SlideShare a Scribd company logo
1 of 77
Republic of the Philippines
Department of Education
PUBLIC TECHNICAL-VOCATIONAL
HIGH SCHOOLS
Unit of Competency: FUNDAMENTALS OF ELECTRICITY
Module No.: 1 Module Title: BASIC ELECTRICITY
ACKNOWLEDGMENT
Copyright Department of Education 2008
First Published JUNE 2008
This draft was prepared during the Competency-Based Learning Materials
Development Workshop conducted at the Marikina Hotel, Marikina City on
February 18-22, 2008 and finalized on May 23-25, 2008 at the Development
Academy of the Philippines (DAP), Tagaytay City.
This learning instrument was developed by the following personnel:
Technology Teacher:
Mr. Lyndon L. Catequista
Marcelo I. Cabrera Vocational High School
San Aquilino, Roxas, Oriental Mindoro
Contextual Teacher:
Ms. Gina C. delos Santos
A.F.G. Bernardino Memorial Trade School
Lias, Marilao, Bulacan
Facilitators:
Dr. Corazon Echano
TechVoc Task Force
Encoder:
Mr. Lemuel C. Valles
Administrative Officer II
Educational Information Division
Fund: Department of Education
REFERENCES AND FURTHER READING
1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana
Publishing: 1999.
2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National
Bookstore: 1991.
3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd
Edition.
4. Cardenas, Elpidio J . Fundamental and Elements of Electricity.
TABLE OF CONTENTS
Page
How to Use this Module ......................................................................................... i
Introduction.......................................................................................................... ii
Technical Terms................................................................................................... iii
Learning Outcome 1: Apply relevant electrical theories and principles … … … … … … 1
 Learning Experiences/Activities .................................................................. 2
 Information Sheet 1.1 ................................................................................. 3
 Self-Check 1.1............................................................................................. 6
 Activity Sheet 1.1 ........................................................................................ 8
Learning Outcome 2: Identify sources of electricity ……….……………....................10
 Learning Experiences/Activities ................................................................ 11
 Information Sheet 2.1 ............................................................................... 12
 Self-Check 2.1........................................................................................... 16
 Activity Sheet 2.1 ...................................................................................... 18
Learning Outcome 3: Perform taps, splices and joints on electrical
c o n d u c t o r s … … … … … … … … … … … … … … … … … … … … … … … … . . . . . . . . . . . . . . . . . . . . 19
 Learning Experiences/Activities ................................................................ 20
 Information Sheet 3.1 ............................................................................... 22
 Self-Check 3.1........................................................................................... 26
 Operation Sheet 3.1 .................................................................................. 27
 Operation Sheet 3.2 .................................................................................. 28
 Job Sheet 3.1 ............................................................................................ 30
Learning Outcome 4: Connect electrical circuit … … … … … … … … … … … … … … … … . . 3 2
 Learning Experiences/Activities ................................................................ 33
 Information Sheet 4.1 ............................................................................... 34
 Self-Check 4.1........................................................................................... 36
 Information Sheet 4.2 ............................................................................... 37
 Self-Check 4.2........................................................................................... 38
 Activity Sheet 4.1 ...................................................................................... 39
 Activity Sheet 4.2 ...................................................................................... 41
Learning Outcome 5: Identify resistor … . . . . . … … … … … … … … … … … … … … … … … … . . 4 3
 Learning Experiences/Activities ................................................................ 44
 Information Sheet 5.1 ............................................................................... 45
 Self-Check 5.1........................................................................................... 51
 Activity Sheet 5.1 ...................................................................................... 52
 Job Sheet 5.1 ............................................................................................ 53
Learning Outcome 6: Identify capacitors and convert capacitor value…..…………..56
 Learning Experiences/Activities ................................................................ 57
 Information Sheet 6.1 ............................................................................... 58
 Self-Check 6.1........................................................................................... 62
 Activity Sheet 6.1 ...................................................................................... 63
Answer Key 1.1 ................................................................................................... 64
Answer Key 2.1 ................................................................................................... 65
Answer Key 3.1 ................................................................................................... 67
Answer Key 4.1 ................................................................................................... 68
Answer Key 4.2 ................................................................................................... 69
Answer Key 5.1 ................................................................................................... 70
Answer Key 6.1 ................................................................................................... 71
i
HOW TO USE THIS MODULE
Welcome to the Module “Basic Electricity”. This module contains
training materials and activities for you to complete.
The unit of competency “Fundamentals of Electricity” contains the
knowledge, skills and desirable attitude required for Building Wiring
Installation course National Certificate (NC) Level II.
You are required to go through a series of learning activities in order to
complete each of the learning outcomes of the module. In each learning outcome
there are Information Sheets, Job Sheets, Operation Sheets and Activity
Sheets. Do these activities on your own and answer the Self-Check at the end of
each learning activity.
If you have questions, do not hesitate to ask your teacher for assistance.
Recognition of Prior Learning (RPL)
You may already have some or most of the knowledge and skills covered
in this module. If you can demonstrate competence to your teacher in a
particular skill, talk to your teacher so you do not have to undergo the same
training again. If you have a qualification or Certificate of Competency from
previous trainings, show it to him/her. If the skills you acquired are consistent
with and relevant to this module, they become part of the evidence. You can
present these for RPL. If you are not sure about your competence / skills,
discuss this with your teacher.
After completing this module ask your teacher to assess your competence.
Result of your assessment will be recorded in your competency profile. All the
learning activities are designed for you to complete at your own pace.
In this module, you will find the activities for you to complete and relevant
information sheets for each learning outcome. Each learning outcome may have
more than one learning activity.
This module is prepared to help you achieve the required competency in
receiving and relaying information. This will be the source of information that
will enable you to acquire the knowledge and skills in Building Wiring
Installation NC II independently at your own pace or with minimum supervision
or help from your teacher.
ii
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTICITY
Module Title: Basic Electricity
INTRODUCTION:
This module contains information and suggested learning activities on the
fundamental and elements of electricity. It includes instruction and procedure
on basic electricity.
This module consists of six (6) learning outcomes. Each learning outcome
contains learning activities supported by instruction sheets. Before you perform
the instruction sheets, read the information sheets and answer the self-check
and activities provided to ascertain to yourself and your teacher. He /she will
check if you have acquired the knowledge necessary to perform the skill portion
of the particular learning outcome.
Upon completing this module, report to your teacher to assess your
performance. If you pass the assessment, you will be given a certificate of
completion.
SUMMARY OF LEARNING OUTCOMES:
Upon completion of the module, you should be able to:
LO 1.
LO 2.
LO 3.
LO 4.
LO 5.
LO 6.
apply relevant electrical theories and principles;
identify sources of electricity;
perform taps, splices and joints on electrical conductor;
connect electrical circuits;
identify resistor; and
identify capacitors and convert capacitor value.
ASSESSMENT CRITERIA:
Refer to the assessment criteria of learning outcomes # 1-4 of this module.
PREREQUISITE:
None
iii
TECHNICAL TERMS
Ampere is the standard unit used in measuring the strength of an electric
current.
Atom is the smallest particle of molecule in which an element can be divided.
Current is the flow or the rate of the flow of electric force in a conductor.
Electricity is a form of energy generated by friction, induction or chemical
change.
Electron has a magnetic, chemical and radiant effect. It is also the negatively
charged particle of an atom.
Joint is a process whereby one length of wire is connected or tapped together.
Neutron is the particle of an atom which do not carry electrically charged.
Nick is a slight cut on wire.
Ohms is the unit of electrical resistance.
Power is the rate at which heat is generated.
Proton is the positively charged particle of an atom.
Resistance is the opposition to the flow of current.
Skinning /Stripping is a process of removing wire insulation.
Solder is a fusible metal or alloy used for joining metallic surfaces or margins
Splice is termed “straight joint”; a series connection of a pair of conductor or
cables.
Taping is the method of insulating conductor joints.
Taps is the connection of one wire to some along the run of another wire
Volt is the unit of measure for voltage.
Voltage is the electrical pressure that causes the electrons to move through a
conductor.
Wire stripper is a tool used to cut and remove wire insulation from wire.
1
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTICITY
Module Title: Basic Electricity
Learning Outcome 1: Apply relevant electrical theories and principles
Assessment Criteria:
1. The principles and theories of electron are applied when dealing with
electrical works.
2. The atomic structure is illustrated.
References:
1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana
Publishing: 1999.
2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National
Bookstore: 1991.
3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd
Edition.
4. Cardenas, Elpidio J . Fundamental and Elements of Electricity.
2
LEARNING EXPERIENCES/ACTIVITIES
Learning Outcome 1: Apply relevant electrical theories and principles
Learning Activities Special Instruction
1. Read Information Sheet 1.1 about
the relevant electrical theories and
principles.
2. Perform the Activity Sheet 1.1 on a
separate sheet of paper.
Answer Self-Check 1.1.
INFORMATION SHEET 1.1
PRINCIPLES AND THEORIES OF ELECTRON
Electricity is a property of the basic particle of matter which, like an atom,
consists of proton, electron and neutron. The electron is the negatively charged
particle of an atom which is sometimes referred to as the negatively charge of
electricity. On the other hand, the proton is the positively charged particle of an
atom which is sometimes referred to as the positively charge of electricity that
weighs about 1850 times as much as the electron. The neutron is the particle
which is not electrically charged and weighs slightly more than proton.
Molecular theory
1. All matters are made up of molecules.
2. All molecules are made up of atoms.
3. All the atoms contain neutron, electrons and protons.
5. The entire neutron is neutral, hence, neither positively nor negatively
charged.
6. The electron of an atom of any substance could be transferred to another
atom.
The electron theory
The electron theory states that all matter is made up of electricity. Matter is
anything which has weight, occupies space is made up of molecules, of which
millions of different kinds. The molecules in turn, are made up of atoms of
which are the smallest units of the several elements and of a limited number.
All atoms believed to be composed of electrons, which are minute particle of
negative electricity normally held in place in each atom by positively charged
particles called nucleus. Thus, the electron, which are interlocked in the atoms,
are constantly revealing at great speeds in orbits around positive nuclei. In a
normal atom, the amount of negative electricity of the electrons is exactly
neutralized by an equal amount of opposite or positive electricity of the nucleus.
Thus, a normal atom exhibits no external sign of electrification.
Structure of an atom
All atoms consist of two basic parts: a
body at the center of the atom called the
nucleus, orbiting around the nucleus.
Atoms may have more than one orbiting
electron, but each atom contains only one
nucleus.
Electron
Nucleus
3
The attraction between the nucleus and
the electron is called electrostatic force,
which holds the electron in an orbit.
Bodies that attract each other in this
special electrostatic way are described as
charged object. The electron carries the
negative charge (-), while the nucleus
carries the positive charge (+).
The positive charge of the nucleus is
due to the particles called protons which
are found inside the nucleus and have a
positive charge equal to the electron’s
negative charge.
The structure of neutrons in the atoms showing the position of its proton,
electron, nucleus and neutron is shown below.
Nucleus
Electron
Electron force
holds the
electron orbit.
Proton
Electron
Nucleus
4
First Law of Electrostatics
The protons and electrons attract each other inside the atom. It has been
known that by nature, unlike charges (like the positive protons and negative
electrons) attract each other while like charges repel each other; meaning,
electrons and protons repel each other’s protons.
Like charges repel each other
5
Unlike charges attract each other
SELF-CHECK 1.1
I. Directions: Read the following sentences carefully. Write the letter of
your answer on a separate sheet of paper.
1. The same electrical charge each other.
A. attracts B. repel C. destroy
2. It is neither positively nor negatively charge.
A. electron in motion
B. electrostatic force
C. neutron
D. atom
D. neutralize
3. It is the equal number of electron and proton in an atom.
A. positive B. negative C. neutral D. none of the above
4. The electron theory states that all matter is made of .
A. neutron B. atom C. electron D. molecules
5. It is the smallest particle of molecule.
A. ion B. proton C. electron D. atom
II. Directions: Read each question below then, choose the correct answer.
Write your answer on a separate sheet of paper.
1. What is the nature of matter?
2. How will you prove that electricity is a matter?
3. What is molecule made up?
4. What is the neutral particle of an atom?
neutron
atom
6
molecule
occupies space
has weight
III. Directions: Read each question carefully. Choose the letter of the
correct answer in the box below. Write your answer on a separate
answer sheet.
1. What is found at the center body of an atom?
2. What do you call the attraction between the nucleus and the electron?
3. What do you call the positively charged particle of an atom?
4. What do you call the negatively charged particle of an atom?
5. What particle of an atom is not electrically charged?
A-Electron
B-neutron
C-proton
7
D-proton
E-nucleus
F-electrostatic force
ACTIVITY SHEET 1.1
Attraction by a charge object
Supplies and Materials
 Comb
 Small pieces of paper
 Dry woolen cloth
 Ballon
 Wall
 Dry fine sand
Working Drawing
8
COMB
Procedure
BALLON
1. Put the tip of your comb near the small pieces of paper. What happened?
2. Rub your comb briskly with a dry woolen cloth.
3. Put again the tip of your comb towards some tiny pieces of paper. What happened
to the tiny pieces of paper? Compare your observation with the second step.
4. Rub the inflated balloon with the woolen cloth.
5. Put the balloon against the wall. Why did the balloon stick on the wall? Do you
think the same will happen without rubbing the balloon?
6. Rub the balloon with the woolen cloth again.
7. Hold the balloon over very dry fine sand. What happened to the sand as you
brought the balloon near to it? What kind of electricity was produced when you
rubbed two materials of different kind?
9
Observation
Steps Remarks / Comments
First Step
Second Step
Third Step
Forth step
Fifth step
Sixth step
Seventh step
10
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTRICITY
Module Title: Basic Electricity
Learning Outcome 2: Identify sources of electricity
Assessment Criteria:
1. Brief history of electricity is discussed
2. The sources of electricity are identified.
3. The principles and operations of each source are explained.
References:
1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana
Publishing: 1999.
2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National
Bookstore: 1991.
3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd
Edition.
4. Cardenas, Elpidio J . Fundamental and Elements of Electricity; National
Bookstore: 1989.
11
LEARNING EXPERIENCES/ACTIVITIES
Learning Outcome 2: Identify sources of electricity
Learning Activities Special Instruction
1. Read the Information Sheet 2.1
about the brief history and
sources of electricity
2. Answer the Self-Check 2.1.
3. Read Information Sheet 2.2
about the types of mechanical
power plants.
4. Answer the Self-Check 2.2.
5. Answer the Activity Sheet 2.1.
12
INFORMATION SHEET 2.1
HISTORY OF ELECTRICITY
Electricity plays an important role in man’s conquest for existence .It has
been said that it is here with us since the beginning of the time.
In 600 B.C, Thales a Greek philosopher accidentally discovered static
electricity. Noticing that his garment had bits of hair and straw, Thales decided
to remove them by rubbing piece of amber stone on his clothes. To his surprise,
several pieces of straw clung to the amber when rubbed on the clothes, the
amber became electrified and it attracted the pieces of straw. Thales simply
wrote the incident and did not do anything about it because he could not
explain the mystery. He did not know that he had just discovered static
electricity.
In 1600, William Gilbert, an English Physician was able to put an
electrical charged on the objects by means of friction or rubbing. He observed
that two materials when rubbed together received opposite charges, that is, one
object got a positive charge and the other a negative charge. He also noticed that
two oppositely charged materials attract each other. Gilbert experiment was a
re-discovery of static electricity, the word static means standing still or at rest.
The Greek word for amber stone is “ ELEKTRON” and so the term electricity
came about.
Great persons who involved in the discovery of electricity:
1760- Benjamin Franklin, An American scientist, proved that atmospheric
electricity (lightning) and static electricity are the same.
1800- Alessandro Volta, An Italian Professor, discovered the voltaic file by
means of stocking zinc plate (-) and silver plate (+).
1819- Hans Christian Oestered, A Danish Physicist proved in an experiment
that current electricity can produced a magnetic field.
1831 Michael Faraday, An English scientist discovered the first electric
generator.
1831- Samuel Morse, developed the telegraph.
1868-George de Clanche, developed the first practical dry cell.
1878-Charles Brush, invented the arc lamp
1879- Thomas Alba Edison, perfected the first electric bulb
Sources of electricity
13
1. Friction -It is a static electricity which is generated by rubbing
two materials.
- It is a great deal of the world’s electricity produced by
batteries. These devices generate a different potential
means of chemical action.
- Two dissolution metals bonded together in a junction
when heated, exhibits a difference of potential. Such
bond is called thermocouple. The trip of an iron wire,
for example, may be welded to that of a copper wire.
When, this junction is heated, the iron wire shows a
positive charge and the copper wire has a negative
charge. Electricity generated by heat action is called
thermoelectric.
- Photo cells are semi-conduction devices which convert
light electrical energy directly into electrical energy.
2. Chemical action
3. Heat action
4. Light action
Either sunlight or artificial illumination may be
employed. This action is due to the ability of lights
energy to free electrons from the atoms of the semi-
conductor material. This process is called photo-
electricity.
5. Pressure - It is a difference of potential appears across the face of
certain crystal such as quarts, when they are squeezed
or stretched. This is called piezo-electricity.
6. Mechanical action - All electricity in large useful amount is at present
produced by rotating machines working with the use of
magnets. These machines, known as generator, are
turned by water power, gas engines or steam engines
and sometimes by electric motor.
There are many different types of mechanical power plants to produce
electrical energy.
Hydropower is an energy
obtained from flowing water.
Energy in water can be
harnessed and used in the foot
motive energy or temperature
differences. The most common
application is the dam.
Power produced by the fall of
water from a higher to a lower
level and extracted by means of
waterwheels or hydraulic turbines. Hydro-power is a natural resource available
wherever a sufficient volume of steady water flow exists.
Nuclear Power is the
method in which steam is
produced by heating water
through a process called
nuclear fission. In a nuclear
power plant, a reactor
contains a core of nuclear fuel,
primary enriched uranium.
When atoms of uranium fuel
are hit by neutrons they
fission (split), releasing heat
neutrons.
Nuclear power is an electrical power produced from energy released by
controlled fission or fusion of atomic nuclei in a nuclear reaction. Mass is
converted into energy and the amount of released energy greatly exceeds that
from chemical processes such as combustion.
Solar Power is a power
derived from the energy of the
sun. A radiant energy produced
in the Sun as a result of nuclear
fusion reactions. It is
transmitted to the earth through
space by electromagnetic
radiation in quanta of energy
called photons which interact
with the earth’s atmosphere and surface.
Wind Power is the kinetic
energy of wind
extraction of this
wind turbines.
machine converts
or the
energy by
Windmill
wind into
useful energy. This energy is
derived from the force of wind
acting on oblique blades or
sails that radiate from a shaft.
The turning shaft may be
connected to machinery used
milling grain, pumping water, or generating
to perform such work as
electricity. When the shaft is
connected to a load, such as a pump, the device is typically called a windmill.
When it is used to generate electricity, it is known as a wind turbine generator.
Fossil Fuel Power Plant (FFPP) – (also
known as steam electric power plant in the
14
US, thermal power plant in Asia, or power station in UK). The most common
source of energy is fossil fuel. Fossil fuels include coal, oil, and natural gas.
Fossil fuel is formed from the remains of plant and animals which live
thousands of years ago. The burning of those fossil fuel provides energy which
can be used to generate electricity.
Geothermal power comes from heat energy
buried beneath the surface of the earth. In some
areas of the country, enough heat rises close to the
surface of the earth to heat underground water into
steam which can be tapped for use in steam-
turbine plants.
Geothermal Power is the energy extracted
from the heat generated by natural concentrations
of hot water and steam in the earth’s interior. It can
be used in electric power generation and direct heat applications such as space
heating and industrial drying processes.
Tides is another kind of energy that involves water.
Ocean tides can be used to turn turbines to generate
electricity. For this to be possible, a dam must be built
across the month of a bay. Water then in trapped
behind the dam at the high tide. At the low tide, the
water is allowed to run out through the dam and used
to turn on electrical generator.
15
SELF-CHECK 2.1
I. Directions: Match Column A with Column B. Write your answer on a separate
answer sheet.
A B
1. Friction a. two metals bounded together in junction by
thermocouple process
2. Chemical action b. electricity produced by rotating machine
3. Heat action c. electricity generated by rubbing two
materials
4. Light action d. electricity produced by batteries
5. Prezo-electricity e. a process of photo-electricity
6. Mechanical
action
f. an action of squeezing or stretching crystal
7. Magnet g. imaginary lines along which the attraction
or repulsion of a magnet act
8. Magnetic
induction
h. a body having the property of polarity and
of attraction and repulsion found in the
nature.
9. Thermoelectricity i. potential difference appears across the
faces of quartz when squeezed
10. Pressure j. electricity generated by heat action.
II. Direction: From the given words below, choose the correct word that will
complete the sentence. Write your answer on a separate sheet of paper.
16
fossils fuels geothermal tidal energy
nuclear energy biomass energy solar energy
1. It is the energy
that comes from the sun.
2. It is the energy
that involves water.
3. It is the energy
that comes from the inner
core of the earth.
4. It is the result
from the splitting or fission of
atomic nuclei.
5. It is the energy
formed from the remains of
plant and animals which lived thousands of
years ago.
III. Directions: Choose the letter of the correct answer. Write your answer in
your notebook.
1. The following are the sources of energy except:
A. sun B. nuclear reaction C. fossil fuel D. transformer
2. Which is a nonrenewable source of energy?
A. fossil fuel B. solar energy C. tidal energy D. wind energy
3. Which is non-conventional source of energy?
A. fossil fuel B. gasoline C. solar energy D. hydroelectric power
4. The Makiling-Banahaw Plant in Laguna is an example of .
A. nuclear power plant B. geothermal plant
C. hydroelectric power plant D. fossil fuel- fired plant
5. What source of energy is shown in the picture?
A. fossil fuel B. solar energy C. wind energy D. tidal energy
17
ACTIVITY SHEET 2.1
In the pictures below, trace and explain the process of the different power
plants on how they produce electricity.
Nuclear power
18
Hydroelectric power
Geothermal power
Solar power
19
20
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTICITY
Module Title: Basic Electricity
Learning Outcome 3: Perform taps, splice and joint electrical conductors
Assessment Criteria:
1. Different types of taps splices and joints are identified according to their
uses.
2. Techniques in skinning electrical wire are demonstrated.
3. Methods of tapping splicing and joining electrical wires are performed
according to the prescribed procedure.
4. Safety procedure in tapping splicing and joining electrical wires is observed.
References:
1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana
Publishing: 1999.
2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National
Bookstore: 1991.
3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd
Edition.
4. Cardenas, Elpidio J . Fundamental and Elements of Electricity; National
Bookstore: 1989.
21
LEARNING EXPERIENCES/ACTIVITIES
Learning Outcome 3: Perform taps, splices and joints on electrical
conductors
Learning Activities Special Instructions
1. Read the attached Information
Sheet 3.1 about splices and joints.
 Ask the assistance of your teacher
if needed.
2. Answer the Self-Check 3.1.
 Provide a separate sheet of paper
for your answers.
3. Perform the Operation Sheet 3.1
on how to remove the insulation.
 Follow the procedure carefully.
4. Read the Job Sheet 3.1 on how to
remove the insulation.
INFORMATION SHEET 3.1
TAPS, SPLICES AND JOINTS
Method of Skinning Electrical Wire
Removing the insulation in preparing the insulated conductors for making
joints or splices, the insulation must first be removed from each conductor a
proper distance depending upon the type of joint or splice to be made.
This process is called skinning or stripping.
Cleaning the Conductor
After removing the insulation, the wires must be thoroughly cleaned to
ensure good electric contact between the ends of the wires so that the solder will
adhere properly. The wire may be cleaned by scraping.
Different electrical wires, splices and joints
Types of taps, Splices and Joints of Conductor
Rat tail joints are used to join
conductors in outlet boxes or when
fixture leads are connected through
conductors. The joints are made by
skinning about 2 inches, the end of
the conductor is to be joined. Then
twist the bare conductors about six
times.
Western Union Short tie splice -
To make the splice, the wires are first
skinned
Twists
Cross
End turns
Tape
22
for about 3 inches at the ends. They are then placed in crossed position about
1 inch from the insulation. Four or five short turns are then wrapped on each
side of the longest twist, and the free ends cut off and squeezed down closed to
the straight position of the wire so that they will not extend over the surface of
the short turns and permit the sharp to cut through the tape with the splice to
be wrapped.
Western Union Long Tie Splice is used
extensively for outside wiring and is quite
similar to the short tie splice. It is also being
used for interior wiring. The difference is that
a number of long twist are made before
wrapping the end turns. This is done so to
withstand greater stress of pressure on the
wire. The wire for this splice are bared about
4 ½ inches. They are then placed in the form
of an X at a point midway between the insulation and the end of the base wire.
Five or six long twists are then made and each side those turns are wrapped.
23
Britannia Splice is used in interior
wiring where solid wires of No. 6 AWG
gauge or larger sizes are to be joined and
where large wire connectors or pliers are
not at hand. The two wires are based for
about 4 inches in a No. 6 wire. About ½
inch of the extreme end of each beat to
almost a right angle to the straight portion
of the conductor. A wrapping wire made of No. 18 bare wire copper is then cut
to about 6 ft. in length and prepared by cleaning and bending in half. The large
conductors are then laid together, one bent end pointing upward and the other
downward. The center of the wrapping wire is then brought to the center of the
conductor, one half of which is wrapped in one direction and other remaining
half in the other as far as the best portion. The free ends are then forced
through the grooves from one ends to the other end of the other of the large
single conductors. The best ends are then cut off close to the joint.
Scarfed splice. It is used only on a
large solid wire where there is an objection
to the bulkiness of the Western Union or
Britannia splice. The wires are bared for
about 3 inches when a No. 6 wire is used.
The bared wire is then filed to a wedge shape starting about ½ inch from
the insulations. A piece of No. 18 bare copper wire is cut to about 5 ft. in
length and prepared by cleaning and bending in half.
The two file sides of the conductors are then laid together and wrapping
wire wound around them as similarly done in Britannia Splice. The wrapping is
completed by winding about six and seven turns of the free ends around the
unfilled portion of the conductor.
24
Multiple wrapped cable splice is used more
extensively on small strand wires and cables
because these stands are more pliable and may
be wound together without much difficulty. Large
strands are rigid and require considerable time in
making such a splice. To make the splice, the
ends of the conductors are skinned at the
distance of about 6 inches. The strands are
cleaned and spread about apart. Next, the strands are cut about 3 inches from
the insulation to right angle with the conductor. The strands of both
conductors are then laced together, one group of strands wounds in the
opposite direction. Care should be done that all strands in each group are
wrapped simultaneously and parallel to one another.
Plain tap or Tee Joints is used to a
great extent joining a tap or other
conductor to a through conductor, as
for example, a branch or main circuit.
To make the joint, skin the tap wire
about 2 inches and the main wire
about 1 inch. Next, the wires are
crossed intersecting about ¼ inch from the insulation of the tap wire and the
main wire. A hook or sharp bend is then made in the tap and about five or six
turns wound around the main wire. The joint is soldered and tape. Care must
be taken that the solder flows and sticks through all the crevices and that the
tape covers all part of the conductors, beginning and ending on the original
insulation.
Knotted or loop, tap joint is very
strong joint and will not untwist even
enough strain is placed upon it. It is
occasionally used in practice,
particularly for temporary lighting
systems, where time is not taken to
solder joints. To make the join using
No. 14 AWG wire, the tap wire is skinned about 3 inches and is then placed
Solder
Solder
over the insulation of the tap and main wire. The tap wire is bent and hooked
over the main wire and brought forward and bent over itself. Lastly, the
remaining portion is wound into four or five short turns around the main wire.
Wrapped Tap, Tee Joint is used on large
solid conductors where is difficult to wrap the
heavy tap wire around the main wire. When a
No. 6 AGW wire is used, both the main wire and
the tap wire are skinned about 4 inches. The tap
wire is bent into an L shape about ½ inches
from the insulation so that it will rest along the
side of the main wire. A wrapping wire is then
prepared using size No. 18 bare conductors terminating beyond the bent of tap
wire and up to the installation of the main conductor.
Ordinary Cable Tap or Tee Joint is
used where large stranded wire or
cables are tapped to a through
conductor. To make the joint, the
main strands should be scraped
through with a knife blade or
sandpaper. The tap wire of similar wire size cable should be skinned about 6
inches distance and the strands separated or fanned each strands of the tap
into the shape. The main cable is placed into this V-shaped space and forced
down to within 1 inch from the insulation of the tap conductor. One group of
tap wires is then wound around the main conductor, each strands should be
placed parallel to the other, and all wrapped at the same time and in one
direction. The other group is wound in similar manner but in opposite
directions.
Split Cable Tap or Tee Joint is
used where stranded cables or wire
are tapped to a through conductor.
25
ordinary cable tap and will
This joint is stronger than the
not
unwrap even though a strain is
placed upon it prior soldering. To
make this joint, the main wire is skinned a distance of 5 inches No. 14
American Wire Gauge (AWG) wire size is used and the strands thoroughly
scraped as for the ordinary cable tap. The strands are next divided in half by
forcing the screw driver through the center of the bared portion of the main
wire. The tap wire is prepared by skinning it about 6 inches, scraping each
strand until thoroughly cleaned and fanning out the strands so that they can
be pushed around the space in the main wire. A space about 1 ½ inch should
be left between the main wire and the insulation of the tap wire. In completing
the joint, one group is wound around the main conductor, in one direction; and
the second group is wound in the opposite direction.
26
The Through Fixture Joint is
used where fixtures are connected to
branch wires at an intermediate
point. In making this joint, the end of
one conductor is skinned about 2
inches and the other about 4 inches.
At a point ¼ inches away from the
insulation of the longer wire, three or
four long twists are made similar to the rat-tail joint. The long bared portion of
the long wire is bent over parallel with the free ends. Both free ends are then
place alongside each other wrapped together around the straight bared portion.
Safety procedure in splicing and joining wire
Before the splice is made, the insulation is first removed on both ends with
the use of an electrician’s knife or diagonal pliers. An electrician should be very
careful in removing wire insulation in order that the wire will not be nicked by
the knife or pliers to prevent breaking. However, a specially designed tool to
avoid nicks is called automatic wire stripper. The function of the tool is to cut
the wire insulation and remove it automatically by inserting the wire
corresponding to the size of hole in the wire stripper. After removing the
insulation, the end of the wire is twisted firmly. When the joint has been made,
the correct practice is to solder it to prevent loose contact and to have a
continuous flow of electricity. The splice and joint are then covered properly
with an electrical tape in order to prevent short circuit.
SELF-CHECK 3.1
I. Direction: Label the following splices and joints. Write your answer on a
separate answer sheet.
II. Direction: Write the letter of the correct answer in your notebook.
27
1. It is the method of removing insulation from electrical conductor.
A. Pulling B. Grabbing C. Skinning D. Gripping
2. What should be done to an insulator from conductor before splicing
or joining the wire?
A. Pull B. Remove C. Grab D. Grip
3. What should be the next procedure after removing an insulator from
conductor for soldering a wire?
A. Clean B. Twist C. Rub D. Scrub
28
OPERATION SHEET 3.1
REMOVING THE INSULATION
Materials
 Wire conductor
- stranded # 14 or 12 (2m)
- solid # 14 or 12 (2m)
Tools and Equipment
 Side cutting pliers
 Line man’s pliers
 Wire stripper
 Personal protective equipment
- gloves
Procedures
1. Using a wire stripper:
a. Assume the proper length of insulation to be removed then place the
wire end at the jaw of the wire stripper.
b. Grip the handle with minimum pressure.
c. Pull the wire or the stripper side ward until such time that the wire
and the insulator are separated.
2. Using side cutting pliers.
a. Place the wire to be stripped between the handle grips close behind the
gutter/plier hidge.
b. Squeeze the insulator enough to soften it and break down.
- Check the wire if there is a nick. (Note: Nick will cause the wire to
break easily).
3. Cleaning the wire.
- Scrape the wire.
4. Perform good housekeeping.
29
Assessment Criteria:
The students will be evaluated based on the following:
Criteria
Points
Allotted Gained
SKINNING 20 pts.
No nick of wire 10
Cleaning of wire 10
WORKMANSHIP 10 pts.
 Execution of using tool 5
 Cutting 5
SPEED 10 pts.
 Before allotted time 5
 Within allotted time 3
 After allotted time 2
SAFETY 5 pts.
 Use appropriate PPE 3
 Use PPE but not appropriate 2
 No PPE 0
USE OF TOOLS 5 pts.
 Use tool properly all the time 2
 Use tools properly most of the time 2
 Use tools properly sometime 1
 Improper use of tools 0
TOTAL 50 pts.
30
JOB SHEET 3.1
TAPS SPLICE AND JOINT THE WIRE
Materials
 Wire conductor
- stranded # 14 or 12 (2m)
- solid # 14 or 12 (2m)
Tools and Equipment
 Side cutting pliers
 Line man’s pliers
 Long nose
 Personal protective equipment
- gloves
Procedure
1. Prepare the necessary tools, materials and equipment.
2. Wear the appropriate PPE.
3. Skin the electrical wire to be spliced and joined, following the procedure on
skinning the electrical wire. (Note: Check the wire if there is a nick. Should be
very careful in removing wire insulation in order that the wire will not be
nicked by the knife or pliers to prevent from breaking)
4. Splice and joint the wires.
5. Do 10 types of wire splices and joints. Follow procedure on the information
sheet.
31
Assessment Criteria
The students will be evaluated based on the following:
Criteria
Points
Allotted Gained
PROPER SPLICE AND JOINT OF WIRE 20 pts
Procedure follow 10 .
Firmness of twisted or wound wire 10
WORKMANSHIP 10 pts.
 Execution of using tool 5
 Cutting 5
SPEED 10 pts.
 Before allotted time 5
 Within allotted time 3
 After allotted time 2
SAFETY 5 pts.
 Use appropriate PPE 3
 Use PPE but not appropriate 2
 No PPE 0
USE OF TOOLS 5 pts.
 Use tool properly all the time 2
 Use tools properly most of the time 2
 Use tools properly sometime 1
 Improper use of tools 0
TOTAL 100%
Note: One point is deducted for every error.
32
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTRICITY
Module Title: Basic Electricity
Learning Outcome 4: Connect electrical circuit
Assessment Criteria:
1. Types of electric circuits are identified.
2. Value of voltage, current and resistance are computed.
3. Series and parallel circuit connection is demonstrated in accordance with the
standard procedure.
References:
1. Magalindan, Fe S., Ph. D., De Guzman, Dionisia G., Ph. D. de la Rosa,
Juanito, and Asprer, Fe F., Technology and Home Economics. 1994
33
LEARNING EXPERIENCES/ACTIVITIES
Learning Outcome 4: Connect electrical circuit
Learning Activities Special Instructions
1. Read the Information Sheet 4.1
about parts and kinds of circuit.
2. Answer the Self-Check 4.1.  Try to answer the Self-Check
without looking at the information
sheet.
3. Read the Information Sheet 4. 2
about Ohm’s Law and Power
Law.
4. Answer the Self-Check 4.2.  Use a separate sheet of paper as
your answer sheet.
5. Perform the Activity Sheet 4.1
on Bulb in Series.
 Follow the procedures carefully.
6. Perform the Activity Sheet 4.2
on Bulb in Parallel.
B3
INFORMATION SHEET 4.1
ELECTRIC CIRCUIT
Parts of a Complete Circuit
In order that electricity can be better understood different parts or
components of a complete circuit must be known well. First, the electrical
circuit should have a source of power where the electric current starts to flow.
The power source can be a generator, storage cell one or more cells. Second, a
path such as electrical wires is needed in order that electricity from the source
can be transmitted. Third, there should be a current- consuming device or
appliance that will consume or use electricity. And lastly, a control or switch
that will cut off the flow of current, when the appliance will not be in use. All the
requirements mentioned are important in order to have complete electrical
circuit. The absence of one will not make a complete electric circuit.
Electrical path
source of power current consuming device
Switch
Parts of complete circuit
Types of circuit
1. Series Circuit. In a series circuit, many bulbs are wired one after the other,
so that when one of the bulb is busted, all will not light up. The reason is
that the current cannot pass through the bulb because of the filament is cut.
So there is no continuity for current in order to go back to the power source.
In a series connection, electricity flows through each electrical device. You
have to observe that the two bulbs connected in series would light more
brightly than if there were three bulbs in the circuit. The brightness of the
light depends on the amount flowing in each device.
B1 B2
Switch
Series circuit
Source
of Power
34
B1 B2 B3
Laws of series circuit:
 The total resistance in the circuit is the sum of all individual
resistances.
 The current throughout the circuit is the same.
 The total voltage in the circuit is equal to the sum of the individual
voltages.
2. Parallel Circuit. This is the circuit whereby two or more bulbs are wired with
each bulb having its own circuit. This means that if one is busted, the other
bulb will still light up because current passes separately in each circuit. In a
parallel circuit, the electric current flows and only a part of the total current
in the circuit goes through each bulb. Each bulb has a circuit of its own with
the battery so the electric current flowing through each bulb moves in a
different path in the circuit.
Laws of parallel circuit:
 The voltage is the same across each branch.
 The total current is the sum of all the current in each circuit.
 The total resistance is less or approximately equal to the smallest resistive
branch
35
36
SELF-CHECK 4.1
I. Directions: Match Column A with Column B. Write only the letter on a
separate answer sheet.
A B
1. Switch a. current cannot pass through the bulb when
the other filament of the bulb is cut
2. Source of power b. caused the load to light up
3. Conductor c. consumes power
4. Load d. electrical path
5. Series circuit
connection
e. bulb has its own circuit
f. control the circuit
II. Directions: Tell whether the following idea refer to a series or parallel circuit.
Write S if the answer is series and P if it is parallel on a
separate sheet of paper.
1. The total current is the sum of all the current in each circuit.
2. The current throughout the circuit is the same.
3. The voltage is the same in all the circuits.
4. The total resistance in the circuit is the sum of all individual
resistances.
5. The total voltage in the circuit is equal to the sum of the individual
voltages.
37
INFORMATION SHEET 4.2
Ohm’s Law and Power Law
If we are going to study the meaning of electricity deeper, there are three
essential elements involved. These are voltage, current and resistance. George
Simon Ohm, a German scientist, discovered in 1826 the relations among them.
The discovery led to one of the major laws in electricity called Ohm’s Law. Each
of the elements has its own unit of measurement, volt for voltage, ampere for
current, ohm for resistance.
Volt is named after Alessandro Volta, a physicist whose invention made volt
as an electrical pressure needed in allowing one ampere of current pass through
resistance of one ohm. Another inventor, named Andre Marie Ampere, a
physicist and Mathematician, whose one ampere of current is the rate of flow of
charge passing in a wire conductor that is equal to one coulomb per second.
Electric power is measured in watts, abbreviated W as a unit. This unit is named
after James Watt, a Scotch inventor. It is equal to the product of the voltage
multiplied by the current. The total power of a circuit is obtained by multiplying
the total current by the voltage.
The statement of Ohms law
The amount of current through the material varies directly to the applied
voltage and varies inversely to the resistance.
Summary of the Ohm’s Law and Power Law
Unit of measure Symbol Formula
VOLTAGE Volt E or V E= I x R
CURRENT Ampere I I = E / R
RESISTANCE Ohms R or Ω R = E / R
POWER Watt W P = E x I
SELF-CHECK 4.2
Direction: Find the missing quantity for each of the circuits below.
1.
2.
3.
4.
5.
6.
5Ω I=2A
V=?
I=2A
R=?
20V
R=5Ω
I=?
10V
R=?
100V
I=500A
R=10Ω I=0.4A
V=?
25 Ω
I=?
50V
7. An electric heater is rated at 100V and has a hot resistance of 30
ohms. What current will flow through it?
8. An ammeter shows a bulb is using 4 amperes from a 120V source.
What is the resistance?
9. An electric appliance with a resistance of 60 ohms must draw 5A to
operate correctly. What is the correct voltage to use?
10. How much power is consumed by the machine having a current flow
of 6 ampere supplied by a 220 volt line?
38
ACTIVITY SHEET 4.1
BULB IN SERIES
Supplies and Materials
 2 pieces 1.5 batteries
 2 pieces bulb
 1 meter wire
 3 pieces socket
 1 piece switch
 Electrical tape
Tool
 Pliers
 Screw drivers
Working Drawing
39
Procedure
1. Construct an electrical circuit and connect two bulbs in series.
circuit and observe the brightness of the light.
Close the
40
2. Add one more bulb in the set up. Describe the change in the brightness of
the bulb. In which setup do the bulbs light more brightly?
3. Unscrew one of the bulbs and close the circuit. Observe what happens.
4. Trace the flow of the electric current. How are the bulbs arranged in a series
circuit?
Observation
Steps Remarks / Comments
First Step
Second Step
Third Step
Forth step
ACTIVITY SHEET 4.2
BULB IN PARALLEL
Supplies and Materials
 2 pieces 1.5 batteries
 2 pieces bulb
 1 meter wire
 3 pieces socket
 1 piece switch
 Electric tape
Tool
 Pliers
 Screw drivers
Working Drawing
41
Procedure
1. Connect two sockets with bulbs to a dry cell. Observe the brightness of their
lights.
2. Add one more bulb in the setup. Observe the brightness of their light. Does
the adding a bulb in the setup affect the brightness of the bulb?
42
3. Unscrew one bulb in the set up and close the circuit.
4. Unscrew another bulb in the setup. Why does the turning off of one or two
bulbs break the circuit?
5. Trace the path of the electric current flow beginning from the source. How
many paths can the electric current take before returning to the source?
Observation
Steps Remarks / Comments
First Step
Second Step
Third Step
Forth step
Fifth step
43
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTRICITY
Module Title: Basic Electricity
Learning Outcome 5: Identify resistors value.
Assessment Criteria:
1. Different types of resistors are identified.
2. Resistor value is determined according to its color code.
3. Importance of resistor tolerance is discussed.
References:
1. Enriquez, Michael Q., Gantalao, Fred T., and Lasala, Rommel M. Simple
Electronics, 2004.
2. Velasco, Benjamin S., Electronics Components Testing Simplified, 1994.
44
LEARNING EXPERIENCES/ACTIVITIES
Learning Outcome 5: Identify resistor value
Learning Activities Special Instructions
1. Read the Information Sheet 5.1
about resistor and its color code.
2. Answer the Self-Check 5.1.  Try to answer the Self-Check
without looking at the information
sheet.
 Provide a separate sheet of paper
as your answers.
3. Answer the Activity Sheet 5.1 on
how to identify resistor value.
4. Perform the Activity Sheet 5.1 on
how to decode resistor value.
 Follow the procedure carefully.
INFORMATION SHEET 5.1
RESISTOR
Resistors are one of the most common electronic components. A resistor is a
device that limits or resists the flow of current. Resistor can be made from many
different materials but the most common is carbon composition. The current
limiting ability or resistance can be varied by charging the ratio of carbon to
binding agent. Resistance is measured in ohms, represented by the Greek
symbol omega (Ω).
Types of resistors
1. Carbon Composition is
made either by hot or cold
molding from mixtures of carbon
and clay binder. Its resistive
value ranges from 10 ohms to
mega ohms, in power ranges
from 1/8 to 4 watts. It has the
ability to withstand higher
current surges and ruggedness.
This type is as well popular. It
is made from a mixture of carbon
powder and glue-like binder. To
increase the resistance, less
carbon is added. These resistors
show predictable performance, low inductance, and low capacitance. Power
ratings range from about 1/4 to 2 W. Resistances range from 1 Ohm to about
100 MOhm, with tolerances around +/- 5 percent.
45
2. Carbon Film is made
from carbon graphite, mixed
with powdered
material. It has
insulating
two main
characteristics; resistance and
power rating. Carbon resistor
is available in resistance
values from tenths of ohms to
hundred of mega ohms.
3. Metal Film is formed by
means of vacuum
decomposition, a process by
which a number of different
metal or metal oxide film is
deposited
insulating
on a
mandrel
suitable
or core.
Nickel and chromium are
deposited in the alumina
ceramic core and the unit is
then subjected to laser
trimming.
4. Wire wound highly resistive
wire is wrapped around the
insulating core. The length of
the wire determines the
device.
resistance of the
Insulating cores are usually
made of cement of ceramic
materials or just plain paper or
pressed cardboard. This type of
resistor provides low
resistance. The unit is encased
by insulating materials.
46
Resistor color coding
Table showing the color band and its numerical value
Reading a 4-color band resistor
Reading a 5-color band resistor
47
Examples of resistor reading:
1. A carbon resistor coded BROWN, GREEN, BLACK, and GOLD has the
resistance value of 15 Ohms, and a tolerance of ± 5%.
2. Resistance reading of a carbon composition resistor using the color code.
48
3. Decoding the resistance value of a carbon composition-type resistor using
the color code.
4. Determine the resistor value of a carbon composition resistor using the color
code.
49
5. Determine the resistance reading of a carbon-type using the EIA color code.
50
51
SELF-CHECK 5.1
Directions: Identify the following. Write the answer on your paper.
1. It is made from carbon graphite, mixed with
powdered insulating material.
2. It is highly resistive wire wrapped around insulating
core.
3. It is made either by hot or cold molding from
mixtures of carbon and clay binder.
4. It is formed by means of vacuum decomposition, a
process by which a number of different metal or
metal oxide film are deposited on a suitable
insulating mandrel or core.
5. It is a device that limits or resists the current.
ACTIVITY SHEET 5.1
IDENTIFY RESISTOR VALUE
Perform this activity by following the specific instructions/question below:
1. What is the resistance value of a carbon resistor coded YELLOW, VIOLET,
YELLOW and NONE as shown below? Instruction below
2. Determine the resistance value of a carbon resistor coded ORANGE, WHITE,
ORANGE and SILVER as shown below.
52
3. Determine the resistance value of a carbon resistor coded GREEN, BLUE,
YELLOW and NONE as shown below.
4. What is the resistance value of a carbon resistor coded BLUE, GRAY, RED
and GOLD as illustrated below?
53
5. What is the resistance value of a carbon resistor coded ORANGE, WHITE,
YELLOW and NONE as shown below?
54
55
ACTIVITY SHEET 5.1
READ RESISTOR VALUE
Materials
 10 different resistors
Procedure
Read the equivalent of the first, second, third and fourth color band, tolerance and
its coded value that correspond on the table.
RESISTOR
No.
FIRST
COLOR
SECOND
COLOR
THIRD
COLOR
FOURTH
COLOR
CODED VALUE
(ohms)
TOLERANCE,
±%
1
2
3
4
5
6
7
8
9
10
Table 1. Reading a carbon resistor
Assessment Criteria
Score Remarks
10 Excellent
8-9 Very satisfactory
6-7 Satisfactory
1-5 Fair
56
Program/Course: BUILDING WIRING INSTALLATION NC II
Unit of Competency: FUNDAMENTALS OF ELECTRICITY
Module Title: Basic Electricity
Learning Outcome 6: Identify capacitors and convert capacitor value
Assessment Criteria:
1. Different types of capacitors are identified.
2. Capacitor value is converted.
References:
1. Enriquez, Michael Q., Gantalao, Fred T., and Lasala, Rommel M. Simple
Electronics, 2004.
2. Velasco, Benjamin S., Electronics Components Testing Simplified, 1994.
57
LEARNING EXPERIENCES/ACTIVITIES
Learning Outcome 6: Identify capacitor and convert capacitor value
Learning Activities Special Instruction
1. Read the Information Sheet 6.1
about capacitors.
2. Answer the Self-Check 6.1.  Try to answer the Self-Check
without looking at the information
sheet.
 Provide a separate sheet of paper
for your answers.
3. Answer the Activity Sheet 6.1.
INFORMATION SHEET 6.1
CAPACITORS
INTRODUCTION
Capacitor is a device that stores energy in the electric field created
between a pair of conductor on which equal but opposite electric charge have
been placed. A capacitor is occasionally referred to using the older term
condenser. A capacitor has two or more conducting plates segregated from each
other by good insulating material called dielectric.
Types of capacitor
1. Electrolytic capacitor is made of electrolyte, basically conductive salt in
solvent. Leaky condition can be checked by connecting the ohmmeter test
leads across the capacitor in one polarity.
2. Ceramics are made with materials such as titanium
acid barium for dielectric. Internally, these capacitors
are not constructed as a coil, so they are suited for use
in high frequency applications. They are shaped like a
disk, available in very small capacitance value and
very small size.
3. Polyester film (mylar) uses a thin polyester film as a
dielectric. Not as high tolerance polypropylene, but
cheap, temperature stable, readily available, widely
used. Tolerance is approximately 5% to 10%. It can be
quite large depending on capacitor rate voltage and so
many are not be suitable for all application.
58
4. Mica is an extremely accurate device with
very low leakage currents. It is constructed
with alternate layers of metal foil and mica
insulation, stacked and encapsulated. These
capacitors have small capacitances and are
often used in high frequency circuits (eg. : RF
circuits). They are very stable under variable
voltage and temperature conditions. Tolerances range from +/-0.25 to +/-5
percent. Capacitances range from 1 pf to 0.01 uF, with maximum voltage
ratings from 100 V to 2.5 kV. This capacitor uses a thin polyester film as a
dielectric.
59
CAPACITOR READING
60
Examples:
1. 3,200 picofarad ±5%
= 0.0032
microfarad ±5%
2. 380 picofarad ±10%
= 0.00038
microfarad ±10%
3. 460,000 picofarad = 0.46 microfarad
4. 2,000 picofarad = 2,000K
5. 22,000 picofarad
= 0.022
microfarad
61
62
SELF-CHECK 6.1
Direction: Identify the following. Write your answer on your paper.
1. What type of capacitor is not constructed as coil,
suited for use in high frequency applications?
2. What type of capacitor is an extremely accurate
device with very low leakage currents?
3. What device can store energy in the electric field?
4. What type of capacitor is made of electrolyte?
5. What type of capacitor uses a thin polyester film as
a dielectric?
ACTIVITY SHEET 6.1
Direction: Give the equivalent value of the capacitor.
1. =
2. =
3. =
4. =
5. =
63
64
ANSWER KEY 1.1
I. Directions: Read the following sentences carefully. Write the letter of your
answer on a separate sheet of paper.
1. The same electrical charge B each other.
A. attracts B. repel C. destroy D. neutralize
2. It is neither positively nor negatively charged. D .
A. electron in motion
B. electrostatic force
C. neutron
D. atom
3. It is the equal number of electron and proton in an atom. C .
A. positive B. negative C. neutral
4. The electron theory states that all matter is made of C .
A. neutron B. atom C. electron D. molecules
5. It is the smallest particle of molecule. D .
A. ion B. proton C. electron D. atom
II. Directions: Read each question, then choose the correct answer in the box
below. Write your answer on a separate sheet of paper.
1. What is the nature of matter? HAS WEIGHT
2. How will you prove that electricity is a matter? OCCUPIES SPACE
3. What is molecule made up? ATOM
4. What is the neutral particle of an atom? NEUTRON
III. Directions: Read each question carefully. Choose the letter of the correct
answer in the box below. Write your answer on a separate
answer sheet.
1. What is found at the center body of an atom? NUCLEUS
2. What do you call the attraction between the nucleus and the electron?
ELECTROSTATIC FORCE
3. What is the positively charged particle of an atom? PROTON
4. What is the negatively charged particle of an atom? ELECTRON
5. What particle of an atom which is not electrically charged? NEUTRON
65
ANSWER KEY 2.1
I. Directions: Match Column A with Column B. Write your answer on a separate
answer sheet.
A B
c 1. Friction a. two metals bounded together in junction
by thermocouple process
d 2. Chemical action b. electricity produced by rotating machine
j 3. Heat action c. electricity generated by rubbing two
materials
e 4. Light action d. electricity produced by batteries
f 5. Prezo-electricity e. a process of photo-electricity
6. Mechanical
action
f. an action of squeezing or stretching crystal
b
h 7. Magnet g. imaginary lines along which the attraction
or repulsion of a magnet act
g 8. Magnetic
induction
h. a body having the property of polarity and
of attraction and repulsion found in the
nature.
a 9. Thermoelectricity i. Potential difference appears across the
faces of quartz when squeezed
i 10. Pressure j. electricity generated by heat action.
II. Direction: From the given words below, choose the correct word that would
complete the sentence. Write your answer on a separate sheet of paper.
fossils fuels geothermal tidal energy
nuclear energy biomass energy solar energy
Solar energy 1. It is the energy that comes from the sun.
Tidal energy 2. It is the energy that involves water.
Geothermal 3. It is the energy that comes from the inner
core of the earth.
Nuclear energy 4. It is the result from the splitting or fission
of atomic nuclei.
Fossil fuels 5. It is the energy formed from the remains of
plant and animals which lived thousands
of years ago.
III. Directions: Choose the letter of the correct answer. Write your answer on
your notebook.
D 1. The following are the sources of energy except:
A. sun B. nuclear reaction C. fossil fuel D. transformer
A 2. Which is a nonrenewable source of energy?
A. fossil fuel B. solar energy C. tidal energy D. wind energy
C 3. Which is non-conventional source of energy?
A. fossil fuel B. gasoline C. solar energy D. hydroelectric power
B 4. The Makiling-Banahaw Plant in Laguna is an example of .
A. nuclear power plant B. geothermal plant
C. hydroelectric power plant D. fossil fuel- fired plant
D 5. What source of energy is shown in the picture?
A. fossil fuel B. solar energy C. wind energy D. tidal energy
66
ANSWER KEY 3.1
I. Directions: Label the following splices and joints. Write your answer on a
separate answer sheet.
67
PLAIN TAP OR TEE BRITANNIA KNOTTED OR LOOP
RAT TAIL WRAPPED TAP
II. Direction: Write the letter of the correct answer o your notebook.
C 1. It is the method of removing insulation from electrical conductor.
A. Pulling B. Grabbing C. Skinning D. Gripping
D 2. What should be done to an insulator from conductor before splicing
or joining the wire?
A. Pull B. Remove C. Grab D. Grip
A 3. What should be the next procedure after removing an insulator from
conductor for soldering a wire?
A. Clean B. Twist C. Rub D. Scrub
68
ANSWER KEY 4.1
I. Directions: Match Column A with Column B. Write your answer on a separate
answer sheet.
A B
f 1. Switch a. current cannot pass through the bulb when
the other filament of the bulb is cut
b 2. Source of power b. caused the load to light up
d 3. Conductor c. consumes power
c 4. Load d. electrical path
a 5. Series circuit
connection
e. bulb has its own circuit
f. control the circuit
II. Directions: Tell whether the following ideas is a series or parallel circuit.
Write S if the answer is series and P if it is parallel on a
separate sheet of paper.
P 1. The total current is the sum of all the current in each circuit.
S 2. The current throughout the circuit is the same.
P 3. The voltage is the same in all the circuits.
S 4. The total resistance in the circuit is the sum of all individual
resistances.
S 5. The total voltage in the circuit is equal to the sum of the individual
voltages.
ANSWER KEY 4.2
Directions: Find the missing quantity for each of these circuits.
1.
2.
3.
4.
5.
6.
5Ω I=2A
V=10
I=2A
R=10
20V
R=5Ω
I=2
10V
R=.2
100V
I=500A
R=10Ω I=0.4A
V=4.4
50V
7. An electric heater is rated at 100V and has a hot resistance of 30
ohms. What current will flow through it? 3.3 A
8. An ammeter shows a bulb is using 4 amperes from a 120V source. What
is the resistance? 30 Ω
9. An electric appliance with a resistance of 60 ohms must draw 5A to
operate correctly. What is the correct voltage to use? 300 V
10. How much power is consumed by the machine having a current flow
of 6 ampere supplied by a 220 volt line? 1,320 W
25 Ω
I=2
69
70
ANSWER KEY 5.1
Directions: Identify the following. Write the answer on your paper.
CARBON FILM 1. It is made from carbon graphite, mixed with
powdered insulating material.
WIRE WOUND 2. It is highly resistive wire wrapped around insulating
core.
CARBON
COMPOSITION 3. It is made either by hot or cold molding from
mixtures of carbon and clay binder.
METAL FILM 4. It is formed by means of vacuum decomposition, a
process by which of a number of different metal or
metal oxide film are deposited on a suitable
insulating mandrel or core.
RESISTOR 5. It is a device that limits or resists the current.
71
ANSWER KEY 6.1
Directions: Identify the following. Write your answer on your paper.
CERAMIC 1. What capacitor is not constructed as coil, suited for
used in high frequency applications?
MICA 2. What type of capacitor that is an extremely accurate
device with very low leakage currents?
CAPACITOR 3. What device that stores energy in the electric field?
ELECTROLYTIC 4. What capacitor is made of electrolyte?
POLYESTER FILM 5. What capacitor uses a thin polyester film as a
dielectric?

More Related Content

Similar to COMPETENCY-BASED LEARNING MATERIAL 1ST YEAR - BUILDING WIRING INSTALLATION

K to 12_electrical_learning_module
K to 12_electrical_learning_moduleK to 12_electrical_learning_module
K to 12_electrical_learning_moduleArthurManalo1
 
K to 12 electrical learning module
K to 12 electrical learning moduleK to 12 electrical learning module
K to 12 electrical learning moduleNoel Tan
 
Electrical installation and mentainance tg
Electrical installation and mentainance tgElectrical installation and mentainance tg
Electrical installation and mentainance tgmarvinmayormente1
 
K-12 Teacher's Guide on Computer Hardware Servicing
K-12 Teacher's Guide on Computer Hardware ServicingK-12 Teacher's Guide on Computer Hardware Servicing
K-12 Teacher's Guide on Computer Hardware ServicingRenz Cuaresma
 
CSS NC II Module : Set-up Computer Networks
CSS NC II Module : Set-up Computer NetworksCSS NC II Module : Set-up Computer Networks
CSS NC II Module : Set-up Computer NetworksEric Talamisan
 
Computer Hardware-servicing-learning-module
Computer Hardware-servicing-learning-moduleComputer Hardware-servicing-learning-module
Computer Hardware-servicing-learning-moduleBogs De Castro
 
K to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleK to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleA J
 
K to 12 - Hardware Servicing Learning Module
K to 12 - Hardware Servicing Learning ModuleK to 12 - Hardware Servicing Learning Module
K to 12 - Hardware Servicing Learning ModuleEdmund Blanco
 
K to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleK to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleMaeveAnnieRoseEllore
 
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdfK TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdfNoliEdubalad4
 
K to 12_PC LEARNING MODULE
K to 12_PC LEARNING MODULEK to 12_PC LEARNING MODULE
K to 12_PC LEARNING MODULEJohndion Ruloma
 
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdfK TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdfNoliEdubalad4
 
K to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleK to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_modulewiewei
 
K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...
K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...
K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...Alvin Francisco
 
K to 12 PC Hardware Servicing Learning Module
K to 12 PC Hardware Servicing Learning ModuleK to 12 PC Hardware Servicing Learning Module
K to 12 PC Hardware Servicing Learning ModuleJoseph Magkalas
 
Applying quality-standard (css)
Applying quality-standard (css)Applying quality-standard (css)
Applying quality-standard (css)Bong Bandola
 
K to 12 computer hardware servicing NCII
K to 12 computer hardware servicing NCIIK to 12 computer hardware servicing NCII
K to 12 computer hardware servicing NCIIGlad Norman Limocon
 

Similar to COMPETENCY-BASED LEARNING MATERIAL 1ST YEAR - BUILDING WIRING INSTALLATION (20)

K to 12_electrical_learning_module
K to 12_electrical_learning_moduleK to 12_electrical_learning_module
K to 12_electrical_learning_module
 
K to 12 electrical learning module
K to 12 electrical learning moduleK to 12 electrical learning module
K to 12 electrical learning module
 
Electrical installation and mentainance tg
Electrical installation and mentainance tgElectrical installation and mentainance tg
Electrical installation and mentainance tg
 
K-12 Teacher's Guide on Computer Hardware Servicing
K-12 Teacher's Guide on Computer Hardware ServicingK-12 Teacher's Guide on Computer Hardware Servicing
K-12 Teacher's Guide on Computer Hardware Servicing
 
CSS NC II Module : Set-up Computer Networks
CSS NC II Module : Set-up Computer NetworksCSS NC II Module : Set-up Computer Networks
CSS NC II Module : Set-up Computer Networks
 
Computer Hardware-servicing-learning-module
Computer Hardware-servicing-learning-moduleComputer Hardware-servicing-learning-module
Computer Hardware-servicing-learning-module
 
chs 7 and 8.pdf
chs 7 and 8.pdfchs 7 and 8.pdf
chs 7 and 8.pdf
 
K to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleK to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_module
 
K to 12 - Hardware Servicing Learning Module
K to 12 - Hardware Servicing Learning ModuleK to 12 - Hardware Servicing Learning Module
K to 12 - Hardware Servicing Learning Module
 
K to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleK to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_module
 
Computer
Computer Computer
Computer
 
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdfK TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
 
K to 12_PC LEARNING MODULE
K to 12_PC LEARNING MODULEK to 12_PC LEARNING MODULE
K to 12_PC LEARNING MODULE
 
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdfK TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
K TO 12 PC HARDWARE SERVICING LEARNING MODULE.pdf
 
K to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_moduleK to 12_pc_hardware_servicing_learning_module
K to 12_pc_hardware_servicing_learning_module
 
K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...
K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...
K 20to-2012-20pc-20hardware-20servicing-20learning-20module-131227142941-phpa...
 
K to 12 PC Hardware Servicing Learning Module
K to 12 PC Hardware Servicing Learning ModuleK to 12 PC Hardware Servicing Learning Module
K to 12 PC Hardware Servicing Learning Module
 
k12-TLE(ICT_CHS_module)
k12-TLE(ICT_CHS_module)k12-TLE(ICT_CHS_module)
k12-TLE(ICT_CHS_module)
 
Applying quality-standard (css)
Applying quality-standard (css)Applying quality-standard (css)
Applying quality-standard (css)
 
K to 12 computer hardware servicing NCII
K to 12 computer hardware servicing NCIIK to 12 computer hardware servicing NCII
K to 12 computer hardware servicing NCII
 

More from CLIFFORD BRANDES

INSPECTING AND REPORTING DAMAGED TOOLS.pptx
INSPECTING AND REPORTING DAMAGED TOOLS.pptxINSPECTING AND REPORTING DAMAGED TOOLS.pptx
INSPECTING AND REPORTING DAMAGED TOOLS.pptxCLIFFORD BRANDES
 
COMMON ELECTRICAL TOOLS AND MATERIALS
COMMON ELECTRICAL TOOLS AND MATERIALSCOMMON ELECTRICAL TOOLS AND MATERIALS
COMMON ELECTRICAL TOOLS AND MATERIALSCLIFFORD BRANDES
 
TECHNICAL DRAFTING: ALPHABET OF LINES.pptx
TECHNICAL DRAFTING: ALPHABET OF LINES.pptxTECHNICAL DRAFTING: ALPHABET OF LINES.pptx
TECHNICAL DRAFTING: ALPHABET OF LINES.pptxCLIFFORD BRANDES
 
Store Technical Drawings and Equipment/ Instruments.pptx
Store Technical Drawings and Equipment/ Instruments.pptxStore Technical Drawings and Equipment/ Instruments.pptx
Store Technical Drawings and Equipment/ Instruments.pptxCLIFFORD BRANDES
 
TLE - COMPUTER SYSTEMS SERVICING - HAND TOOLS
TLE - COMPUTER SYSTEMS SERVICING - HAND TOOLSTLE - COMPUTER SYSTEMS SERVICING - HAND TOOLS
TLE - COMPUTER SYSTEMS SERVICING - HAND TOOLSCLIFFORD BRANDES
 
Electrical installation and maintenance module 10
Electrical installation and maintenance module 10Electrical installation and maintenance module 10
Electrical installation and maintenance module 10CLIFFORD BRANDES
 
Safe storage of electrical power and hydraulic tools
Safe storage of electrical power and hydraulic toolsSafe storage of electrical power and hydraulic tools
Safe storage of electrical power and hydraulic toolsCLIFFORD BRANDES
 
Electrical and hydraulic tools maintenance procedure
Electrical and hydraulic tools maintenance procedureElectrical and hydraulic tools maintenance procedure
Electrical and hydraulic tools maintenance procedureCLIFFORD BRANDES
 
Store electrical power and hydraulic tools
Store electrical power and hydraulic toolsStore electrical power and hydraulic tools
Store electrical power and hydraulic toolsCLIFFORD BRANDES
 
Materials for tools commercial cooking
Materials for tools commercial cookingMaterials for tools commercial cooking
Materials for tools commercial cookingCLIFFORD BRANDES
 
Kitchen tools commercial cooking
Kitchen tools commercial cookingKitchen tools commercial cooking
Kitchen tools commercial cookingCLIFFORD BRANDES
 

More from CLIFFORD BRANDES (17)

INSPECTING AND REPORTING DAMAGED TOOLS.pptx
INSPECTING AND REPORTING DAMAGED TOOLS.pptxINSPECTING AND REPORTING DAMAGED TOOLS.pptx
INSPECTING AND REPORTING DAMAGED TOOLS.pptx
 
COMMON ELECTRICAL TOOLS AND MATERIALS
COMMON ELECTRICAL TOOLS AND MATERIALSCOMMON ELECTRICAL TOOLS AND MATERIALS
COMMON ELECTRICAL TOOLS AND MATERIALS
 
TECHNICAL DRAFTING: ALPHABET OF LINES.pptx
TECHNICAL DRAFTING: ALPHABET OF LINES.pptxTECHNICAL DRAFTING: ALPHABET OF LINES.pptx
TECHNICAL DRAFTING: ALPHABET OF LINES.pptx
 
Store Technical Drawings and Equipment/ Instruments.pptx
Store Technical Drawings and Equipment/ Instruments.pptxStore Technical Drawings and Equipment/ Instruments.pptx
Store Technical Drawings and Equipment/ Instruments.pptx
 
TLE - COMPUTER SYSTEMS SERVICING - HAND TOOLS
TLE - COMPUTER SYSTEMS SERVICING - HAND TOOLSTLE - COMPUTER SYSTEMS SERVICING - HAND TOOLS
TLE - COMPUTER SYSTEMS SERVICING - HAND TOOLS
 
ARTS QUARTER II
ARTS QUARTER IIARTS QUARTER II
ARTS QUARTER II
 
Wires and cables
Wires and cablesWires and cables
Wires and cables
 
Electrical installation and maintenance module 10
Electrical installation and maintenance module 10Electrical installation and maintenance module 10
Electrical installation and maintenance module 10
 
computers
computerscomputers
computers
 
Manual of specification
Manual of specificationManual of specification
Manual of specification
 
internet protocols
internet protocolsinternet protocols
internet protocols
 
Fluorescent lamp
Fluorescent lampFluorescent lamp
Fluorescent lamp
 
Safe storage of electrical power and hydraulic tools
Safe storage of electrical power and hydraulic toolsSafe storage of electrical power and hydraulic tools
Safe storage of electrical power and hydraulic tools
 
Electrical and hydraulic tools maintenance procedure
Electrical and hydraulic tools maintenance procedureElectrical and hydraulic tools maintenance procedure
Electrical and hydraulic tools maintenance procedure
 
Store electrical power and hydraulic tools
Store electrical power and hydraulic toolsStore electrical power and hydraulic tools
Store electrical power and hydraulic tools
 
Materials for tools commercial cooking
Materials for tools commercial cookingMaterials for tools commercial cooking
Materials for tools commercial cooking
 
Kitchen tools commercial cooking
Kitchen tools commercial cookingKitchen tools commercial cooking
Kitchen tools commercial cooking
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 

COMPETENCY-BASED LEARNING MATERIAL 1ST YEAR - BUILDING WIRING INSTALLATION

  • 1. Republic of the Philippines Department of Education PUBLIC TECHNICAL-VOCATIONAL HIGH SCHOOLS Unit of Competency: FUNDAMENTALS OF ELECTRICITY Module No.: 1 Module Title: BASIC ELECTRICITY
  • 2. ACKNOWLEDGMENT Copyright Department of Education 2008 First Published JUNE 2008 This draft was prepared during the Competency-Based Learning Materials Development Workshop conducted at the Marikina Hotel, Marikina City on February 18-22, 2008 and finalized on May 23-25, 2008 at the Development Academy of the Philippines (DAP), Tagaytay City. This learning instrument was developed by the following personnel: Technology Teacher: Mr. Lyndon L. Catequista Marcelo I. Cabrera Vocational High School San Aquilino, Roxas, Oriental Mindoro Contextual Teacher: Ms. Gina C. delos Santos A.F.G. Bernardino Memorial Trade School Lias, Marilao, Bulacan Facilitators: Dr. Corazon Echano TechVoc Task Force Encoder: Mr. Lemuel C. Valles Administrative Officer II Educational Information Division Fund: Department of Education REFERENCES AND FURTHER READING 1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana Publishing: 1999. 2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National Bookstore: 1991. 3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd Edition. 4. Cardenas, Elpidio J . Fundamental and Elements of Electricity.
  • 3. TABLE OF CONTENTS Page How to Use this Module ......................................................................................... i Introduction.......................................................................................................... ii Technical Terms................................................................................................... iii Learning Outcome 1: Apply relevant electrical theories and principles … … … … … … 1  Learning Experiences/Activities .................................................................. 2  Information Sheet 1.1 ................................................................................. 3  Self-Check 1.1............................................................................................. 6  Activity Sheet 1.1 ........................................................................................ 8 Learning Outcome 2: Identify sources of electricity ……….……………....................10  Learning Experiences/Activities ................................................................ 11  Information Sheet 2.1 ............................................................................... 12  Self-Check 2.1........................................................................................... 16  Activity Sheet 2.1 ...................................................................................... 18 Learning Outcome 3: Perform taps, splices and joints on electrical c o n d u c t o r s … … … … … … … … … … … … … … … … … … … … … … … … . . . . . . . . . . . . . . . . . . . . 19  Learning Experiences/Activities ................................................................ 20  Information Sheet 3.1 ............................................................................... 22  Self-Check 3.1........................................................................................... 26  Operation Sheet 3.1 .................................................................................. 27  Operation Sheet 3.2 .................................................................................. 28  Job Sheet 3.1 ............................................................................................ 30 Learning Outcome 4: Connect electrical circuit … … … … … … … … … … … … … … … … . . 3 2  Learning Experiences/Activities ................................................................ 33  Information Sheet 4.1 ............................................................................... 34  Self-Check 4.1........................................................................................... 36  Information Sheet 4.2 ............................................................................... 37  Self-Check 4.2........................................................................................... 38  Activity Sheet 4.1 ...................................................................................... 39  Activity Sheet 4.2 ...................................................................................... 41 Learning Outcome 5: Identify resistor … . . . . . … … … … … … … … … … … … … … … … … … . . 4 3  Learning Experiences/Activities ................................................................ 44  Information Sheet 5.1 ............................................................................... 45  Self-Check 5.1........................................................................................... 51  Activity Sheet 5.1 ...................................................................................... 52  Job Sheet 5.1 ............................................................................................ 53 Learning Outcome 6: Identify capacitors and convert capacitor value…..…………..56  Learning Experiences/Activities ................................................................ 57  Information Sheet 6.1 ............................................................................... 58  Self-Check 6.1........................................................................................... 62  Activity Sheet 6.1 ...................................................................................... 63 Answer Key 1.1 ................................................................................................... 64 Answer Key 2.1 ................................................................................................... 65 Answer Key 3.1 ................................................................................................... 67 Answer Key 4.1 ................................................................................................... 68 Answer Key 4.2 ................................................................................................... 69 Answer Key 5.1 ................................................................................................... 70 Answer Key 6.1 ................................................................................................... 71
  • 4. i HOW TO USE THIS MODULE Welcome to the Module “Basic Electricity”. This module contains training materials and activities for you to complete. The unit of competency “Fundamentals of Electricity” contains the knowledge, skills and desirable attitude required for Building Wiring Installation course National Certificate (NC) Level II. You are required to go through a series of learning activities in order to complete each of the learning outcomes of the module. In each learning outcome there are Information Sheets, Job Sheets, Operation Sheets and Activity Sheets. Do these activities on your own and answer the Self-Check at the end of each learning activity. If you have questions, do not hesitate to ask your teacher for assistance. Recognition of Prior Learning (RPL) You may already have some or most of the knowledge and skills covered in this module. If you can demonstrate competence to your teacher in a particular skill, talk to your teacher so you do not have to undergo the same training again. If you have a qualification or Certificate of Competency from previous trainings, show it to him/her. If the skills you acquired are consistent with and relevant to this module, they become part of the evidence. You can present these for RPL. If you are not sure about your competence / skills, discuss this with your teacher. After completing this module ask your teacher to assess your competence. Result of your assessment will be recorded in your competency profile. All the learning activities are designed for you to complete at your own pace. In this module, you will find the activities for you to complete and relevant information sheets for each learning outcome. Each learning outcome may have more than one learning activity. This module is prepared to help you achieve the required competency in receiving and relaying information. This will be the source of information that will enable you to acquire the knowledge and skills in Building Wiring Installation NC II independently at your own pace or with minimum supervision or help from your teacher.
  • 5. ii Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTICITY Module Title: Basic Electricity INTRODUCTION: This module contains information and suggested learning activities on the fundamental and elements of electricity. It includes instruction and procedure on basic electricity. This module consists of six (6) learning outcomes. Each learning outcome contains learning activities supported by instruction sheets. Before you perform the instruction sheets, read the information sheets and answer the self-check and activities provided to ascertain to yourself and your teacher. He /she will check if you have acquired the knowledge necessary to perform the skill portion of the particular learning outcome. Upon completing this module, report to your teacher to assess your performance. If you pass the assessment, you will be given a certificate of completion. SUMMARY OF LEARNING OUTCOMES: Upon completion of the module, you should be able to: LO 1. LO 2. LO 3. LO 4. LO 5. LO 6. apply relevant electrical theories and principles; identify sources of electricity; perform taps, splices and joints on electrical conductor; connect electrical circuits; identify resistor; and identify capacitors and convert capacitor value. ASSESSMENT CRITERIA: Refer to the assessment criteria of learning outcomes # 1-4 of this module. PREREQUISITE: None
  • 6. iii TECHNICAL TERMS Ampere is the standard unit used in measuring the strength of an electric current. Atom is the smallest particle of molecule in which an element can be divided. Current is the flow or the rate of the flow of electric force in a conductor. Electricity is a form of energy generated by friction, induction or chemical change. Electron has a magnetic, chemical and radiant effect. It is also the negatively charged particle of an atom. Joint is a process whereby one length of wire is connected or tapped together. Neutron is the particle of an atom which do not carry electrically charged. Nick is a slight cut on wire. Ohms is the unit of electrical resistance. Power is the rate at which heat is generated. Proton is the positively charged particle of an atom. Resistance is the opposition to the flow of current. Skinning /Stripping is a process of removing wire insulation. Solder is a fusible metal or alloy used for joining metallic surfaces or margins Splice is termed “straight joint”; a series connection of a pair of conductor or cables. Taping is the method of insulating conductor joints. Taps is the connection of one wire to some along the run of another wire Volt is the unit of measure for voltage. Voltage is the electrical pressure that causes the electrons to move through a conductor. Wire stripper is a tool used to cut and remove wire insulation from wire.
  • 7. 1 Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTICITY Module Title: Basic Electricity Learning Outcome 1: Apply relevant electrical theories and principles Assessment Criteria: 1. The principles and theories of electron are applied when dealing with electrical works. 2. The atomic structure is illustrated. References: 1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana Publishing: 1999. 2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National Bookstore: 1991. 3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd Edition. 4. Cardenas, Elpidio J . Fundamental and Elements of Electricity.
  • 8. 2 LEARNING EXPERIENCES/ACTIVITIES Learning Outcome 1: Apply relevant electrical theories and principles Learning Activities Special Instruction 1. Read Information Sheet 1.1 about the relevant electrical theories and principles. 2. Perform the Activity Sheet 1.1 on a separate sheet of paper. Answer Self-Check 1.1.
  • 9. INFORMATION SHEET 1.1 PRINCIPLES AND THEORIES OF ELECTRON Electricity is a property of the basic particle of matter which, like an atom, consists of proton, electron and neutron. The electron is the negatively charged particle of an atom which is sometimes referred to as the negatively charge of electricity. On the other hand, the proton is the positively charged particle of an atom which is sometimes referred to as the positively charge of electricity that weighs about 1850 times as much as the electron. The neutron is the particle which is not electrically charged and weighs slightly more than proton. Molecular theory 1. All matters are made up of molecules. 2. All molecules are made up of atoms. 3. All the atoms contain neutron, electrons and protons. 5. The entire neutron is neutral, hence, neither positively nor negatively charged. 6. The electron of an atom of any substance could be transferred to another atom. The electron theory The electron theory states that all matter is made up of electricity. Matter is anything which has weight, occupies space is made up of molecules, of which millions of different kinds. The molecules in turn, are made up of atoms of which are the smallest units of the several elements and of a limited number. All atoms believed to be composed of electrons, which are minute particle of negative electricity normally held in place in each atom by positively charged particles called nucleus. Thus, the electron, which are interlocked in the atoms, are constantly revealing at great speeds in orbits around positive nuclei. In a normal atom, the amount of negative electricity of the electrons is exactly neutralized by an equal amount of opposite or positive electricity of the nucleus. Thus, a normal atom exhibits no external sign of electrification. Structure of an atom All atoms consist of two basic parts: a body at the center of the atom called the nucleus, orbiting around the nucleus. Atoms may have more than one orbiting electron, but each atom contains only one nucleus. Electron Nucleus 3
  • 10. The attraction between the nucleus and the electron is called electrostatic force, which holds the electron in an orbit. Bodies that attract each other in this special electrostatic way are described as charged object. The electron carries the negative charge (-), while the nucleus carries the positive charge (+). The positive charge of the nucleus is due to the particles called protons which are found inside the nucleus and have a positive charge equal to the electron’s negative charge. The structure of neutrons in the atoms showing the position of its proton, electron, nucleus and neutron is shown below. Nucleus Electron Electron force holds the electron orbit. Proton Electron Nucleus 4
  • 11. First Law of Electrostatics The protons and electrons attract each other inside the atom. It has been known that by nature, unlike charges (like the positive protons and negative electrons) attract each other while like charges repel each other; meaning, electrons and protons repel each other’s protons. Like charges repel each other 5 Unlike charges attract each other
  • 12. SELF-CHECK 1.1 I. Directions: Read the following sentences carefully. Write the letter of your answer on a separate sheet of paper. 1. The same electrical charge each other. A. attracts B. repel C. destroy 2. It is neither positively nor negatively charge. A. electron in motion B. electrostatic force C. neutron D. atom D. neutralize 3. It is the equal number of electron and proton in an atom. A. positive B. negative C. neutral D. none of the above 4. The electron theory states that all matter is made of . A. neutron B. atom C. electron D. molecules 5. It is the smallest particle of molecule. A. ion B. proton C. electron D. atom II. Directions: Read each question below then, choose the correct answer. Write your answer on a separate sheet of paper. 1. What is the nature of matter? 2. How will you prove that electricity is a matter? 3. What is molecule made up? 4. What is the neutral particle of an atom? neutron atom 6 molecule occupies space has weight
  • 13. III. Directions: Read each question carefully. Choose the letter of the correct answer in the box below. Write your answer on a separate answer sheet. 1. What is found at the center body of an atom? 2. What do you call the attraction between the nucleus and the electron? 3. What do you call the positively charged particle of an atom? 4. What do you call the negatively charged particle of an atom? 5. What particle of an atom is not electrically charged? A-Electron B-neutron C-proton 7 D-proton E-nucleus F-electrostatic force
  • 14. ACTIVITY SHEET 1.1 Attraction by a charge object Supplies and Materials  Comb  Small pieces of paper  Dry woolen cloth  Ballon  Wall  Dry fine sand Working Drawing 8 COMB Procedure BALLON 1. Put the tip of your comb near the small pieces of paper. What happened? 2. Rub your comb briskly with a dry woolen cloth. 3. Put again the tip of your comb towards some tiny pieces of paper. What happened to the tiny pieces of paper? Compare your observation with the second step. 4. Rub the inflated balloon with the woolen cloth. 5. Put the balloon against the wall. Why did the balloon stick on the wall? Do you think the same will happen without rubbing the balloon? 6. Rub the balloon with the woolen cloth again. 7. Hold the balloon over very dry fine sand. What happened to the sand as you brought the balloon near to it? What kind of electricity was produced when you rubbed two materials of different kind?
  • 15. 9 Observation Steps Remarks / Comments First Step Second Step Third Step Forth step Fifth step Sixth step Seventh step
  • 16. 10 Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTRICITY Module Title: Basic Electricity Learning Outcome 2: Identify sources of electricity Assessment Criteria: 1. Brief history of electricity is discussed 2. The sources of electricity are identified. 3. The principles and operations of each source are explained. References: 1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana Publishing: 1999. 2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National Bookstore: 1991. 3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd Edition. 4. Cardenas, Elpidio J . Fundamental and Elements of Electricity; National Bookstore: 1989.
  • 17. 11 LEARNING EXPERIENCES/ACTIVITIES Learning Outcome 2: Identify sources of electricity Learning Activities Special Instruction 1. Read the Information Sheet 2.1 about the brief history and sources of electricity 2. Answer the Self-Check 2.1. 3. Read Information Sheet 2.2 about the types of mechanical power plants. 4. Answer the Self-Check 2.2. 5. Answer the Activity Sheet 2.1.
  • 18. 12 INFORMATION SHEET 2.1 HISTORY OF ELECTRICITY Electricity plays an important role in man’s conquest for existence .It has been said that it is here with us since the beginning of the time. In 600 B.C, Thales a Greek philosopher accidentally discovered static electricity. Noticing that his garment had bits of hair and straw, Thales decided to remove them by rubbing piece of amber stone on his clothes. To his surprise, several pieces of straw clung to the amber when rubbed on the clothes, the amber became electrified and it attracted the pieces of straw. Thales simply wrote the incident and did not do anything about it because he could not explain the mystery. He did not know that he had just discovered static electricity. In 1600, William Gilbert, an English Physician was able to put an electrical charged on the objects by means of friction or rubbing. He observed that two materials when rubbed together received opposite charges, that is, one object got a positive charge and the other a negative charge. He also noticed that two oppositely charged materials attract each other. Gilbert experiment was a re-discovery of static electricity, the word static means standing still or at rest. The Greek word for amber stone is “ ELEKTRON” and so the term electricity came about. Great persons who involved in the discovery of electricity: 1760- Benjamin Franklin, An American scientist, proved that atmospheric electricity (lightning) and static electricity are the same. 1800- Alessandro Volta, An Italian Professor, discovered the voltaic file by means of stocking zinc plate (-) and silver plate (+). 1819- Hans Christian Oestered, A Danish Physicist proved in an experiment that current electricity can produced a magnetic field. 1831 Michael Faraday, An English scientist discovered the first electric generator. 1831- Samuel Morse, developed the telegraph. 1868-George de Clanche, developed the first practical dry cell. 1878-Charles Brush, invented the arc lamp 1879- Thomas Alba Edison, perfected the first electric bulb
  • 19. Sources of electricity 13 1. Friction -It is a static electricity which is generated by rubbing two materials. - It is a great deal of the world’s electricity produced by batteries. These devices generate a different potential means of chemical action. - Two dissolution metals bonded together in a junction when heated, exhibits a difference of potential. Such bond is called thermocouple. The trip of an iron wire, for example, may be welded to that of a copper wire. When, this junction is heated, the iron wire shows a positive charge and the copper wire has a negative charge. Electricity generated by heat action is called thermoelectric. - Photo cells are semi-conduction devices which convert light electrical energy directly into electrical energy. 2. Chemical action 3. Heat action 4. Light action Either sunlight or artificial illumination may be employed. This action is due to the ability of lights energy to free electrons from the atoms of the semi- conductor material. This process is called photo- electricity. 5. Pressure - It is a difference of potential appears across the face of certain crystal such as quarts, when they are squeezed or stretched. This is called piezo-electricity. 6. Mechanical action - All electricity in large useful amount is at present produced by rotating machines working with the use of magnets. These machines, known as generator, are turned by water power, gas engines or steam engines and sometimes by electric motor. There are many different types of mechanical power plants to produce electrical energy. Hydropower is an energy obtained from flowing water. Energy in water can be harnessed and used in the foot motive energy or temperature differences. The most common application is the dam. Power produced by the fall of water from a higher to a lower level and extracted by means of waterwheels or hydraulic turbines. Hydro-power is a natural resource available wherever a sufficient volume of steady water flow exists.
  • 20. Nuclear Power is the method in which steam is produced by heating water through a process called nuclear fission. In a nuclear power plant, a reactor contains a core of nuclear fuel, primary enriched uranium. When atoms of uranium fuel are hit by neutrons they fission (split), releasing heat neutrons. Nuclear power is an electrical power produced from energy released by controlled fission or fusion of atomic nuclei in a nuclear reaction. Mass is converted into energy and the amount of released energy greatly exceeds that from chemical processes such as combustion. Solar Power is a power derived from the energy of the sun. A radiant energy produced in the Sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called photons which interact with the earth’s atmosphere and surface. Wind Power is the kinetic energy of wind extraction of this wind turbines. machine converts or the energy by Windmill wind into useful energy. This energy is derived from the force of wind acting on oblique blades or sails that radiate from a shaft. The turning shaft may be connected to machinery used milling grain, pumping water, or generating to perform such work as electricity. When the shaft is connected to a load, such as a pump, the device is typically called a windmill. When it is used to generate electricity, it is known as a wind turbine generator. Fossil Fuel Power Plant (FFPP) – (also known as steam electric power plant in the 14
  • 21. US, thermal power plant in Asia, or power station in UK). The most common source of energy is fossil fuel. Fossil fuels include coal, oil, and natural gas. Fossil fuel is formed from the remains of plant and animals which live thousands of years ago. The burning of those fossil fuel provides energy which can be used to generate electricity. Geothermal power comes from heat energy buried beneath the surface of the earth. In some areas of the country, enough heat rises close to the surface of the earth to heat underground water into steam which can be tapped for use in steam- turbine plants. Geothermal Power is the energy extracted from the heat generated by natural concentrations of hot water and steam in the earth’s interior. It can be used in electric power generation and direct heat applications such as space heating and industrial drying processes. Tides is another kind of energy that involves water. Ocean tides can be used to turn turbines to generate electricity. For this to be possible, a dam must be built across the month of a bay. Water then in trapped behind the dam at the high tide. At the low tide, the water is allowed to run out through the dam and used to turn on electrical generator. 15
  • 22. SELF-CHECK 2.1 I. Directions: Match Column A with Column B. Write your answer on a separate answer sheet. A B 1. Friction a. two metals bounded together in junction by thermocouple process 2. Chemical action b. electricity produced by rotating machine 3. Heat action c. electricity generated by rubbing two materials 4. Light action d. electricity produced by batteries 5. Prezo-electricity e. a process of photo-electricity 6. Mechanical action f. an action of squeezing or stretching crystal 7. Magnet g. imaginary lines along which the attraction or repulsion of a magnet act 8. Magnetic induction h. a body having the property of polarity and of attraction and repulsion found in the nature. 9. Thermoelectricity i. potential difference appears across the faces of quartz when squeezed 10. Pressure j. electricity generated by heat action. II. Direction: From the given words below, choose the correct word that will complete the sentence. Write your answer on a separate sheet of paper. 16 fossils fuels geothermal tidal energy nuclear energy biomass energy solar energy 1. It is the energy that comes from the sun. 2. It is the energy that involves water. 3. It is the energy that comes from the inner core of the earth. 4. It is the result from the splitting or fission of atomic nuclei. 5. It is the energy formed from the remains of plant and animals which lived thousands of years ago.
  • 23. III. Directions: Choose the letter of the correct answer. Write your answer in your notebook. 1. The following are the sources of energy except: A. sun B. nuclear reaction C. fossil fuel D. transformer 2. Which is a nonrenewable source of energy? A. fossil fuel B. solar energy C. tidal energy D. wind energy 3. Which is non-conventional source of energy? A. fossil fuel B. gasoline C. solar energy D. hydroelectric power 4. The Makiling-Banahaw Plant in Laguna is an example of . A. nuclear power plant B. geothermal plant C. hydroelectric power plant D. fossil fuel- fired plant 5. What source of energy is shown in the picture? A. fossil fuel B. solar energy C. wind energy D. tidal energy 17
  • 24. ACTIVITY SHEET 2.1 In the pictures below, trace and explain the process of the different power plants on how they produce electricity. Nuclear power 18 Hydroelectric power
  • 26. 20 Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTICITY Module Title: Basic Electricity Learning Outcome 3: Perform taps, splice and joint electrical conductors Assessment Criteria: 1. Different types of taps splices and joints are identified according to their uses. 2. Techniques in skinning electrical wire are demonstrated. 3. Methods of tapping splicing and joining electrical wires are performed according to the prescribed procedure. 4. Safety procedure in tapping splicing and joining electrical wires is observed. References: 1. Azares, Efren F. and Recana, Cirilo B. Practical Electricity III; Adriana Publishing: 1999. 2. Agpaoa, Feleciano. Interior and Exterior Wiring Troubleshooting; National Bookstore: 1991. 3. Fajardo, Max B. and Fajardo, Leo R. Electrical Layouts and Estimates. 2nd Edition. 4. Cardenas, Elpidio J . Fundamental and Elements of Electricity; National Bookstore: 1989.
  • 27. 21 LEARNING EXPERIENCES/ACTIVITIES Learning Outcome 3: Perform taps, splices and joints on electrical conductors Learning Activities Special Instructions 1. Read the attached Information Sheet 3.1 about splices and joints.  Ask the assistance of your teacher if needed. 2. Answer the Self-Check 3.1.  Provide a separate sheet of paper for your answers. 3. Perform the Operation Sheet 3.1 on how to remove the insulation.  Follow the procedure carefully. 4. Read the Job Sheet 3.1 on how to remove the insulation.
  • 28. INFORMATION SHEET 3.1 TAPS, SPLICES AND JOINTS Method of Skinning Electrical Wire Removing the insulation in preparing the insulated conductors for making joints or splices, the insulation must first be removed from each conductor a proper distance depending upon the type of joint or splice to be made. This process is called skinning or stripping. Cleaning the Conductor After removing the insulation, the wires must be thoroughly cleaned to ensure good electric contact between the ends of the wires so that the solder will adhere properly. The wire may be cleaned by scraping. Different electrical wires, splices and joints Types of taps, Splices and Joints of Conductor Rat tail joints are used to join conductors in outlet boxes or when fixture leads are connected through conductors. The joints are made by skinning about 2 inches, the end of the conductor is to be joined. Then twist the bare conductors about six times. Western Union Short tie splice - To make the splice, the wires are first skinned Twists Cross End turns Tape 22
  • 29. for about 3 inches at the ends. They are then placed in crossed position about 1 inch from the insulation. Four or five short turns are then wrapped on each side of the longest twist, and the free ends cut off and squeezed down closed to the straight position of the wire so that they will not extend over the surface of the short turns and permit the sharp to cut through the tape with the splice to be wrapped. Western Union Long Tie Splice is used extensively for outside wiring and is quite similar to the short tie splice. It is also being used for interior wiring. The difference is that a number of long twist are made before wrapping the end turns. This is done so to withstand greater stress of pressure on the wire. The wire for this splice are bared about 4 ½ inches. They are then placed in the form of an X at a point midway between the insulation and the end of the base wire. Five or six long twists are then made and each side those turns are wrapped. 23 Britannia Splice is used in interior wiring where solid wires of No. 6 AWG gauge or larger sizes are to be joined and where large wire connectors or pliers are not at hand. The two wires are based for about 4 inches in a No. 6 wire. About ½ inch of the extreme end of each beat to almost a right angle to the straight portion of the conductor. A wrapping wire made of No. 18 bare wire copper is then cut to about 6 ft. in length and prepared by cleaning and bending in half. The large conductors are then laid together, one bent end pointing upward and the other downward. The center of the wrapping wire is then brought to the center of the conductor, one half of which is wrapped in one direction and other remaining half in the other as far as the best portion. The free ends are then forced through the grooves from one ends to the other end of the other of the large single conductors. The best ends are then cut off close to the joint. Scarfed splice. It is used only on a large solid wire where there is an objection to the bulkiness of the Western Union or Britannia splice. The wires are bared for about 3 inches when a No. 6 wire is used.
  • 30. The bared wire is then filed to a wedge shape starting about ½ inch from the insulations. A piece of No. 18 bare copper wire is cut to about 5 ft. in length and prepared by cleaning and bending in half. The two file sides of the conductors are then laid together and wrapping wire wound around them as similarly done in Britannia Splice. The wrapping is completed by winding about six and seven turns of the free ends around the unfilled portion of the conductor. 24 Multiple wrapped cable splice is used more extensively on small strand wires and cables because these stands are more pliable and may be wound together without much difficulty. Large strands are rigid and require considerable time in making such a splice. To make the splice, the ends of the conductors are skinned at the distance of about 6 inches. The strands are cleaned and spread about apart. Next, the strands are cut about 3 inches from the insulation to right angle with the conductor. The strands of both conductors are then laced together, one group of strands wounds in the opposite direction. Care should be done that all strands in each group are wrapped simultaneously and parallel to one another. Plain tap or Tee Joints is used to a great extent joining a tap or other conductor to a through conductor, as for example, a branch or main circuit. To make the joint, skin the tap wire about 2 inches and the main wire about 1 inch. Next, the wires are crossed intersecting about ¼ inch from the insulation of the tap wire and the main wire. A hook or sharp bend is then made in the tap and about five or six turns wound around the main wire. The joint is soldered and tape. Care must be taken that the solder flows and sticks through all the crevices and that the tape covers all part of the conductors, beginning and ending on the original insulation. Knotted or loop, tap joint is very strong joint and will not untwist even enough strain is placed upon it. It is occasionally used in practice, particularly for temporary lighting systems, where time is not taken to solder joints. To make the join using No. 14 AWG wire, the tap wire is skinned about 3 inches and is then placed Solder Solder
  • 31. over the insulation of the tap and main wire. The tap wire is bent and hooked over the main wire and brought forward and bent over itself. Lastly, the remaining portion is wound into four or five short turns around the main wire. Wrapped Tap, Tee Joint is used on large solid conductors where is difficult to wrap the heavy tap wire around the main wire. When a No. 6 AGW wire is used, both the main wire and the tap wire are skinned about 4 inches. The tap wire is bent into an L shape about ½ inches from the insulation so that it will rest along the side of the main wire. A wrapping wire is then prepared using size No. 18 bare conductors terminating beyond the bent of tap wire and up to the installation of the main conductor. Ordinary Cable Tap or Tee Joint is used where large stranded wire or cables are tapped to a through conductor. To make the joint, the main strands should be scraped through with a knife blade or sandpaper. The tap wire of similar wire size cable should be skinned about 6 inches distance and the strands separated or fanned each strands of the tap into the shape. The main cable is placed into this V-shaped space and forced down to within 1 inch from the insulation of the tap conductor. One group of tap wires is then wound around the main conductor, each strands should be placed parallel to the other, and all wrapped at the same time and in one direction. The other group is wound in similar manner but in opposite directions. Split Cable Tap or Tee Joint is used where stranded cables or wire are tapped to a through conductor. 25 ordinary cable tap and will This joint is stronger than the not unwrap even though a strain is placed upon it prior soldering. To make this joint, the main wire is skinned a distance of 5 inches No. 14 American Wire Gauge (AWG) wire size is used and the strands thoroughly scraped as for the ordinary cable tap. The strands are next divided in half by forcing the screw driver through the center of the bared portion of the main wire. The tap wire is prepared by skinning it about 6 inches, scraping each strand until thoroughly cleaned and fanning out the strands so that they can be pushed around the space in the main wire. A space about 1 ½ inch should be left between the main wire and the insulation of the tap wire. In completing
  • 32. the joint, one group is wound around the main conductor, in one direction; and the second group is wound in the opposite direction. 26 The Through Fixture Joint is used where fixtures are connected to branch wires at an intermediate point. In making this joint, the end of one conductor is skinned about 2 inches and the other about 4 inches. At a point ¼ inches away from the insulation of the longer wire, three or four long twists are made similar to the rat-tail joint. The long bared portion of the long wire is bent over parallel with the free ends. Both free ends are then place alongside each other wrapped together around the straight bared portion. Safety procedure in splicing and joining wire Before the splice is made, the insulation is first removed on both ends with the use of an electrician’s knife or diagonal pliers. An electrician should be very careful in removing wire insulation in order that the wire will not be nicked by the knife or pliers to prevent breaking. However, a specially designed tool to avoid nicks is called automatic wire stripper. The function of the tool is to cut the wire insulation and remove it automatically by inserting the wire corresponding to the size of hole in the wire stripper. After removing the insulation, the end of the wire is twisted firmly. When the joint has been made, the correct practice is to solder it to prevent loose contact and to have a continuous flow of electricity. The splice and joint are then covered properly with an electrical tape in order to prevent short circuit.
  • 33. SELF-CHECK 3.1 I. Direction: Label the following splices and joints. Write your answer on a separate answer sheet. II. Direction: Write the letter of the correct answer in your notebook. 27 1. It is the method of removing insulation from electrical conductor. A. Pulling B. Grabbing C. Skinning D. Gripping 2. What should be done to an insulator from conductor before splicing or joining the wire? A. Pull B. Remove C. Grab D. Grip 3. What should be the next procedure after removing an insulator from conductor for soldering a wire? A. Clean B. Twist C. Rub D. Scrub
  • 34. 28 OPERATION SHEET 3.1 REMOVING THE INSULATION Materials  Wire conductor - stranded # 14 or 12 (2m) - solid # 14 or 12 (2m) Tools and Equipment  Side cutting pliers  Line man’s pliers  Wire stripper  Personal protective equipment - gloves Procedures 1. Using a wire stripper: a. Assume the proper length of insulation to be removed then place the wire end at the jaw of the wire stripper. b. Grip the handle with minimum pressure. c. Pull the wire or the stripper side ward until such time that the wire and the insulator are separated. 2. Using side cutting pliers. a. Place the wire to be stripped between the handle grips close behind the gutter/plier hidge. b. Squeeze the insulator enough to soften it and break down. - Check the wire if there is a nick. (Note: Nick will cause the wire to break easily). 3. Cleaning the wire. - Scrape the wire. 4. Perform good housekeeping.
  • 35. 29 Assessment Criteria: The students will be evaluated based on the following: Criteria Points Allotted Gained SKINNING 20 pts. No nick of wire 10 Cleaning of wire 10 WORKMANSHIP 10 pts.  Execution of using tool 5  Cutting 5 SPEED 10 pts.  Before allotted time 5  Within allotted time 3  After allotted time 2 SAFETY 5 pts.  Use appropriate PPE 3  Use PPE but not appropriate 2  No PPE 0 USE OF TOOLS 5 pts.  Use tool properly all the time 2  Use tools properly most of the time 2  Use tools properly sometime 1  Improper use of tools 0 TOTAL 50 pts.
  • 36. 30 JOB SHEET 3.1 TAPS SPLICE AND JOINT THE WIRE Materials  Wire conductor - stranded # 14 or 12 (2m) - solid # 14 or 12 (2m) Tools and Equipment  Side cutting pliers  Line man’s pliers  Long nose  Personal protective equipment - gloves Procedure 1. Prepare the necessary tools, materials and equipment. 2. Wear the appropriate PPE. 3. Skin the electrical wire to be spliced and joined, following the procedure on skinning the electrical wire. (Note: Check the wire if there is a nick. Should be very careful in removing wire insulation in order that the wire will not be nicked by the knife or pliers to prevent from breaking) 4. Splice and joint the wires. 5. Do 10 types of wire splices and joints. Follow procedure on the information sheet.
  • 37. 31 Assessment Criteria The students will be evaluated based on the following: Criteria Points Allotted Gained PROPER SPLICE AND JOINT OF WIRE 20 pts Procedure follow 10 . Firmness of twisted or wound wire 10 WORKMANSHIP 10 pts.  Execution of using tool 5  Cutting 5 SPEED 10 pts.  Before allotted time 5  Within allotted time 3  After allotted time 2 SAFETY 5 pts.  Use appropriate PPE 3  Use PPE but not appropriate 2  No PPE 0 USE OF TOOLS 5 pts.  Use tool properly all the time 2  Use tools properly most of the time 2  Use tools properly sometime 1  Improper use of tools 0 TOTAL 100% Note: One point is deducted for every error.
  • 38. 32 Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTRICITY Module Title: Basic Electricity Learning Outcome 4: Connect electrical circuit Assessment Criteria: 1. Types of electric circuits are identified. 2. Value of voltage, current and resistance are computed. 3. Series and parallel circuit connection is demonstrated in accordance with the standard procedure. References: 1. Magalindan, Fe S., Ph. D., De Guzman, Dionisia G., Ph. D. de la Rosa, Juanito, and Asprer, Fe F., Technology and Home Economics. 1994
  • 39. 33 LEARNING EXPERIENCES/ACTIVITIES Learning Outcome 4: Connect electrical circuit Learning Activities Special Instructions 1. Read the Information Sheet 4.1 about parts and kinds of circuit. 2. Answer the Self-Check 4.1.  Try to answer the Self-Check without looking at the information sheet. 3. Read the Information Sheet 4. 2 about Ohm’s Law and Power Law. 4. Answer the Self-Check 4.2.  Use a separate sheet of paper as your answer sheet. 5. Perform the Activity Sheet 4.1 on Bulb in Series.  Follow the procedures carefully. 6. Perform the Activity Sheet 4.2 on Bulb in Parallel.
  • 40. B3 INFORMATION SHEET 4.1 ELECTRIC CIRCUIT Parts of a Complete Circuit In order that electricity can be better understood different parts or components of a complete circuit must be known well. First, the electrical circuit should have a source of power where the electric current starts to flow. The power source can be a generator, storage cell one or more cells. Second, a path such as electrical wires is needed in order that electricity from the source can be transmitted. Third, there should be a current- consuming device or appliance that will consume or use electricity. And lastly, a control or switch that will cut off the flow of current, when the appliance will not be in use. All the requirements mentioned are important in order to have complete electrical circuit. The absence of one will not make a complete electric circuit. Electrical path source of power current consuming device Switch Parts of complete circuit Types of circuit 1. Series Circuit. In a series circuit, many bulbs are wired one after the other, so that when one of the bulb is busted, all will not light up. The reason is that the current cannot pass through the bulb because of the filament is cut. So there is no continuity for current in order to go back to the power source. In a series connection, electricity flows through each electrical device. You have to observe that the two bulbs connected in series would light more brightly than if there were three bulbs in the circuit. The brightness of the light depends on the amount flowing in each device. B1 B2 Switch Series circuit Source of Power 34
  • 41. B1 B2 B3 Laws of series circuit:  The total resistance in the circuit is the sum of all individual resistances.  The current throughout the circuit is the same.  The total voltage in the circuit is equal to the sum of the individual voltages. 2. Parallel Circuit. This is the circuit whereby two or more bulbs are wired with each bulb having its own circuit. This means that if one is busted, the other bulb will still light up because current passes separately in each circuit. In a parallel circuit, the electric current flows and only a part of the total current in the circuit goes through each bulb. Each bulb has a circuit of its own with the battery so the electric current flowing through each bulb moves in a different path in the circuit. Laws of parallel circuit:  The voltage is the same across each branch.  The total current is the sum of all the current in each circuit.  The total resistance is less or approximately equal to the smallest resistive branch 35
  • 42. 36 SELF-CHECK 4.1 I. Directions: Match Column A with Column B. Write only the letter on a separate answer sheet. A B 1. Switch a. current cannot pass through the bulb when the other filament of the bulb is cut 2. Source of power b. caused the load to light up 3. Conductor c. consumes power 4. Load d. electrical path 5. Series circuit connection e. bulb has its own circuit f. control the circuit II. Directions: Tell whether the following idea refer to a series or parallel circuit. Write S if the answer is series and P if it is parallel on a separate sheet of paper. 1. The total current is the sum of all the current in each circuit. 2. The current throughout the circuit is the same. 3. The voltage is the same in all the circuits. 4. The total resistance in the circuit is the sum of all individual resistances. 5. The total voltage in the circuit is equal to the sum of the individual voltages.
  • 43. 37 INFORMATION SHEET 4.2 Ohm’s Law and Power Law If we are going to study the meaning of electricity deeper, there are three essential elements involved. These are voltage, current and resistance. George Simon Ohm, a German scientist, discovered in 1826 the relations among them. The discovery led to one of the major laws in electricity called Ohm’s Law. Each of the elements has its own unit of measurement, volt for voltage, ampere for current, ohm for resistance. Volt is named after Alessandro Volta, a physicist whose invention made volt as an electrical pressure needed in allowing one ampere of current pass through resistance of one ohm. Another inventor, named Andre Marie Ampere, a physicist and Mathematician, whose one ampere of current is the rate of flow of charge passing in a wire conductor that is equal to one coulomb per second. Electric power is measured in watts, abbreviated W as a unit. This unit is named after James Watt, a Scotch inventor. It is equal to the product of the voltage multiplied by the current. The total power of a circuit is obtained by multiplying the total current by the voltage. The statement of Ohms law The amount of current through the material varies directly to the applied voltage and varies inversely to the resistance. Summary of the Ohm’s Law and Power Law Unit of measure Symbol Formula VOLTAGE Volt E or V E= I x R CURRENT Ampere I I = E / R RESISTANCE Ohms R or Ω R = E / R POWER Watt W P = E x I
  • 44. SELF-CHECK 4.2 Direction: Find the missing quantity for each of the circuits below. 1. 2. 3. 4. 5. 6. 5Ω I=2A V=? I=2A R=? 20V R=5Ω I=? 10V R=? 100V I=500A R=10Ω I=0.4A V=? 25 Ω I=? 50V 7. An electric heater is rated at 100V and has a hot resistance of 30 ohms. What current will flow through it? 8. An ammeter shows a bulb is using 4 amperes from a 120V source. What is the resistance? 9. An electric appliance with a resistance of 60 ohms must draw 5A to operate correctly. What is the correct voltage to use? 10. How much power is consumed by the machine having a current flow of 6 ampere supplied by a 220 volt line? 38
  • 45. ACTIVITY SHEET 4.1 BULB IN SERIES Supplies and Materials  2 pieces 1.5 batteries  2 pieces bulb  1 meter wire  3 pieces socket  1 piece switch  Electrical tape Tool  Pliers  Screw drivers Working Drawing 39 Procedure 1. Construct an electrical circuit and connect two bulbs in series. circuit and observe the brightness of the light. Close the
  • 46. 40 2. Add one more bulb in the set up. Describe the change in the brightness of the bulb. In which setup do the bulbs light more brightly? 3. Unscrew one of the bulbs and close the circuit. Observe what happens. 4. Trace the flow of the electric current. How are the bulbs arranged in a series circuit? Observation Steps Remarks / Comments First Step Second Step Third Step Forth step
  • 47. ACTIVITY SHEET 4.2 BULB IN PARALLEL Supplies and Materials  2 pieces 1.5 batteries  2 pieces bulb  1 meter wire  3 pieces socket  1 piece switch  Electric tape Tool  Pliers  Screw drivers Working Drawing 41 Procedure 1. Connect two sockets with bulbs to a dry cell. Observe the brightness of their lights. 2. Add one more bulb in the setup. Observe the brightness of their light. Does the adding a bulb in the setup affect the brightness of the bulb?
  • 48. 42 3. Unscrew one bulb in the set up and close the circuit. 4. Unscrew another bulb in the setup. Why does the turning off of one or two bulbs break the circuit? 5. Trace the path of the electric current flow beginning from the source. How many paths can the electric current take before returning to the source? Observation Steps Remarks / Comments First Step Second Step Third Step Forth step Fifth step
  • 49. 43 Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTRICITY Module Title: Basic Electricity Learning Outcome 5: Identify resistors value. Assessment Criteria: 1. Different types of resistors are identified. 2. Resistor value is determined according to its color code. 3. Importance of resistor tolerance is discussed. References: 1. Enriquez, Michael Q., Gantalao, Fred T., and Lasala, Rommel M. Simple Electronics, 2004. 2. Velasco, Benjamin S., Electronics Components Testing Simplified, 1994.
  • 50. 44 LEARNING EXPERIENCES/ACTIVITIES Learning Outcome 5: Identify resistor value Learning Activities Special Instructions 1. Read the Information Sheet 5.1 about resistor and its color code. 2. Answer the Self-Check 5.1.  Try to answer the Self-Check without looking at the information sheet.  Provide a separate sheet of paper as your answers. 3. Answer the Activity Sheet 5.1 on how to identify resistor value. 4. Perform the Activity Sheet 5.1 on how to decode resistor value.  Follow the procedure carefully.
  • 51. INFORMATION SHEET 5.1 RESISTOR Resistors are one of the most common electronic components. A resistor is a device that limits or resists the flow of current. Resistor can be made from many different materials but the most common is carbon composition. The current limiting ability or resistance can be varied by charging the ratio of carbon to binding agent. Resistance is measured in ohms, represented by the Greek symbol omega (Ω). Types of resistors 1. Carbon Composition is made either by hot or cold molding from mixtures of carbon and clay binder. Its resistive value ranges from 10 ohms to mega ohms, in power ranges from 1/8 to 4 watts. It has the ability to withstand higher current surges and ruggedness. This type is as well popular. It is made from a mixture of carbon powder and glue-like binder. To increase the resistance, less carbon is added. These resistors show predictable performance, low inductance, and low capacitance. Power ratings range from about 1/4 to 2 W. Resistances range from 1 Ohm to about 100 MOhm, with tolerances around +/- 5 percent. 45
  • 52. 2. Carbon Film is made from carbon graphite, mixed with powdered material. It has insulating two main characteristics; resistance and power rating. Carbon resistor is available in resistance values from tenths of ohms to hundred of mega ohms. 3. Metal Film is formed by means of vacuum decomposition, a process by which a number of different metal or metal oxide film is deposited insulating on a mandrel suitable or core. Nickel and chromium are deposited in the alumina ceramic core and the unit is then subjected to laser trimming. 4. Wire wound highly resistive wire is wrapped around the insulating core. The length of the wire determines the device. resistance of the Insulating cores are usually made of cement of ceramic materials or just plain paper or pressed cardboard. This type of resistor provides low resistance. The unit is encased by insulating materials. 46
  • 53. Resistor color coding Table showing the color band and its numerical value Reading a 4-color band resistor Reading a 5-color band resistor 47
  • 54. Examples of resistor reading: 1. A carbon resistor coded BROWN, GREEN, BLACK, and GOLD has the resistance value of 15 Ohms, and a tolerance of ± 5%. 2. Resistance reading of a carbon composition resistor using the color code. 48
  • 55. 3. Decoding the resistance value of a carbon composition-type resistor using the color code. 4. Determine the resistor value of a carbon composition resistor using the color code. 49
  • 56. 5. Determine the resistance reading of a carbon-type using the EIA color code. 50
  • 57. 51 SELF-CHECK 5.1 Directions: Identify the following. Write the answer on your paper. 1. It is made from carbon graphite, mixed with powdered insulating material. 2. It is highly resistive wire wrapped around insulating core. 3. It is made either by hot or cold molding from mixtures of carbon and clay binder. 4. It is formed by means of vacuum decomposition, a process by which a number of different metal or metal oxide film are deposited on a suitable insulating mandrel or core. 5. It is a device that limits or resists the current.
  • 58. ACTIVITY SHEET 5.1 IDENTIFY RESISTOR VALUE Perform this activity by following the specific instructions/question below: 1. What is the resistance value of a carbon resistor coded YELLOW, VIOLET, YELLOW and NONE as shown below? Instruction below 2. Determine the resistance value of a carbon resistor coded ORANGE, WHITE, ORANGE and SILVER as shown below. 52
  • 59. 3. Determine the resistance value of a carbon resistor coded GREEN, BLUE, YELLOW and NONE as shown below. 4. What is the resistance value of a carbon resistor coded BLUE, GRAY, RED and GOLD as illustrated below? 53
  • 60. 5. What is the resistance value of a carbon resistor coded ORANGE, WHITE, YELLOW and NONE as shown below? 54
  • 61. 55 ACTIVITY SHEET 5.1 READ RESISTOR VALUE Materials  10 different resistors Procedure Read the equivalent of the first, second, third and fourth color band, tolerance and its coded value that correspond on the table. RESISTOR No. FIRST COLOR SECOND COLOR THIRD COLOR FOURTH COLOR CODED VALUE (ohms) TOLERANCE, ±% 1 2 3 4 5 6 7 8 9 10 Table 1. Reading a carbon resistor Assessment Criteria Score Remarks 10 Excellent 8-9 Very satisfactory 6-7 Satisfactory 1-5 Fair
  • 62. 56 Program/Course: BUILDING WIRING INSTALLATION NC II Unit of Competency: FUNDAMENTALS OF ELECTRICITY Module Title: Basic Electricity Learning Outcome 6: Identify capacitors and convert capacitor value Assessment Criteria: 1. Different types of capacitors are identified. 2. Capacitor value is converted. References: 1. Enriquez, Michael Q., Gantalao, Fred T., and Lasala, Rommel M. Simple Electronics, 2004. 2. Velasco, Benjamin S., Electronics Components Testing Simplified, 1994.
  • 63. 57 LEARNING EXPERIENCES/ACTIVITIES Learning Outcome 6: Identify capacitor and convert capacitor value Learning Activities Special Instruction 1. Read the Information Sheet 6.1 about capacitors. 2. Answer the Self-Check 6.1.  Try to answer the Self-Check without looking at the information sheet.  Provide a separate sheet of paper for your answers. 3. Answer the Activity Sheet 6.1.
  • 64. INFORMATION SHEET 6.1 CAPACITORS INTRODUCTION Capacitor is a device that stores energy in the electric field created between a pair of conductor on which equal but opposite electric charge have been placed. A capacitor is occasionally referred to using the older term condenser. A capacitor has two or more conducting plates segregated from each other by good insulating material called dielectric. Types of capacitor 1. Electrolytic capacitor is made of electrolyte, basically conductive salt in solvent. Leaky condition can be checked by connecting the ohmmeter test leads across the capacitor in one polarity. 2. Ceramics are made with materials such as titanium acid barium for dielectric. Internally, these capacitors are not constructed as a coil, so they are suited for use in high frequency applications. They are shaped like a disk, available in very small capacitance value and very small size. 3. Polyester film (mylar) uses a thin polyester film as a dielectric. Not as high tolerance polypropylene, but cheap, temperature stable, readily available, widely used. Tolerance is approximately 5% to 10%. It can be quite large depending on capacitor rate voltage and so many are not be suitable for all application. 58
  • 65. 4. Mica is an extremely accurate device with very low leakage currents. It is constructed with alternate layers of metal foil and mica insulation, stacked and encapsulated. These capacitors have small capacitances and are often used in high frequency circuits (eg. : RF circuits). They are very stable under variable voltage and temperature conditions. Tolerances range from +/-0.25 to +/-5 percent. Capacitances range from 1 pf to 0.01 uF, with maximum voltage ratings from 100 V to 2.5 kV. This capacitor uses a thin polyester film as a dielectric. 59
  • 67. Examples: 1. 3,200 picofarad ±5% = 0.0032 microfarad ±5% 2. 380 picofarad ±10% = 0.00038 microfarad ±10% 3. 460,000 picofarad = 0.46 microfarad 4. 2,000 picofarad = 2,000K 5. 22,000 picofarad = 0.022 microfarad 61
  • 68. 62 SELF-CHECK 6.1 Direction: Identify the following. Write your answer on your paper. 1. What type of capacitor is not constructed as coil, suited for use in high frequency applications? 2. What type of capacitor is an extremely accurate device with very low leakage currents? 3. What device can store energy in the electric field? 4. What type of capacitor is made of electrolyte? 5. What type of capacitor uses a thin polyester film as a dielectric?
  • 69. ACTIVITY SHEET 6.1 Direction: Give the equivalent value of the capacitor. 1. = 2. = 3. = 4. = 5. = 63
  • 70. 64 ANSWER KEY 1.1 I. Directions: Read the following sentences carefully. Write the letter of your answer on a separate sheet of paper. 1. The same electrical charge B each other. A. attracts B. repel C. destroy D. neutralize 2. It is neither positively nor negatively charged. D . A. electron in motion B. electrostatic force C. neutron D. atom 3. It is the equal number of electron and proton in an atom. C . A. positive B. negative C. neutral 4. The electron theory states that all matter is made of C . A. neutron B. atom C. electron D. molecules 5. It is the smallest particle of molecule. D . A. ion B. proton C. electron D. atom II. Directions: Read each question, then choose the correct answer in the box below. Write your answer on a separate sheet of paper. 1. What is the nature of matter? HAS WEIGHT 2. How will you prove that electricity is a matter? OCCUPIES SPACE 3. What is molecule made up? ATOM 4. What is the neutral particle of an atom? NEUTRON III. Directions: Read each question carefully. Choose the letter of the correct answer in the box below. Write your answer on a separate answer sheet. 1. What is found at the center body of an atom? NUCLEUS 2. What do you call the attraction between the nucleus and the electron? ELECTROSTATIC FORCE 3. What is the positively charged particle of an atom? PROTON 4. What is the negatively charged particle of an atom? ELECTRON 5. What particle of an atom which is not electrically charged? NEUTRON
  • 71. 65 ANSWER KEY 2.1 I. Directions: Match Column A with Column B. Write your answer on a separate answer sheet. A B c 1. Friction a. two metals bounded together in junction by thermocouple process d 2. Chemical action b. electricity produced by rotating machine j 3. Heat action c. electricity generated by rubbing two materials e 4. Light action d. electricity produced by batteries f 5. Prezo-electricity e. a process of photo-electricity 6. Mechanical action f. an action of squeezing or stretching crystal b h 7. Magnet g. imaginary lines along which the attraction or repulsion of a magnet act g 8. Magnetic induction h. a body having the property of polarity and of attraction and repulsion found in the nature. a 9. Thermoelectricity i. Potential difference appears across the faces of quartz when squeezed i 10. Pressure j. electricity generated by heat action. II. Direction: From the given words below, choose the correct word that would complete the sentence. Write your answer on a separate sheet of paper. fossils fuels geothermal tidal energy nuclear energy biomass energy solar energy Solar energy 1. It is the energy that comes from the sun. Tidal energy 2. It is the energy that involves water. Geothermal 3. It is the energy that comes from the inner core of the earth. Nuclear energy 4. It is the result from the splitting or fission of atomic nuclei. Fossil fuels 5. It is the energy formed from the remains of plant and animals which lived thousands of years ago.
  • 72. III. Directions: Choose the letter of the correct answer. Write your answer on your notebook. D 1. The following are the sources of energy except: A. sun B. nuclear reaction C. fossil fuel D. transformer A 2. Which is a nonrenewable source of energy? A. fossil fuel B. solar energy C. tidal energy D. wind energy C 3. Which is non-conventional source of energy? A. fossil fuel B. gasoline C. solar energy D. hydroelectric power B 4. The Makiling-Banahaw Plant in Laguna is an example of . A. nuclear power plant B. geothermal plant C. hydroelectric power plant D. fossil fuel- fired plant D 5. What source of energy is shown in the picture? A. fossil fuel B. solar energy C. wind energy D. tidal energy 66
  • 73. ANSWER KEY 3.1 I. Directions: Label the following splices and joints. Write your answer on a separate answer sheet. 67 PLAIN TAP OR TEE BRITANNIA KNOTTED OR LOOP RAT TAIL WRAPPED TAP II. Direction: Write the letter of the correct answer o your notebook. C 1. It is the method of removing insulation from electrical conductor. A. Pulling B. Grabbing C. Skinning D. Gripping D 2. What should be done to an insulator from conductor before splicing or joining the wire? A. Pull B. Remove C. Grab D. Grip A 3. What should be the next procedure after removing an insulator from conductor for soldering a wire? A. Clean B. Twist C. Rub D. Scrub
  • 74. 68 ANSWER KEY 4.1 I. Directions: Match Column A with Column B. Write your answer on a separate answer sheet. A B f 1. Switch a. current cannot pass through the bulb when the other filament of the bulb is cut b 2. Source of power b. caused the load to light up d 3. Conductor c. consumes power c 4. Load d. electrical path a 5. Series circuit connection e. bulb has its own circuit f. control the circuit II. Directions: Tell whether the following ideas is a series or parallel circuit. Write S if the answer is series and P if it is parallel on a separate sheet of paper. P 1. The total current is the sum of all the current in each circuit. S 2. The current throughout the circuit is the same. P 3. The voltage is the same in all the circuits. S 4. The total resistance in the circuit is the sum of all individual resistances. S 5. The total voltage in the circuit is equal to the sum of the individual voltages.
  • 75. ANSWER KEY 4.2 Directions: Find the missing quantity for each of these circuits. 1. 2. 3. 4. 5. 6. 5Ω I=2A V=10 I=2A R=10 20V R=5Ω I=2 10V R=.2 100V I=500A R=10Ω I=0.4A V=4.4 50V 7. An electric heater is rated at 100V and has a hot resistance of 30 ohms. What current will flow through it? 3.3 A 8. An ammeter shows a bulb is using 4 amperes from a 120V source. What is the resistance? 30 Ω 9. An electric appliance with a resistance of 60 ohms must draw 5A to operate correctly. What is the correct voltage to use? 300 V 10. How much power is consumed by the machine having a current flow of 6 ampere supplied by a 220 volt line? 1,320 W 25 Ω I=2 69
  • 76. 70 ANSWER KEY 5.1 Directions: Identify the following. Write the answer on your paper. CARBON FILM 1. It is made from carbon graphite, mixed with powdered insulating material. WIRE WOUND 2. It is highly resistive wire wrapped around insulating core. CARBON COMPOSITION 3. It is made either by hot or cold molding from mixtures of carbon and clay binder. METAL FILM 4. It is formed by means of vacuum decomposition, a process by which of a number of different metal or metal oxide film are deposited on a suitable insulating mandrel or core. RESISTOR 5. It is a device that limits or resists the current.
  • 77. 71 ANSWER KEY 6.1 Directions: Identify the following. Write your answer on your paper. CERAMIC 1. What capacitor is not constructed as coil, suited for used in high frequency applications? MICA 2. What type of capacitor that is an extremely accurate device with very low leakage currents? CAPACITOR 3. What device that stores energy in the electric field? ELECTROLYTIC 4. What capacitor is made of electrolyte? POLYESTER FILM 5. What capacitor uses a thin polyester film as a dielectric?