SlideShare a Scribd company logo
1 of 17
Physics 430: Lecture 6
Center of Mass, Angular
Momentum
Dale E. Gary
NJIT Physics Department
September 17, 2008
 We are now going to discuss the notion of center of mass, with which you
are certainly already familiar. Think of a system of N particles a = 1, …, N,
with masses ma and positions ra. The center of mass (or CM) is defined to
be the position
 Like any vector equation, this represents separate equations for each of the
components (X, Y, Z):
 You can think of the center of mass as a weighted average of the positions
of each mass element, i.e. weighted by the mass of that element, or
equivalently it is the vector sum of the ra, each multiplied by the fraction of
mass at that location.
 To get a feeling for CM, let’s look at the center of mass for a two particle
system, which might, for example, represent the Sun and Earth, or two
stars in orbit around each other.
3.3 Center of Mass
M
m
m
m
M
R N
N
N
r
r
r



 


1
1
1
1
a
a
a
.
1
,
1
,
1
1
1
1


 





N
N
N
z
m
M
Z
y
m
M
Y
x
m
M
X
a
a
a
a
a
a
a
a
a
September 17, 2008
 In this case, , which can be seen in the figure.
Center of Mass and Equation of Motion
2
1
2
2
1
1
1
1
m
m
m
m
m
M
R
N



 

r
r
r
a
a
a
CM
m1
m2
O
r1
r2
R
 It is easy to show that the distance of the CM from m1
and m2 is in the ratio m2/m1. The figure shows the case
where m1  4m2. In particular, if m1 >> m2, then the CM
will be very close to m1.
 Note that the time derivative of the center of mass for N particles is just the
CM velocity
so the momentum of an N-particle system is related to its CM by .
 Differentiating this expression, we get the very useful relation for the
equation of motion:
 This says that the CM of a collection of particles moves as if the external
forces on all of the individual particles were concentrated at the CM. This is
why we can treat extended objects (e.g. a baseball) as a point mass.

 



N
N
M
m
M 1
1
1
1
a
a
a
a
a p
r
R 

R
P 
M

R
F 

M

ext
September 17, 2008
 Although we developed the foregoing for a set of point particles, the result
obviously applies to extended objects by replacing the summation with an
integral, and treating infinitesimal parts of the object as having mass dm.
The CM expression then becomes
where the integral extends over the object.
 If you have a uniform extended object of total mass M, you may be given
the size or volume, from which you can determine the density, or
alternatively you may be given the density, from which you determine the
volume. In either case, the integral over the mass is replaced by an
integral over the volume
 Let’s do an example, the CM of a solid cone. You will have a chance to
practice this with a solid hemisphere, for homework.
Calculating the Center of Mass

 dm
M
R r
1

 dV
M
R r

1
September 17, 2008
 Solution:
 You should be able to see immediately from the symmetry
of the problem that the CM lies on the z axis. This greatly
simplifies the problem, since we can now concentrate only
on the z component. To find the height Z of the CM,
where the density   M/V can be brought outside the
integral because the cone is uniform, and we have
replaced dV with the cartesian element of volume dx dy dz.
Note that we have to do an integration over x, y and z,
despite the fact that this is only the z component.
 Statement of the problem:
 Find the CM position for the uniform solid cone shown in the figure.
Example 3.2: The CM of a Solid Cone

 
 dz
dy
dx
z
V
dV
z
M
Z
1
1

x
z
y
h
r=Rz/h
R
 If there is any trick to this, it is that we can do the x, y integrals in our head—the
area at a given height z is a circle of radius r = Rz/h, of area pr2 = pR2z2/h2. The
integral then becomes
where
h
h
Vh
R
dz
z
Vh
R
Z
4
3
4
4
2
2
3
2
2


 
p
p
3
2
h
R
V
p

September 17, 2008
 Solution:
 Although the text solves the problem as just shown, from the symmetry of the
problem it is a more natural choice to use cylindrical coordinates. The cylindrical
element of volume is dV = r dr df dz. (Convince yourself this is right.) The integral
is then
which then leads to the previous result.
 If you do not know the volume of a cone, the way to calculate it parallels the
above, but without the z:
Example 3.2: Cylindrical Coords
  
 
  





























2
2
2
/
0
2
0
1
2
1
1
1
h
z
R
zdz
V
rdr
zdz
V
d
rdr
zdz
V
dz
d
rdr
z
V
Z
h
Rz
p
p
f
f
p
 
3
2
2
0 2
2
2
/
0
2
0
h
R
h
z
R
dz
rdr
dz
d
rdr
dz
dz
d
rdr
dV
V
h
h
Rz p
p
p
f
f
p































 
  


September 17, 2008
 As you know, in addition to the law of conservation of momentum, there is
an independent but obviously related law of conservation of angular
momentum.
 The angular momentum of a single particle is defined as the vector
where I am forced to use the over-arrow because I cannot make the script
bold. Here r × p is the vector product of the particle’s position vector r,
relative to the chosen origin O, and its momentum p, as shown in the figure.
3.4 Angular Momentum for a Single
Particle
p
r







r
p=mv
p
r



into page
O
r 0


 p
r


 It is important to understand the implications of the
statement that the angular momentum is about the
origin O. In the figure at left, we can make the
angular momentum of the particle disappear by simply
shifting our origin. How can we define away a
conserved quantity like this?
 Just consider that angular momentum has little
meaning for a single particle, but when a second body
is included, shifting the origin affects that one, too.
September 17, 2008
 The time derivative of angular momentum is
but because , the first term is identically zero (the vector product of a
vector with itself is zero). In addition, we can replace the in the second
term with the net force F, and we then recognize the torque.
The text using the greek capital gamma for torque, and I will, too. Other
popular symbols are t and N.
 In many two-body problems one should choose the origin O so that the net
torque is zero. For example, a planet orbiting the Sun feels a gravitational
force F = GmM/r2 from the Sun. A hallmark of such motion is that the force
is central, i.e. is directed along the line between the two centers. Choosing
the origin at the Sun greatly simplifies the problem because this ensures
that there is no torque (r × F = 0), so the angular momentum r × p is
constant, from which we can immediately deduce that r and p must remain
in a fixed plane through the Sun. Let’s take a closer look at that problem.
Angular Momentum and Torque
p
r
p
r
p
r 










dt
d
r
p 
m

p




 F
r



September 17, 2008
 A well-known property of the vector product is that
two sides of a triangle are given by vectors a and b,
then the area is (see problem 3.24—this is
related to area = ½ base × height). Thus, the area of
triangle OPQ is .
 This can be rearranged to get:
which, since the angular
momentum implies that Kepler’s law holds.
 Kepler’s second law states that
 The situation is shown in the figure below, where we show two segments of
the orbit that I will approximate as triangles (the approximation becomes
exact in the limit as the width of the triangles goes to zero). Kepler’s 2nd law
is equivalent to saying that so long as the elapsed time dt for the planet to
go from P to Q is the same as for it to go from P’ to Q’, then the areas of
these two triangles must be equal. Equivalently, dA/dt = constant.
Kepler’s Second Law
b
a
 2
1
A
P
Q
P
Q
dA
dA
r
dr = vdt
As each planet moves around the Sun, a line drawn from the
planet to the Sun sweeps out equal areas in equal times.
dt
dA v
r
 2
1
m
m
dt
dA
2
2
1 


 p
r
constant


September 17, 2008
 We can extend these ideas to N particles, a = 1, 2, …, N, following very much
the same procedure as we did for momentum in lecture 1. Each particle has
angular momentum (with all ra measured from the same origin
O), so the total angular momentum is
 The time derivative of the total angular momentum is
where, exactly as before, the net force on particle a is
consisting of the inter-particle forces Fab, and the external force Fa
ext.
Substituting into the L-dot equation, we have
 As before, we use the fact that Fab = -Fba to replace the sum over ba with
one over b>a containing matching pairs, to get
3.5 Angular Momentum for N Particles
a
a
a p
r 



 

a
a
a F
r
L

 

a
a
a p
r
L




a
b
a
ab
a
ext
F
F
F

 



 a
a
a
a a
b
ab
a
ext
F
r
F
r
L

  
 


-

> a
a
a
a a
b
ab
b
a
ext
F
r
F
r
r
L

September 17, 2008
 In lecture 1, the paired terms canceled directly. This time, the first sum is
again zero, but for a different reason. Clearly ra – rb  0, but rather, we
assume that the inter-particle forces are central forces, so that the vector ra
– rb is aligned with the force Fab, so the cross-product is zero. So finally we
are left with the time derivative of total angular moment equal to the
externally applied torque
 In particular, if there are no applied torques, then L = constant, which leads
to
 The validity depends on two assumptions: the inter-particle forces are
central, and that they obey Newton’s third law. You can imagine a system
where the first of these is not true, but for nearly all cases the law holds.
Conservation of Angular Momentum
ext
ext



 
a
a
a F
r
L

If the net external torque ext on an N-particle system is zero,
the system’s total angular momentum L = S ra× pa is constant.
Principle of Conservation of Angular Momentum
September 17, 2008
 We will deal with (and extend) the idea of moment of inertia in Chapter 10.
However, you should be familiar with the basics from your Introductory
Physics course. In particular, you should recall that the angular momentum
about an axis of rotation (say the z axis) is
where I is the moment of inertia about the axis of rotation, and w is the
angular velocity.
 In your earlier course, you learned that the moment of inertia is known for a
few standard bodies (i.e. for a uniform sphere of mass M, radius R, the
moment of inertia through the center is I = 2/5 MR2).
 In general, for any multiparticle system, I = Smara
2, where ra is the distance
of mass ma from the axis of rotation. The moment of inertia for an
extended object, can be calculated by replacing the sum with an integral.
Moment of Inertia
w
I
Lz 
September 17, 2008
 Statement of the problem:
 A uniform circular turntable (mass M, radius R, center O, moment of inertia about O,
½ MR2) is at rest in the x, y plane and is mounted on a frictionless axle, which lies
along the vertical z axis. I throw a lump of putty (mass m) with speed v toward the
edge of the turntable so it approaches along a line that passes within a distance b of
O, as shown in the figure. When the putty hits the turntable, it sticks to the edge
and the two rotate together with angular velocity w. Find w.
 Solution:
 We use conservation of angular momentum. Since the turntable is not moving
initially, the initial angular momentum is that of the putty about O,
 After the putty sticks, the turntable starts to turn at some
unknown angular velocity, so that the angular momentum is
 Equating these two equations and solving for w, we have
Example 3.3: Collision of a Lump of
Putty with a Turntable
mvb
mvr
m
L ini
z 


 
sin
, v
r
 w
w 2
2
2
1
, mR
MR
I
L putty
tbl
fin
z 

 
b
r 
v
Location of
stuck putty
2
2
/ R
vb
M
m
m


w
September 17, 2008
 The foregoing derivation of was made under the (unstated) assumption
that Newton’s second law F = ma holds, but recall that this is only valid in an
inertial (non-accelerating) reference frame. We can state that holds for
any origin O only for inertial reference frames.
 We will see in Chapter 10, but state it now without proof, that the law holds
even in accelerating (non-inertial) frames as long as the origin is about the CM
of the system, even when the CM is undergoing acceleration.
 Stated another way, if ext(about CM) = 0 then L(about CM) is conserved. You
can show this yourself with the guidance of Prob. 3.37 of the text, if you are
curious.
 This result shows the special nature of the CM.
Special Case: Angular Momentum
About CM
ext


L

ext


L

CM)
(about
CM)
(about ext


L
dt
d
September 17, 2008
 Statement of the problem:
 A barbell consisting of two equal masses m mounted on the ends of a rigid massless
rod of length 2b is at rest on a frictionless horizontal table, lying on the x axis and
centered on the origin, as shown in the figure. At time t = 0, the left mass is given a
sharp tap, in the shape of a horizontal force F in the y direction, lasting for a short
time Dt. Describe the subsequent motion.
 Solution:
 The type of force described is called an impulse. When dealing with such a force, we
want to focus on the change in momentum due to the force, rather than the force
itself. Since , the momentum after the force acts is
(this is actually the change in momentum, DP, but
the momentum before the impulse is zero).
 It is important to recognize that this impulse does two things.
It provides momentum to the CM, but at the same time, since
it is off-center, it also provides a torque. We need to calculate
both.
 The CM relation is easy: vCM = FextDt / 2m. Since Fext is in the +y direction, vCM is too.
Example 3.4: A Sliding and Spinning
Barbell
ext
F
P 

2b
F
y
x
t
D
 ext
F
P
September 17, 2008
 Solution, cont’d:
 The rotational motion due to the torque is found using the methods of the chapter.
The torque is going to cause a change in angular momentum,
with magnitude ext = Fb. Using the same approach as before to deal with the fact
that the force is an impulse, we find the angular momentum after the impulse is
 The moment of inertia of the dumbbell is easily calculated (since the rod is massless)
as I = 2mb2, since each mass can be considered a point mass, and each contributes
mb2 to the moment of inertia. Solving for the angular velocity:
 Note that just after the impulse, the velocity of the left mass
is vleft = vcm + wb = FDt/m, while the velocity of the right hand
mass is vright = vcm – wb = 0.
 The subsequent motion is straightforward. The CM moves straight up the y axis
while the barbell continues to rotate at angular velocity w.
Example 3.4, cont’d
ext


L

2b
vcm
y
x
w
I
t
Fb
t
Lz 
D

D


 ext
L
mb
t
F
mb
t
Fb
2
2 2
D

D

w
wb
September 17, 2008
 Remarks:
 It always bothered me that if the same impulsive force were applied on the bar
between the two masses, i.e. at the CM, the barbell would move at the SAME speed
we just calculated for the CM, but without rotation.
 From energy considerations, it seems that applying the same force in two locations
imparts DIFFERENT amounts of energy to the barbell. It always seemed to me that
the energy should be the same in the two situations, if the force is the same.
Hopefully this gives you the same sense of unease.
 After more thought, however, one can understand the difference. Recall that work
(energy) is force through a distance. We are given the force, but what about the
distance over which it acts? In the case of hitting the barbell at the CM, the force
acts for a time Dt on the barbell moving at speed vCM, so the distance is s = vCM Dt. In
the case of this problem, where we hit the left mass, at a location a distance b from
the CM, the left mass moves at speed 2vCM (check it), so the force acts through a
distance s = 2vCM Dt. It is this difference that accounts for the difference in energy.
 If you really want to be confused, however, think about the case where the impulse
force is due to a lump of putty that sticks to the barbell. The putty has the same
energy in both cases, but the putty plus barbell energy is different depending on
where the putty lands. What the… (There is an explanation—can you find it?)
Example 3.4, Further Remarks

More Related Content

Similar to physics430_lecture06. center of mass, angular momentum

Finite element method
Finite element methodFinite element method
Finite element methodMevada Maulik
 
centroid and centre of gravity...
centroid and centre of gravity...centroid and centre of gravity...
centroid and centre of gravity...Mihir Dixit
 
Retarded potential
Retarded potentialRetarded potential
Retarded potentialSVBIT
 
Resume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela Shufa
Resume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela ShufaResume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela Shufa
Resume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela ShufaNurul Shufa
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxBrijeshMishra525980
 
Measurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docxMeasurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docxendawalling
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativityMuhammad Ishaq
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
8- Center of Gravity and Centroid.pdf
8- Center of Gravity and Centroid.pdf8- Center of Gravity and Centroid.pdf
8- Center of Gravity and Centroid.pdfYusfarijerjis
 
Mathematical application That have an wide range impact On issue such as s...
Mathematical   application That have an  wide range impact On issue such as s...Mathematical   application That have an  wide range impact On issue such as s...
Mathematical application That have an wide range impact On issue such as s...puchson
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinFredy Mojica
 
Driven Oscillation
Driven Oscillation Driven Oscillation
Driven Oscillation Shahzu2
 

Similar to physics430_lecture06. center of mass, angular momentum (20)

Finite element method
Finite element methodFinite element method
Finite element method
 
PART X.1 - Superstring Theory
PART X.1 - Superstring TheoryPART X.1 - Superstring Theory
PART X.1 - Superstring Theory
 
centroid and centre of gravity...
centroid and centre of gravity...centroid and centre of gravity...
centroid and centre of gravity...
 
Retarded potential
Retarded potentialRetarded potential
Retarded potential
 
5460 chap1 2
5460 chap1 25460 chap1 2
5460 chap1 2
 
Resume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela Shufa
Resume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela ShufaResume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela Shufa
Resume Mekanika 2 bab lagrangian - Fisika UNNES Nurul Faela Shufa
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptx
 
PART II.1 - Modern Physics
PART II.1 - Modern PhysicsPART II.1 - Modern Physics
PART II.1 - Modern Physics
 
Measurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docxMeasurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docx
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativity
 
gravitywaves
gravitywavesgravitywaves
gravitywaves
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum Electrodynamics
 
8- Center of Gravity and Centroid.pdf
8- Center of Gravity and Centroid.pdf8- Center of Gravity and Centroid.pdf
8- Center of Gravity and Centroid.pdf
 
SoCG14
SoCG14SoCG14
SoCG14
 
Mathematical application That have an wide range impact On issue such as s...
Mathematical   application That have an  wide range impact On issue such as s...Mathematical   application That have an  wide range impact On issue such as s...
Mathematical application That have an wide range impact On issue such as s...
 
Gold1
Gold1Gold1
Gold1
 
Gold1
Gold1Gold1
Gold1
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
 
Driven Oscillation
Driven Oscillation Driven Oscillation
Driven Oscillation
 
Wave mechanics, 8(4)
Wave mechanics,  8(4) Wave mechanics,  8(4)
Wave mechanics, 8(4)
 

Recently uploaded

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 

Recently uploaded (20)

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 

physics430_lecture06. center of mass, angular momentum

  • 1. Physics 430: Lecture 6 Center of Mass, Angular Momentum Dale E. Gary NJIT Physics Department
  • 2. September 17, 2008  We are now going to discuss the notion of center of mass, with which you are certainly already familiar. Think of a system of N particles a = 1, …, N, with masses ma and positions ra. The center of mass (or CM) is defined to be the position  Like any vector equation, this represents separate equations for each of the components (X, Y, Z):  You can think of the center of mass as a weighted average of the positions of each mass element, i.e. weighted by the mass of that element, or equivalently it is the vector sum of the ra, each multiplied by the fraction of mass at that location.  To get a feeling for CM, let’s look at the center of mass for a two particle system, which might, for example, represent the Sun and Earth, or two stars in orbit around each other. 3.3 Center of Mass M m m m M R N N N r r r        1 1 1 1 a a a . 1 , 1 , 1 1 1 1          N N N z m M Z y m M Y x m M X a a a a a a a a a
  • 3. September 17, 2008  In this case, , which can be seen in the figure. Center of Mass and Equation of Motion 2 1 2 2 1 1 1 1 m m m m m M R N       r r r a a a CM m1 m2 O r1 r2 R  It is easy to show that the distance of the CM from m1 and m2 is in the ratio m2/m1. The figure shows the case where m1  4m2. In particular, if m1 >> m2, then the CM will be very close to m1.  Note that the time derivative of the center of mass for N particles is just the CM velocity so the momentum of an N-particle system is related to its CM by .  Differentiating this expression, we get the very useful relation for the equation of motion:  This says that the CM of a collection of particles moves as if the external forces on all of the individual particles were concentrated at the CM. This is why we can treat extended objects (e.g. a baseball) as a point mass.       N N M m M 1 1 1 1 a a a a a p r R   R P  M  R F   M  ext
  • 4. September 17, 2008  Although we developed the foregoing for a set of point particles, the result obviously applies to extended objects by replacing the summation with an integral, and treating infinitesimal parts of the object as having mass dm. The CM expression then becomes where the integral extends over the object.  If you have a uniform extended object of total mass M, you may be given the size or volume, from which you can determine the density, or alternatively you may be given the density, from which you determine the volume. In either case, the integral over the mass is replaced by an integral over the volume  Let’s do an example, the CM of a solid cone. You will have a chance to practice this with a solid hemisphere, for homework. Calculating the Center of Mass   dm M R r 1   dV M R r  1
  • 5. September 17, 2008  Solution:  You should be able to see immediately from the symmetry of the problem that the CM lies on the z axis. This greatly simplifies the problem, since we can now concentrate only on the z component. To find the height Z of the CM, where the density   M/V can be brought outside the integral because the cone is uniform, and we have replaced dV with the cartesian element of volume dx dy dz. Note that we have to do an integration over x, y and z, despite the fact that this is only the z component.  Statement of the problem:  Find the CM position for the uniform solid cone shown in the figure. Example 3.2: The CM of a Solid Cone     dz dy dx z V dV z M Z 1 1  x z y h r=Rz/h R  If there is any trick to this, it is that we can do the x, y integrals in our head—the area at a given height z is a circle of radius r = Rz/h, of area pr2 = pR2z2/h2. The integral then becomes where h h Vh R dz z Vh R Z 4 3 4 4 2 2 3 2 2     p p 3 2 h R V p 
  • 6. September 17, 2008  Solution:  Although the text solves the problem as just shown, from the symmetry of the problem it is a more natural choice to use cylindrical coordinates. The cylindrical element of volume is dV = r dr df dz. (Convince yourself this is right.) The integral is then which then leads to the previous result.  If you do not know the volume of a cone, the way to calculate it parallels the above, but without the z: Example 3.2: Cylindrical Coords                                      2 2 2 / 0 2 0 1 2 1 1 1 h z R zdz V rdr zdz V d rdr zdz V dz d rdr z V Z h Rz p p f f p   3 2 2 0 2 2 2 / 0 2 0 h R h z R dz rdr dz d rdr dz dz d rdr dV V h h Rz p p p f f p                                      
  • 7. September 17, 2008  As you know, in addition to the law of conservation of momentum, there is an independent but obviously related law of conservation of angular momentum.  The angular momentum of a single particle is defined as the vector where I am forced to use the over-arrow because I cannot make the script bold. Here r × p is the vector product of the particle’s position vector r, relative to the chosen origin O, and its momentum p, as shown in the figure. 3.4 Angular Momentum for a Single Particle p r        r p=mv p r    into page O r 0    p r    It is important to understand the implications of the statement that the angular momentum is about the origin O. In the figure at left, we can make the angular momentum of the particle disappear by simply shifting our origin. How can we define away a conserved quantity like this?  Just consider that angular momentum has little meaning for a single particle, but when a second body is included, shifting the origin affects that one, too.
  • 8. September 17, 2008  The time derivative of angular momentum is but because , the first term is identically zero (the vector product of a vector with itself is zero). In addition, we can replace the in the second term with the net force F, and we then recognize the torque. The text using the greek capital gamma for torque, and I will, too. Other popular symbols are t and N.  In many two-body problems one should choose the origin O so that the net torque is zero. For example, a planet orbiting the Sun feels a gravitational force F = GmM/r2 from the Sun. A hallmark of such motion is that the force is central, i.e. is directed along the line between the two centers. Choosing the origin at the Sun greatly simplifies the problem because this ensures that there is no torque (r × F = 0), so the angular momentum r × p is constant, from which we can immediately deduce that r and p must remain in a fixed plane through the Sun. Let’s take a closer look at that problem. Angular Momentum and Torque p r p r p r            dt d r p  m  p      F r   
  • 9. September 17, 2008  A well-known property of the vector product is that two sides of a triangle are given by vectors a and b, then the area is (see problem 3.24—this is related to area = ½ base × height). Thus, the area of triangle OPQ is .  This can be rearranged to get: which, since the angular momentum implies that Kepler’s law holds.  Kepler’s second law states that  The situation is shown in the figure below, where we show two segments of the orbit that I will approximate as triangles (the approximation becomes exact in the limit as the width of the triangles goes to zero). Kepler’s 2nd law is equivalent to saying that so long as the elapsed time dt for the planet to go from P to Q is the same as for it to go from P’ to Q’, then the areas of these two triangles must be equal. Equivalently, dA/dt = constant. Kepler’s Second Law b a  2 1 A P Q P Q dA dA r dr = vdt As each planet moves around the Sun, a line drawn from the planet to the Sun sweeps out equal areas in equal times. dt dA v r  2 1 m m dt dA 2 2 1     p r constant  
  • 10. September 17, 2008  We can extend these ideas to N particles, a = 1, 2, …, N, following very much the same procedure as we did for momentum in lecture 1. Each particle has angular momentum (with all ra measured from the same origin O), so the total angular momentum is  The time derivative of the total angular momentum is where, exactly as before, the net force on particle a is consisting of the inter-particle forces Fab, and the external force Fa ext. Substituting into the L-dot equation, we have  As before, we use the fact that Fab = -Fba to replace the sum over ba with one over b>a containing matching pairs, to get 3.5 Angular Momentum for N Particles a a a p r        a a a F r L     a a a p r L     a b a ab a ext F F F        a a a a a b ab a ext F r F r L         -  > a a a a a b ab b a ext F r F r r L 
  • 11. September 17, 2008  In lecture 1, the paired terms canceled directly. This time, the first sum is again zero, but for a different reason. Clearly ra – rb  0, but rather, we assume that the inter-particle forces are central forces, so that the vector ra – rb is aligned with the force Fab, so the cross-product is zero. So finally we are left with the time derivative of total angular moment equal to the externally applied torque  In particular, if there are no applied torques, then L = constant, which leads to  The validity depends on two assumptions: the inter-particle forces are central, and that they obey Newton’s third law. You can imagine a system where the first of these is not true, but for nearly all cases the law holds. Conservation of Angular Momentum ext ext      a a a F r L  If the net external torque ext on an N-particle system is zero, the system’s total angular momentum L = S ra× pa is constant. Principle of Conservation of Angular Momentum
  • 12. September 17, 2008  We will deal with (and extend) the idea of moment of inertia in Chapter 10. However, you should be familiar with the basics from your Introductory Physics course. In particular, you should recall that the angular momentum about an axis of rotation (say the z axis) is where I is the moment of inertia about the axis of rotation, and w is the angular velocity.  In your earlier course, you learned that the moment of inertia is known for a few standard bodies (i.e. for a uniform sphere of mass M, radius R, the moment of inertia through the center is I = 2/5 MR2).  In general, for any multiparticle system, I = Smara 2, where ra is the distance of mass ma from the axis of rotation. The moment of inertia for an extended object, can be calculated by replacing the sum with an integral. Moment of Inertia w I Lz 
  • 13. September 17, 2008  Statement of the problem:  A uniform circular turntable (mass M, radius R, center O, moment of inertia about O, ½ MR2) is at rest in the x, y plane and is mounted on a frictionless axle, which lies along the vertical z axis. I throw a lump of putty (mass m) with speed v toward the edge of the turntable so it approaches along a line that passes within a distance b of O, as shown in the figure. When the putty hits the turntable, it sticks to the edge and the two rotate together with angular velocity w. Find w.  Solution:  We use conservation of angular momentum. Since the turntable is not moving initially, the initial angular momentum is that of the putty about O,  After the putty sticks, the turntable starts to turn at some unknown angular velocity, so that the angular momentum is  Equating these two equations and solving for w, we have Example 3.3: Collision of a Lump of Putty with a Turntable mvb mvr m L ini z      sin , v r  w w 2 2 2 1 , mR MR I L putty tbl fin z     b r  v Location of stuck putty 2 2 / R vb M m m   w
  • 14. September 17, 2008  The foregoing derivation of was made under the (unstated) assumption that Newton’s second law F = ma holds, but recall that this is only valid in an inertial (non-accelerating) reference frame. We can state that holds for any origin O only for inertial reference frames.  We will see in Chapter 10, but state it now without proof, that the law holds even in accelerating (non-inertial) frames as long as the origin is about the CM of the system, even when the CM is undergoing acceleration.  Stated another way, if ext(about CM) = 0 then L(about CM) is conserved. You can show this yourself with the guidance of Prob. 3.37 of the text, if you are curious.  This result shows the special nature of the CM. Special Case: Angular Momentum About CM ext   L  ext   L  CM) (about CM) (about ext   L dt d
  • 15. September 17, 2008  Statement of the problem:  A barbell consisting of two equal masses m mounted on the ends of a rigid massless rod of length 2b is at rest on a frictionless horizontal table, lying on the x axis and centered on the origin, as shown in the figure. At time t = 0, the left mass is given a sharp tap, in the shape of a horizontal force F in the y direction, lasting for a short time Dt. Describe the subsequent motion.  Solution:  The type of force described is called an impulse. When dealing with such a force, we want to focus on the change in momentum due to the force, rather than the force itself. Since , the momentum after the force acts is (this is actually the change in momentum, DP, but the momentum before the impulse is zero).  It is important to recognize that this impulse does two things. It provides momentum to the CM, but at the same time, since it is off-center, it also provides a torque. We need to calculate both.  The CM relation is easy: vCM = FextDt / 2m. Since Fext is in the +y direction, vCM is too. Example 3.4: A Sliding and Spinning Barbell ext F P   2b F y x t D  ext F P
  • 16. September 17, 2008  Solution, cont’d:  The rotational motion due to the torque is found using the methods of the chapter. The torque is going to cause a change in angular momentum, with magnitude ext = Fb. Using the same approach as before to deal with the fact that the force is an impulse, we find the angular momentum after the impulse is  The moment of inertia of the dumbbell is easily calculated (since the rod is massless) as I = 2mb2, since each mass can be considered a point mass, and each contributes mb2 to the moment of inertia. Solving for the angular velocity:  Note that just after the impulse, the velocity of the left mass is vleft = vcm + wb = FDt/m, while the velocity of the right hand mass is vright = vcm – wb = 0.  The subsequent motion is straightforward. The CM moves straight up the y axis while the barbell continues to rotate at angular velocity w. Example 3.4, cont’d ext   L  2b vcm y x w I t Fb t Lz  D  D    ext L mb t F mb t Fb 2 2 2 D  D  w wb
  • 17. September 17, 2008  Remarks:  It always bothered me that if the same impulsive force were applied on the bar between the two masses, i.e. at the CM, the barbell would move at the SAME speed we just calculated for the CM, but without rotation.  From energy considerations, it seems that applying the same force in two locations imparts DIFFERENT amounts of energy to the barbell. It always seemed to me that the energy should be the same in the two situations, if the force is the same. Hopefully this gives you the same sense of unease.  After more thought, however, one can understand the difference. Recall that work (energy) is force through a distance. We are given the force, but what about the distance over which it acts? In the case of hitting the barbell at the CM, the force acts for a time Dt on the barbell moving at speed vCM, so the distance is s = vCM Dt. In the case of this problem, where we hit the left mass, at a location a distance b from the CM, the left mass moves at speed 2vCM (check it), so the force acts through a distance s = 2vCM Dt. It is this difference that accounts for the difference in energy.  If you really want to be confused, however, think about the case where the impulse force is due to a lump of putty that sticks to the barbell. The putty has the same energy in both cases, but the putty plus barbell energy is different depending on where the putty lands. What the… (There is an explanation—can you find it?) Example 3.4, Further Remarks