SlideShare a Scribd company logo
1 of 18
Transistors
By
A.Arputharaj
Asst Professor
Department of Electronics
St.Jospehs College
Lecture Overview
• What is a Transistor?
• History
• Types
• Characteristics
• Applications
What is a Transistor?
• Semiconductors: ability to change
from conductor to insulator
• Can either allow current or prohibit
current to flow
• Useful as a switch, but also as an
amplifier
• Essential part of many technological
advances
A Brief History
• Guglielmo Marconi invents radio in 1895
• Problem: For long distance travel, signal must
be amplified
• Lee De Forest improves on Fleming’s original
vacuum tube to amplify signals
• Made use of third electrode
• Too bulky for most applications
The Transistor is Born
• Bell Labs (1947): Bardeen,
Brattain, and Shockley
• Originally made of germanium
• Current transistors made of
doped silicon
How Transistors Work
• Doping: adding small amounts of other
elements to create additional protons or
electrons
• P-Type: dopants lack a fourth valence electron
(Boron, Aluminum)
• N-Type: dopants have an additional (5th)
valence electron (Phosphorus, Arsenic)
• Importance: Current only flows from P to N
Diodes and Bias
• Diode: simple P-N junction.
• Forward Bias: allows current to
flow from P to N.
• Reverse Bias: no current allowed
to flow from N to P.
• Breakdown Voltage: sufficient N
to P voltage of a Zener Diode will
allow for current to flow in this
direction.
• 3 adjacent regions of doped
Si (each connected to a lead):
– Base. (thin layer,less doped).
– Collector.
– Emitter.
• 2 types of BJT:
– npn.
– pnp.
• Most common: npn (focus
on it).
Bipolar Junction Transistor (BJT)
npn bipolar junction transistor
pnp bipolar junction transistor
Developed by
Shockley (1949)
• 1 thin layer of p-type, sandwiched between 2 layers of n-type.
• N-type of emitter: more heavily doped than collector.
• With VC>VB>VE:
– Base-Emitter junction forward biased, Base-Collector reverse biased.
– Electrons diffuse from Emitter to Base (from n to p).
– There’s a depletion layer on the Base-Collector junction no flow of e-
allowed.
– BUT the Base is thin and Emitter region is n+ (heavily doped)  electrons
have enough momentum to cross the Base into the Collector.
– The small base current IB controls a large current IC
BJT NPN Transistor
• Current Gain:
– α is the fraction of electrons
that diffuse across the narrow
Base region
– 1- α is the fraction of electrons
that recombine with holes in
the Base region to create base
current
• The current Gain is expressed
in terms of the β (beta) of the
transistor (often called hfe by
manufacturers).
• β (beta) is Temperature and
Voltage dependent.
• It can vary a lot among
transistors (common values for
signal BJT: 20 - 200).
BJT characteristics











1
)
1
(
B
C
E
B
E
C
I
I
I
I
I
I
• Emitter is grounded.
• Base-Emitter starts to conduct with VBE=0.6V,IC flows and it’s IC=*IB.
• Increasing IB, VBE slowly increases to 0.7V but IC rises exponentially.
• As IC rises ,voltage drop across RC increases and VCE drops toward
ground. (transistor in saturation, no more linear relation between IC
and IB)
NPN Common Emitter circuit
Common Emitter characteristics
No current flows
Collector current
controlled by the
collector circuit.
(Switch behavior)
In full saturation
VCE=0.2V.
Collector current
proportional to
Base current
The avalanche
multiplication of
current through
collector junction
occurs: to be
avoided
Operation
Region
IB or VCE
Char.
BC and BE
Junctions
Mode
Cutoff IB = Very
small
Reverse &
Reverse
Open
Switch
Saturation VCE = Small Forward &
Forward
Closed
Switch
Active
Linear
VCE =
Moderate
Reverse &
Forward
Linear
Amplifier
Break-
down
VCE =
Large
Beyond
Limits
Overload
Operation region summary
BJT as Switch
•Vin(Low ) < 0.7 V
•BE junction not forward
biased
•Cutoff region
•No current flows
•Vout = VCE = Vcc
•Vout = High
•Vin(High)
•BE junction forward biased (VBE=0.7V)
•Saturation region
•VCE small (~0.2 V for saturated BJT)
•Vout = small
•IB = (Vin-VB)/RB
•Vout = Low
• Basis of digital logic circuits
• Input to transistor gate can be analog or digital
• Building blocks for TTL – Transistor Transistor Logic
• Guidelines for designing a transistor switch:
– VC>VB>VE
– VBE= 0.7 V
– IC independent from IB (in saturation).
– Min. IB estimated from by (IBminIC/).
– Input resistance such that IB > 5-10 times IBmin because 
varies among components, with temperature and voltage and RB
may change when current flows.
– Calculate the max IC and IB not to overcome device
specifications.
BJT as Switch 2
•Common emitter mode
•Linear Active Region
•Significant current Gain
Example:
•Let Gain,  = 100
•Assume to be in active
region -> VBE=0.7V
•Find if it’s in active
region
BJT as Amplifier
BJT as Amplifier
V
V
R
I
R
I
V
V
mA
I
I
mA
R
R
V
V
I
I
I
I
I
V
V
BE
E
E
C
C
CC
CB
B
C
E
B
BE
BB
B
B
C
B
E
BE
93
.
3
7
.
0
)
0107
.
0
*
101
)(
2
(
)
07
.
1
)(
3
(
10
*
*
07
.
1
0107
.
0
*
100
*
0107
.
0
402
7
.
0
5
101
*
)
1
(
7
.
0



























VCB>0 so the BJT is in
active region
References
• www.lucent.com
• http://transistors.globalspec.com
• http://www.kpsec.freeuk.com
• www.Howstuffworks.com
• www.allaboutcircuits.com
Thank u

More Related Content

Similar to Transistor basics applications and usages .ppt

prestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptx
prestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptxprestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptx
prestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptxShruthiShillu1
 
Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)Umer Tanvir
 
Basic electronics and electrical first year engineering
Basic electronics and electrical first year engineeringBasic electronics and electrical first year engineering
Basic electronics and electrical first year engineeringron181295
 
EST 130, Bipolar Junction Transistors
EST 130, Bipolar Junction TransistorsEST 130, Bipolar Junction Transistors
EST 130, Bipolar Junction TransistorsCKSunith1
 
Presentation on bipolar junction transistor
Presentation on bipolar junction transistorPresentation on bipolar junction transistor
Presentation on bipolar junction transistorKawsar Ahmed
 
Digital_Logic_Design-ch_1for engineering students .pptx
Digital_Logic_Design-ch_1for engineering students .pptxDigital_Logic_Design-ch_1for engineering students .pptx
Digital_Logic_Design-ch_1for engineering students .pptxAshutoshkumarXAROLLN
 
presentation_bjt_1450703927_25370.pptx
presentation_bjt_1450703927_25370.pptxpresentation_bjt_1450703927_25370.pptx
presentation_bjt_1450703927_25370.pptxGajananBhoir
 
Bipolar junction Transistor
Bipolar junction TransistorBipolar junction Transistor
Bipolar junction TransistorSelf employed
 
Transistors physics project
Transistors physics project Transistors physics project
Transistors physics project VishalShinde129
 
BJT Basic and Biasing-Abridged(1).pptx
BJT Basic and Biasing-Abridged(1).pptxBJT Basic and Biasing-Abridged(1).pptx
BJT Basic and Biasing-Abridged(1).pptxNimishDuggal1
 
Module II- Part 01.pptx
Module II- Part 01.pptxModule II- Part 01.pptx
Module II- Part 01.pptxssuseraaa4d6
 
PHY-Presentation.pptx
PHY-Presentation.pptxPHY-Presentation.pptx
PHY-Presentation.pptxMveTm
 
Transistors s07
Transistors s07Transistors s07
Transistors s07moontext
 
transistoranditsworkingprinciple-160427150207 (1) (1).pdf
transistoranditsworkingprinciple-160427150207 (1) (1).pdftransistoranditsworkingprinciple-160427150207 (1) (1).pdf
transistoranditsworkingprinciple-160427150207 (1) (1).pdfrahulreddy773814
 

Similar to Transistor basics applications and usages .ppt (20)

prestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptx
prestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptxprestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptx
prestationonbipolarjunciontransistor-151128084200-lva1-app6891.pptx
 
Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)
 
Introduction to bjt npn &amp;pnp
Introduction to bjt npn &amp;pnpIntroduction to bjt npn &amp;pnp
Introduction to bjt npn &amp;pnp
 
Introduction to bjt npn &pnp
Introduction to bjt npn &pnpIntroduction to bjt npn &pnp
Introduction to bjt npn &pnp
 
Basic electronics and electrical first year engineering
Basic electronics and electrical first year engineeringBasic electronics and electrical first year engineering
Basic electronics and electrical first year engineering
 
EST 130, Bipolar Junction Transistors
EST 130, Bipolar Junction TransistorsEST 130, Bipolar Junction Transistors
EST 130, Bipolar Junction Transistors
 
Presentation on bipolar junction transistor
Presentation on bipolar junction transistorPresentation on bipolar junction transistor
Presentation on bipolar junction transistor
 
Digital_Logic_Design-ch_1for engineering students .pptx
Digital_Logic_Design-ch_1for engineering students .pptxDigital_Logic_Design-ch_1for engineering students .pptx
Digital_Logic_Design-ch_1for engineering students .pptx
 
presentation_bjt_1450703927_25370.pptx
presentation_bjt_1450703927_25370.pptxpresentation_bjt_1450703927_25370.pptx
presentation_bjt_1450703927_25370.pptx
 
Chapter 4 bjt
Chapter 4 bjtChapter 4 bjt
Chapter 4 bjt
 
Bipolar junction Transistor
Bipolar junction TransistorBipolar junction Transistor
Bipolar junction Transistor
 
Chapter 4 bjt
Chapter 4 bjtChapter 4 bjt
Chapter 4 bjt
 
TRANSISTORS
TRANSISTORSTRANSISTORS
TRANSISTORS
 
Transistors physics project
Transistors physics project Transistors physics project
Transistors physics project
 
Transistors
TransistorsTransistors
Transistors
 
BJT Basic and Biasing-Abridged(1).pptx
BJT Basic and Biasing-Abridged(1).pptxBJT Basic and Biasing-Abridged(1).pptx
BJT Basic and Biasing-Abridged(1).pptx
 
Module II- Part 01.pptx
Module II- Part 01.pptxModule II- Part 01.pptx
Module II- Part 01.pptx
 
PHY-Presentation.pptx
PHY-Presentation.pptxPHY-Presentation.pptx
PHY-Presentation.pptx
 
Transistors s07
Transistors s07Transistors s07
Transistors s07
 
transistoranditsworkingprinciple-160427150207 (1) (1).pdf
transistoranditsworkingprinciple-160427150207 (1) (1).pdftransistoranditsworkingprinciple-160427150207 (1) (1).pdf
transistoranditsworkingprinciple-160427150207 (1) (1).pdf
 

Recently uploaded

Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Prakhyath Rai
 
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Lovely Professional University
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1T.D. Shashikala
 
Online book store management system project.pdf
Online book store management system project.pdfOnline book store management system project.pdf
Online book store management system project.pdfKamal Acharya
 
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringC Sai Kiran
 
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGBRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGKOUSTAV SARKAR
 
Object Oriented Programming OOP Lab Manual.docx
Object Oriented Programming OOP Lab Manual.docxObject Oriented Programming OOP Lab Manual.docx
Object Oriented Programming OOP Lab Manual.docxRashidFaridChishti
 
Construction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptxConstruction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptxwendy cai
 
BURGER ORDERING SYSYTEM PROJECT REPORT..pdf
BURGER ORDERING SYSYTEM PROJECT REPORT..pdfBURGER ORDERING SYSYTEM PROJECT REPORT..pdf
BURGER ORDERING SYSYTEM PROJECT REPORT..pdfKamal Acharya
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdfKamal Acharya
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfKamal Acharya
 
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdfDR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdfDrGurudutt
 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...Roi Lipman
 
Artificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian ReasoningArtificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian Reasoninghotman30312
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfKamal Acharya
 
solid state electronics ktu module 5 slides
solid state electronics ktu module 5 slidessolid state electronics ktu module 5 slides
solid state electronics ktu module 5 slidesARUN AV
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
Intelligent Agents, A discovery on How A Rational Agent Acts
Intelligent Agents, A discovery on How A Rational Agent ActsIntelligent Agents, A discovery on How A Rational Agent Acts
Intelligent Agents, A discovery on How A Rational Agent ActsSheetal Jain
 
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbineLow rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbineAftabkhan575376
 
ChatGPT Prompt Engineering for project managers.pdf
ChatGPT Prompt Engineering for project managers.pdfChatGPT Prompt Engineering for project managers.pdf
ChatGPT Prompt Engineering for project managers.pdfqasastareekh
 

Recently uploaded (20)

Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
 
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
Online book store management system project.pdf
Online book store management system project.pdfOnline book store management system project.pdf
Online book store management system project.pdf
 
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
 
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGBRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
 
Object Oriented Programming OOP Lab Manual.docx
Object Oriented Programming OOP Lab Manual.docxObject Oriented Programming OOP Lab Manual.docx
Object Oriented Programming OOP Lab Manual.docx
 
Construction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptxConstruction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptx
 
BURGER ORDERING SYSYTEM PROJECT REPORT..pdf
BURGER ORDERING SYSYTEM PROJECT REPORT..pdfBURGER ORDERING SYSYTEM PROJECT REPORT..pdf
BURGER ORDERING SYSYTEM PROJECT REPORT..pdf
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdf
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
 
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdfDR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
 
Artificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian ReasoningArtificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian Reasoning
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
 
solid state electronics ktu module 5 slides
solid state electronics ktu module 5 slidessolid state electronics ktu module 5 slides
solid state electronics ktu module 5 slides
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
Intelligent Agents, A discovery on How A Rational Agent Acts
Intelligent Agents, A discovery on How A Rational Agent ActsIntelligent Agents, A discovery on How A Rational Agent Acts
Intelligent Agents, A discovery on How A Rational Agent Acts
 
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbineLow rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
 
ChatGPT Prompt Engineering for project managers.pdf
ChatGPT Prompt Engineering for project managers.pdfChatGPT Prompt Engineering for project managers.pdf
ChatGPT Prompt Engineering for project managers.pdf
 

Transistor basics applications and usages .ppt

  • 2. Lecture Overview • What is a Transistor? • History • Types • Characteristics • Applications
  • 3. What is a Transistor? • Semiconductors: ability to change from conductor to insulator • Can either allow current or prohibit current to flow • Useful as a switch, but also as an amplifier • Essential part of many technological advances
  • 4. A Brief History • Guglielmo Marconi invents radio in 1895 • Problem: For long distance travel, signal must be amplified • Lee De Forest improves on Fleming’s original vacuum tube to amplify signals • Made use of third electrode • Too bulky for most applications
  • 5. The Transistor is Born • Bell Labs (1947): Bardeen, Brattain, and Shockley • Originally made of germanium • Current transistors made of doped silicon
  • 6. How Transistors Work • Doping: adding small amounts of other elements to create additional protons or electrons • P-Type: dopants lack a fourth valence electron (Boron, Aluminum) • N-Type: dopants have an additional (5th) valence electron (Phosphorus, Arsenic) • Importance: Current only flows from P to N
  • 7. Diodes and Bias • Diode: simple P-N junction. • Forward Bias: allows current to flow from P to N. • Reverse Bias: no current allowed to flow from N to P. • Breakdown Voltage: sufficient N to P voltage of a Zener Diode will allow for current to flow in this direction.
  • 8. • 3 adjacent regions of doped Si (each connected to a lead): – Base. (thin layer,less doped). – Collector. – Emitter. • 2 types of BJT: – npn. – pnp. • Most common: npn (focus on it). Bipolar Junction Transistor (BJT) npn bipolar junction transistor pnp bipolar junction transistor Developed by Shockley (1949)
  • 9. • 1 thin layer of p-type, sandwiched between 2 layers of n-type. • N-type of emitter: more heavily doped than collector. • With VC>VB>VE: – Base-Emitter junction forward biased, Base-Collector reverse biased. – Electrons diffuse from Emitter to Base (from n to p). – There’s a depletion layer on the Base-Collector junction no flow of e- allowed. – BUT the Base is thin and Emitter region is n+ (heavily doped)  electrons have enough momentum to cross the Base into the Collector. – The small base current IB controls a large current IC BJT NPN Transistor
  • 10. • Current Gain: – α is the fraction of electrons that diffuse across the narrow Base region – 1- α is the fraction of electrons that recombine with holes in the Base region to create base current • The current Gain is expressed in terms of the β (beta) of the transistor (often called hfe by manufacturers). • β (beta) is Temperature and Voltage dependent. • It can vary a lot among transistors (common values for signal BJT: 20 - 200). BJT characteristics            1 ) 1 ( B C E B E C I I I I I I
  • 11. • Emitter is grounded. • Base-Emitter starts to conduct with VBE=0.6V,IC flows and it’s IC=*IB. • Increasing IB, VBE slowly increases to 0.7V but IC rises exponentially. • As IC rises ,voltage drop across RC increases and VCE drops toward ground. (transistor in saturation, no more linear relation between IC and IB) NPN Common Emitter circuit
  • 12. Common Emitter characteristics No current flows Collector current controlled by the collector circuit. (Switch behavior) In full saturation VCE=0.2V. Collector current proportional to Base current The avalanche multiplication of current through collector junction occurs: to be avoided
  • 13. Operation Region IB or VCE Char. BC and BE Junctions Mode Cutoff IB = Very small Reverse & Reverse Open Switch Saturation VCE = Small Forward & Forward Closed Switch Active Linear VCE = Moderate Reverse & Forward Linear Amplifier Break- down VCE = Large Beyond Limits Overload Operation region summary
  • 14. BJT as Switch •Vin(Low ) < 0.7 V •BE junction not forward biased •Cutoff region •No current flows •Vout = VCE = Vcc •Vout = High •Vin(High) •BE junction forward biased (VBE=0.7V) •Saturation region •VCE small (~0.2 V for saturated BJT) •Vout = small •IB = (Vin-VB)/RB •Vout = Low
  • 15. • Basis of digital logic circuits • Input to transistor gate can be analog or digital • Building blocks for TTL – Transistor Transistor Logic • Guidelines for designing a transistor switch: – VC>VB>VE – VBE= 0.7 V – IC independent from IB (in saturation). – Min. IB estimated from by (IBminIC/). – Input resistance such that IB > 5-10 times IBmin because  varies among components, with temperature and voltage and RB may change when current flows. – Calculate the max IC and IB not to overcome device specifications. BJT as Switch 2
  • 16. •Common emitter mode •Linear Active Region •Significant current Gain Example: •Let Gain,  = 100 •Assume to be in active region -> VBE=0.7V •Find if it’s in active region BJT as Amplifier
  • 18. References • www.lucent.com • http://transistors.globalspec.com • http://www.kpsec.freeuk.com • www.Howstuffworks.com • www.allaboutcircuits.com Thank u