 # exists( /Noun) = True 0 : 1 = 19.5 : 1.0 # exists( /Noun) = True 0 : 1 = 19.4 : 1.0 # exists( /Noun) = True 1 : 0 = 18.9 : 1.0 # exists( /Noun) = True 0 : 1 = 16.9 : 1.0 # exists( /Noun) = True 1 : 0 = 16.9 : 1.0 # exists( /Noun) = True 1 : 0 = 15.9 : 1.0 / baseline accuracy 0.50 1 accuracy 0.80 . ? 56 / 69
  • 57. 4. Sentiment classification with doc2vec (feat. Gensim) doc2vec / . Gensim . * : Radim Rehureck * Gensim 0.12.0 . ! 57 / 69
  • 58. 4. Sentiment classification with doc2vec (feat. Gensim) !!! Gensim ... 58 / 69
  • 59. 4. Sentiment classification with doc2vec (feat. Gensim) doc2vec . doc2vec from gensim.models.doc2vec import TaggedDocument OK from collections import namedtuple TaggedDocument = namedtuple('TaggedDocument', 'words tags') # 15 training documents tagged_train_docs = [TaggedDocument(d, [c]) for d, c in train_docs] tagged_test_docs = [TaggedDocument(d, [c]) for d, c in test_docs] 59 / 69
  • 60. 4. Sentiment classification with doc2vec (feat. Gensim) from gensim.models import doc2vec # doc_vectorizer = doc2vec.Doc2Vec(size=300, alpha=0.025, min_alpha=0.025, seed=1234) doc_vectorizer.build_vocab(tagged_train_docs) # Train document vectors! for epoch in range(10): doc_vectorizer.train(tagged_train_docs) doc_vectorizer.alpha -= 0.002 # decrease the learning rate doc_vectorizer.min_alpha = doc_vectorizer.alpha # fix the learning rate, no decay # To save # doc_vectorizer.save('doc2vec.model') Try this: Vector size, epoch 60 / 69
  • 61. 4. Sentiment classification with doc2vec (feat. Gensim) ! (1/3) pprint(doc_vectorizer.most_similar(' /Noun')) # => [(' /Noun', 0.5669919848442078), # (' /Noun', 0.5522832274436951), # (' /Noun', 0.5021427869796753), # (' /Noun', 0.5000861287117004), # (' /Noun', 0.4368450343608856), # (' /Noun', 0.42848479747772217), # (' /Noun', 0.42714330554008484), # (' /Noun', 0.41590073704719543), # (' /Noun', 0.41056352853775024), # (' /Noun', 0.4052993059158325)] ... . 61 / 69
  • 62. 4. Sentiment classification with doc2vec (feat. Gensim) ! (2/3) pprint(doc_vectorizer.most_similar(' /KoreanParticle')) # => [(' /KoreanParticle', 0.5768033862113953), # (' /KoreanParticle', 0.4822016954421997), # ('!!!!/Punctuation', 0.4395076632499695), # ('!!!/Punctuation', 0.4077949523925781), # ('!!/Punctuation', 0.4026390314102173), # ('~/Punctuation', 0.40038347244262695), # ('~~/Punctuation', 0.39946430921554565), # ('!/Punctuation', 0.3899948000907898), # ('^^/Punctuation', 0.3852730989456177), # ('~^^/Punctuation', 0.3797937035560608)] ! . 62 / 69
  • 63. 4. Sentiment classification with doc2vec (feat. Gensim) , v(KING) – v(MAN) + v(WOMAN) = v(QUEEN) ? 63 / 69
  • 64. 4. Sentiment classification with doc2vec (feat. Gensim) ! (3/3) pprint(doc_vectorizer.most_similar(positive=[' /Noun', ' /Noun'], negative=[' /Noun'])) # => [(' /Noun', 0.32974398136138916), # (' /Noun', 0.305545836687088), # (' /Noun', 0.2899821400642395), # (' /Noun', 0.2856029272079468), # (' /Noun', 0.2840743064880371), # (' /Noun', 0.28247544169425964), # (' /Noun', 0.2795347571372986), # (' /Noun', 0.2794691324234009), # (' /Noun', 0.27567577362060547), # (' /Noun', 0.2734225392341614)] ...? ? 64 / 69
  • 65. 4. Sentiment classification with doc2vec (feat. Gensim) , ;; , . ? * text.concordance(' /Noun', lines=10) # => Displaying 10 of 145 matches: # Josa /Noun /Josa ,,/Punctuation /Noun /Noun ...../Punctuation /Noun # /Noun /Noun ../Punctuation /Noun /Noun /Noun /Noun /Noun /Josa /Nou # nction /Noun /Josa /Adjective /Noun /Verb /Verb /Noun /Josa # /Noun /Noun /Noun ?/Punctuation /Noun /Noun ./Punctuation /Noun /No # b /Noun /Noun /KoreanParticle /Noun /Noun /Adjective ./Punctuation # osa /Noun /Josa /Noun /Josa /Noun /Josa /Noun /Noun /Josa /Nou # /Noun /Josa /Noun ./Punctuation /Noun ,/Punctuation /Noun /Noun /Suf # Josa /Noun /Noun /Noun /Noun /Noun /Josa /Noun /Suffix /Josa / # /Verb ./Punctuation /Adjective /Noun /Noun .../Punctuation /Noun # tive /Noun /Noun .../Punctuation /Noun /Noun ../Punctuation /Noun /J * Huang, Socher, Improving Word Representations via Global Context and Multiple Word Prototypes, ACL, 2012. 65 / 69
  • 66. 4. Sentiment classification with doc2vec (feat. Gensim) . . train_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_train_docs] train_y = [doc.tags[0] for doc in tagged_train_docs] len(train_x) # term existance # => 150000 len(train_x[0]) # => 300 test_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_test_docs] test_y = [doc.tags[0] for doc in tagged_test_docs] len(test_x) # => 50000 len(test_x[0]) # => 300 66 / 69
  • 67. 4. Sentiment classification with doc2vec (feat. Gensim) scikit-learn LogisticRegression() . from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=1234) classifier.fit(train_x, train_y) classifier.score(test_x, test_y) # => 0.78246000000000004 ! Accuracy 0.78 . Term existance accuracy 2% , . , term existance , doc2vec ! 67 / 69
  • 68. . KoNLPy , NLTK , Gensim . Term existance document vector . task apply ! / * / ! * , , , : , SNUDM Technical Reports, Apr 14, 2015. 68 / 69