SlideShare a Scribd company logo
1 of 28
Download to read offline
Mathematics II
Center of Mass
Definition
โ€ข Mass is a measure for the amount of substance / amount of substance
contained in an object
โ€ข Weight is the mass of an object that is affected by the force of gravity
โ€ข The center of mass and center of gravity is a point where the center of
the mass or weight of a line (1-D object), a plane (2-D object ) or a
space (3-D object) is concentrated. The location of the center of mass
is not affected by the gravity, while the center of gravity is influenced
by the gravity. Thus, the location of the center of mass does not always
coincide with the location of the center of gravity.
โ€ข Location of the center of mass:
โ€“ Located in the middle of a straight (homogeneous) line
โ€“ Located at the intersection of the diagonal of a plane (2-D object) and space (3-D
object0 for a homogeneous object in a regular shape.
โ€“ It can be located inside or outside the object depending on its homogeneity and
shape.
โ€ข Length is the measure of the line (1-D object) occupied by a substance
โ€ข Area is the size of the plane (2-D object) occupied by a substance
โ€ข Volume is a measure of the space (3-D object) occupied by a
substance
โ€ข Mass density is a measure of the concentration of mass on an object.
If the density is the same throughout the object, it is called
homogeneous or has a constant density.
Dimension Mass Density Formula Unit (IS)
1 l l = M/L kg/m
2 s s = M/A kg/m2
3 r r = M/V kg/m3
Center of Mass of a Plane
0 X-axis
Y-axis
โ€ข The picture beside is a plane of mass M
โ€ข The plane is divided (vertically) into n partitions of
mass ๏„m M
๏„mi
โ€ข See the partition i of mass ๏„mi.
โ€ข The partition has a center of mass in the middle of
plane at the coordinate (xi
*, yi
*)
yi*
xi*
โ€ข Each partition ๏„m has center of mass (xi
*, yi
*); i =
1,2, .. n
โ€ข On the whole, the object of mass M has a center of
mass at the coordinate ( าง
๐‘ฅ, เดค
๐‘ฆ)
0 X-axis
Y-axis
าง
๐‘ฅ
เดค
๐‘ฆ
โ€ข To find the center of mass
าง
๐‘ฅ, เดค
๐‘ฆ , we will use the concept of first moment
Concept of First Moment
โ€ข The first moment (ML) of a plane relative to a line L
is the product of multiplication of the mass and the
direct distance between the center of mass and the
line L.
0 X-axis
Y-axis
าง
๐‘ฅ
เดค
๐‘ฆ
โ€ข The moment on the Y-axis is called My, and the
moment on the X-axis is called Mx
๐‘€๐‘ฆ = าง
๐‘ฅ. ๐‘€
๐‘€๐‘ฅ = เดค
๐‘ฆ. ๐‘€
0 X-axis
Y-axis
โ€ข M, My, and Mx actually are the limit of summation
of the mass, the Y-moment and the X-moment
from all partition (see the picture in the right)
M
๏„mi
โ€ข For the partition i of mass ๏„mi, with center of
mass (xi*, yi*) :
yi*
xi*
โ€ข For all partitions of the plane, then :
โˆ†myi = xi* . โˆ†mi
โˆ†mxi = yi* . โˆ†mi
๐‘€๐‘ฆ โ‰ˆ ๐‘ฅ1
โˆ—
. โˆ†๐‘š1 + ๐‘ฅ2
โˆ—
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘–
โˆ—
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘›
โˆ—. โˆ†๐‘š๐‘›
๐‘€ โ‰ˆ โˆ†๐‘š1 + โˆ†๐‘š2 + โ‹ฏ + โˆ†๐‘š๐‘– + โ‹ฏ + โˆ†๐‘š๐‘›
โ‰ˆ เท
๐‘–=1
๐‘›
โˆ†๐‘š๐‘–
โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฅ๐‘–
โˆ—
. โˆ†๐‘š๐‘–
๐‘€๐‘ฅ โ‰ˆ ๐‘ฆ1
โˆ—
. โˆ†๐‘š1 + ๐‘ฆ2
โˆ—
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘–
โˆ—
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘›
โˆ—. โˆ†๐‘š๐‘› โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฆ๐‘–
โˆ—
. โˆ†๐‘š๐‘–
Thus, for n approaching infinity, the limits are :
Since M = ฯƒ A,
then dM = ฯƒ dA
My
dM
Mx dM
(ฯƒ = mass density for 2-D objects)
So, center of mass of a plane (for homogenous s) can be expressed :
Center of mass of plane under a curve
X-axis
a=0
Y-axis
)
(x
f
y =
b
๏„xi
)
( i
x
f
๏„Ai
Xi
*
๏„Ai have a mass of ๏„mi.
๏„mi = s ๏„Ai = s f(xi) ๏„xi
Accumulate ๏„Ai and ๏„mi, take the
limit, then state in integral form:
๏„Ai = f(xi) ๏„xi
๐ด = เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘€ = ฯƒ เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ฯƒ. ๐ด
Note : in this case, xi* is located in the middle of partition i
X-axis
a=0
Y-axis
)
(x
f
y =
b
xi
yi
*
The partition i has center of mass (xi*, yi*)
๏„Ai
xi
*
Identify the position of xi* and yi*
xi* = xi and
๐‘€๐‘ฆ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
yi* = ยฝ f(xi)
โˆ†๐‘š๐‘ฆ๐‘–= ๐‘ฅ๐‘–
โˆ—
โˆ†๐‘š๐‘– = ๐‘ฅ๐‘–
โˆ—
๐œŽโˆ†๐ด๐‘–
Identify the moments of โˆ†myi and โˆ†mxi
โˆ†๐‘š๐‘ฅ๐‘–= ๐‘ฆ๐‘–
โˆ—
โˆ†๐‘š๐‘– = ๐‘ฆ๐‘–
โˆ—
๐œŽโˆ†๐ด๐‘–
Accumulate ๏„myi and ๏„mxi, take the limit,
then state in integral form:
๐‘€๐‘ฅ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
1
2
๐‘“ ๐‘ฅ . ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =
๐œŽ
2
เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
๐‘‘๐‘ฅ
So, the center of mass of
the plane will be:
=
๐œŽ โ€ซืฌโ€ฌ๐‘Ž
๐‘
๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
๐œŽ๐ด
=
1
2
๐œŽ โ€ซืฌโ€ฌ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
๐‘‘๐‘ฅ
๐œŽ๐ด
sb. y
b
a
)
(x
f
y =
)
(x
g
y =
0 sb. x
๏„xi
xi
)
(
)
( i
i x
g
x
f โˆ’
๏„Ai
Note : in this case, xi* is located in the middle of partition i
๏„Ai have a mass of ๏„mi.
๏„mi = s ๏„Ai = s (f(xi)-g(xi)) ๏„xi
Accumulate ๏„Ai and ๏„mi, take the
limit, then state in integral form:
๏„Ai = f(xi)-g(xi) ๏„xi
๐ด = เถฑ
๐‘Ž
๐‘
(๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ
๐‘€ = ฯƒ เถฑ
๐‘Ž
๐‘
(๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ = ฯƒ. ๐ด
The partition i has center of mass (xi*, yi*)
yi
*
Identify the position of xi* and yi*
xi* = xi and yi* = ยฝ (f(xi) - g(xi)) + g(xi)
= ยฝ (f(xi) + g(xi))
xi
*
sb. y
b
a
)
(x
f
y =
)
(x
g
y =
0 sb. x
๏„xi
xi
)
(
)
( i
i x
g
x
f โˆ’
๏„Ai
xi
*
yi
*
๐‘€๐‘ฆ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ(๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ
Accumulate ๏„myi and ๏„mxi, take the limit,
then state in integral form:
๐‘€๐‘ฅ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
1
2
(๐‘“ ๐‘ฅ + ๐‘”(๐‘ฅ)). (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ =
๐œŽ
2
เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
โˆ’ ๐‘” ๐‘ฅ 2
๐‘‘๐‘ฅ
So, the center of mass of
the plane will be:
=
๐œŽ โ€ซืฌโ€ฌ๐‘Ž
๐‘
๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ
๐œŽ๐ด
=
1
2
๐œŽ โ€ซืฌโ€ฌ๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
โˆ’ ๐‘” ๐‘ฅ 2
๐‘‘๐‘ฅ
๐œŽ๐ด
Find the center of mass of a region bounded by : f(x) = 4 โ€“ x2,
x = 0, and y = 0. (At first quadrant)
โˆ†x 2 x
y
0
f(x) = 4 โ€“ x2
4
x
f(x)
M = s A
x* = x
My = M x* = s A x
M = s A
y* = ยฝ f(x)
Mx = M y* = s A ยฝ f(x)
M = s A =
16
3
๐œŽ
โˆ†๐ด = ๐‘“ ๐‘ฅ โˆ†๐‘ฅ
๐ด = เถฑ
0
2
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
So, the center of mass is (3/4, 8/5)
+
+
โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. ๐‘“ ๐‘ฅ โˆ†๐‘ฅ
๐‘€๐‘ฆ = ๐œŽ เถฑ
0
2
๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
= ๐œŽ เถฑ
0
2
๐‘ฅ 4 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ
= ๐œŽ
= ๐œŽ ๐œŽ
โˆ†๐‘€๐‘ฅ = 1
2
๐œŽ. ๐‘“ ๐‘ฅ 2โˆ†๐‘ฅ
๐‘€๐‘ฅ = 1
2
๐œŽ เถฑ
0
2
๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ
= ๐œŽ
= ๐œŽ
= ๐œŽ
๐œŽ
=
4๐œŽ
เต—
16
3 ๐œŽ
=
3
4
=
เต—
128
15 ๐œŽ
เต—
16
3 ๐œŽ
=
8
5
Find the center of mass of a region bounded by parabola y2 = 10x and
line y = x, if Mass density ฯƒ = 1.
0
sb. y
sb. x
10
y2 = 10x
y = x
10
x* = x
y* = ยฝ [f(x) - g(x)] + g(x)
= ยฝ [f(x) + g(x)]
M = s A = 1. A = A
โˆ†x
x
f(x)-g(x)
= 4
= 5
So, the center of mass is (4, 5)
โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. โˆ†๐ด
= x.
๐‘€๐‘ฆ = เถฑ
0
10
๐‘ฅ 10. ๐‘ฅ
1
2 โˆ’ ๐‘ฅ ๐‘‘๐‘ฅ
โˆ†๐‘€๐‘ฅ = ๐œŽ. ๐‘ฆ. โˆ†๐ด
= ๐œŽ. ๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ = ๐œŽ. 1
2
(๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ )(๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ
MX
Center of Mass of
A Solid of
Revolution(1)
โ€ข A region bounded by y = f(x), x = a, x = b, and X-axis, is
rotated around X-axis.
โ€ข Approximate the volume of the partition, add up,
take a limit and state ini integral form:
๏„V = ๏ฐr2h โ†’ ๏„Vi = ๏ฐ f(xi)2๏„xi
V = lim ๏ƒฅ ๏ฐ f(xi)2๏„xi
โ€ข Partition ๏„Vi has a mass of ๏„mi :
๏„mi = r ๏„Vi = r ๏ฐ f(xi)2๏„xi
M = lim ๏ƒฅ r ๏ฐ f(xi)2๏„xi
โ€ข Moment ๏„Mi to YOZ-plane (๏„Myz) :
๏„Myz = xi*r๏„Vi = xi*r๏ฐf(xi)2๏„xi
Myz = lim ๏ƒฅ xi* r ๏ฐ f(xi)2๏„xi
โ€ข So, the center of mass is :
๏„xi
๏„xi
xi
y
z
x
)
(x
f
)
( i
x
f
r =
y
x
b
a = 0
b
a = 0
)
(x
f
y =
๏ฐ
๏ฐ
Note: here, ฯ is mass density for 3-D object
Center of Mass of
A Solid of
Revolution (2)
โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X-
axis, rotated around Y-axis.
โ€ข Using shell method:
๏„V = 2๏ฐrh๏„r โ†’ ๏„Vi = 2๏ฐxif(xi)๏„xi
โ€ข Partition ๏„Vi has a mass of ๏„mi
๏„mi = r ๏„Vi = 2r๏ฐxif(xi)๏„xi
โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz)
๏„Mxz = yi* r ๏„Vi = yi* r 2๏ฐxif(xi)๏„xi = ยฝ f(xi) r 2๏ฐxif(xi)๏„xi
โ€ข So, the center of mass is :
a=0
x
b
x
๏„x
)
(x
f
y =
f(x)
y
bโ€™
r = x
๏„x
h = f(x)
a=0
x
b
y
bโ€™
z
Mxz
M = 2r๏ฐ
Center of Mass of
A Solid of
Revolution (3)
โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X-
axis, rotated around Y-axis.
โ€ข Using washer method:
๏„V = ๏ฐ(R2-r2)h โ†’ ๏„Vi ๏‚ป ๏ฐ(b2-f(yi)2)๏„yi
โ€ข Partition ๏„Vi has a mass of ๏„mi
๏„mi = r ๏„Vi = r๏ฐ(b2-f(yi)2)๏„yi
โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz)
๏„Mxz = yi* r ๏„Vi = yi* r๏ฐ(b2-f(yi)2)๏„yi
โ€ข So:
a=0
x
b
2
x
y =
y
bโ€™
๏„y
r=x=f(y)
R = b
y
bโ€™
a=0
z
x
๏ฐ
๏ฐ
Mxz
Find the center of mass of a region bounded by: y = 4 โ€“ x2, x =
0, and y = 0, rotated around X-axis, if Mass Density = 1.
โˆ†x 2 x
y
0
Y = 4 โ€“ x2
4
x
y
M = r V
x* = x
Myz = M x* = r V x
M = r V = V
So, the center of mass is (5/8, 0)
Find the center of mass of a region bounded by: y = 4 โ€“ x2, x =
0, and y = 0, rotatetd around Y-axis, if mass density = 1.
โˆ†x 2 x
y
0
Y = 4 โ€“ x2
4
x
y
M = r V
y* = ยฝ y
Mxz = M y* = r V ยฝ y
M = r V = V
So, the center of mass is (0, 4/3)
Mxz
Mxz
a
b
Exercise
2
y
x =
y
x โˆ’
= 6
2
Y
6
X
0
6
Calculate the center of mass of the solid of
revolution:
1. If the plane is rotated around the X-axis
2. If the plane is rotated around the Y-axis
4
y
y = 2x
2
2
x
y =
x
Calculate the center of mass of the solid of
revolution:
1. If the plane is rotated around the X-axis
2. If the plane is rotated around the Y-axis
Moment of Inertia
โ€ข Moment of inertia (IL) of a mass with respect to a
line-L is the second moment of a plane to line-L. It
is the multiplication of the mass and the square of
the distance (perpendicular) between the elements
to L.
โ€ข Moment of inertia with respect to X-axis is Iy, and
Moment of inertia with respect to Y-axis is Ix
Moment of Inertia of A Plane
0 sb. x
sb. y
yi*
xi*
๏„mi
๐ผ๐‘ฆ โ‰ˆ ๐‘ฅ1
โˆ—2
. โˆ†๐‘š1 + ๐‘ฅ2
โˆ—2
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘–
โˆ—2
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘›
โˆ—2
. โˆ†๐‘š๐‘› โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฅ๐‘–
โˆ—2
. โˆ†๐‘š๐‘–
๐ผ๐‘ฅ โ‰ˆ ๐‘ฆ1
โˆ—2
. โˆ†๐‘š1 + ๐‘ฆ2
โˆ—2
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘–
โˆ—2
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘›
โˆ—2
. โˆ†๐‘š๐‘› โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฆ๐‘–
โˆ—2
. โˆ†๐‘š๐‘–
Moment Inertia of A Plane
If n approaching infinity then :
M = ฯƒ A dM = ฯƒ dA
(ฯƒ = mass density for 2-D)
๐ผ๐‘ฅ = lim
๐‘›โ†’โˆž
เท
๐‘–=1
๐‘›
๐‘ฆ๐‘–
โˆ—2
โˆ†๐‘š๐‘– = เถฑ๐‘ฆ2๐‘‘๐‘€
๐ผ๐‘ฆ = lim
๐‘›โ†’โˆž
เท
๐‘–=1
๐‘›
๐‘ฅ๐‘–
โˆ—2
โˆ†๐‘š๐‘– = เถฑ๐‘ฅ2๐‘‘๐‘€
With the same steps as we did for center of mass equations,
try to generate the equations for moment inertia using integral.

More Related Content

Similar to 5_Math-2_2024_center of mass aand MI.pdf

Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesIJMER
ย 
Esercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfEsercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfBEATRIZJAIMESGARCIA
ย 
MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1Fathur Rozaq
ย 
Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalVrushali Nalawade
ย 
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...FREE LAUNCER
ย 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaVrushali Nalawade
ย 
CM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdfCM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdfRusselMiranda6
ย 
Chapter 4
Chapter 4Chapter 4
Chapter 4krishn_desai
ย 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappingsiosrjce
ย 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volumeLawrence De Vera
ย 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxinfantsuk
ย 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureFroyd Wess
ย 
Triple Integral
Triple IntegralTriple Integral
Triple IntegralHusseinAli272
ย 
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSPaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSMezban Habibi
ย 
Ap review total
Ap review totalAp review total
Ap review totaljsawyer3434
ย 
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES   PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES Mazharul Islam
ย 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)MariaFaithDalay2
ย 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Propertyinventionjournals
ย 

Similar to 5_Math-2_2024_center of mass aand MI.pdf (20)

Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
ย 
Esercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfEsercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdf
ย 
MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1
ย 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanics
ย 
Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numerical
ย 
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
ย 
Solution set 3
Solution set 3Solution set 3
Solution set 3
ย 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
ย 
CM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdfCM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdf
ย 
Chapter 4
Chapter 4Chapter 4
Chapter 4
ย 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
ย 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volume
ย 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
ย 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions Lecture
ย 
Triple Integral
Triple IntegralTriple Integral
Triple Integral
ย 
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSPaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
ย 
Ap review total
Ap review totalAp review total
Ap review total
ย 
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES   PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
ย 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
ย 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
ย 

Recently uploaded

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
ย 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
ย 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
ย 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
ย 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
ย 

Recently uploaded (20)

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
ย 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
ย 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
ย 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
ย 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
ย 

5_Math-2_2024_center of mass aand MI.pdf

  • 3. Definition โ€ข Mass is a measure for the amount of substance / amount of substance contained in an object โ€ข Weight is the mass of an object that is affected by the force of gravity โ€ข The center of mass and center of gravity is a point where the center of the mass or weight of a line (1-D object), a plane (2-D object ) or a space (3-D object) is concentrated. The location of the center of mass is not affected by the gravity, while the center of gravity is influenced by the gravity. Thus, the location of the center of mass does not always coincide with the location of the center of gravity. โ€ข Location of the center of mass: โ€“ Located in the middle of a straight (homogeneous) line โ€“ Located at the intersection of the diagonal of a plane (2-D object) and space (3-D object0 for a homogeneous object in a regular shape. โ€“ It can be located inside or outside the object depending on its homogeneity and shape.
  • 4. โ€ข Length is the measure of the line (1-D object) occupied by a substance โ€ข Area is the size of the plane (2-D object) occupied by a substance โ€ข Volume is a measure of the space (3-D object) occupied by a substance โ€ข Mass density is a measure of the concentration of mass on an object. If the density is the same throughout the object, it is called homogeneous or has a constant density. Dimension Mass Density Formula Unit (IS) 1 l l = M/L kg/m 2 s s = M/A kg/m2 3 r r = M/V kg/m3
  • 5. Center of Mass of a Plane 0 X-axis Y-axis โ€ข The picture beside is a plane of mass M โ€ข The plane is divided (vertically) into n partitions of mass ๏„m M ๏„mi โ€ข See the partition i of mass ๏„mi. โ€ข The partition has a center of mass in the middle of plane at the coordinate (xi *, yi *) yi* xi* โ€ข Each partition ๏„m has center of mass (xi *, yi *); i = 1,2, .. n โ€ข On the whole, the object of mass M has a center of mass at the coordinate ( าง ๐‘ฅ, เดค ๐‘ฆ) 0 X-axis Y-axis าง ๐‘ฅ เดค ๐‘ฆ โ€ข To find the center of mass าง ๐‘ฅ, เดค ๐‘ฆ , we will use the concept of first moment
  • 6. Concept of First Moment โ€ข The first moment (ML) of a plane relative to a line L is the product of multiplication of the mass and the direct distance between the center of mass and the line L. 0 X-axis Y-axis าง ๐‘ฅ เดค ๐‘ฆ โ€ข The moment on the Y-axis is called My, and the moment on the X-axis is called Mx ๐‘€๐‘ฆ = าง ๐‘ฅ. ๐‘€ ๐‘€๐‘ฅ = เดค ๐‘ฆ. ๐‘€
  • 7. 0 X-axis Y-axis โ€ข M, My, and Mx actually are the limit of summation of the mass, the Y-moment and the X-moment from all partition (see the picture in the right) M ๏„mi โ€ข For the partition i of mass ๏„mi, with center of mass (xi*, yi*) : yi* xi* โ€ข For all partitions of the plane, then : โˆ†myi = xi* . โˆ†mi โˆ†mxi = yi* . โˆ†mi ๐‘€๐‘ฆ โ‰ˆ ๐‘ฅ1 โˆ— . โˆ†๐‘š1 + ๐‘ฅ2 โˆ— . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘– โˆ— . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘› โˆ—. โˆ†๐‘š๐‘› ๐‘€ โ‰ˆ โˆ†๐‘š1 + โˆ†๐‘š2 + โ‹ฏ + โˆ†๐‘š๐‘– + โ‹ฏ + โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› โˆ†๐‘š๐‘– โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฅ๐‘– โˆ— . โˆ†๐‘š๐‘– ๐‘€๐‘ฅ โ‰ˆ ๐‘ฆ1 โˆ— . โˆ†๐‘š1 + ๐‘ฆ2 โˆ— . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘– โˆ— . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘› โˆ—. โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฆ๐‘– โˆ— . โˆ†๐‘š๐‘–
  • 8. Thus, for n approaching infinity, the limits are : Since M = ฯƒ A, then dM = ฯƒ dA My dM Mx dM (ฯƒ = mass density for 2-D objects) So, center of mass of a plane (for homogenous s) can be expressed :
  • 9. Center of mass of plane under a curve X-axis a=0 Y-axis ) (x f y = b ๏„xi ) ( i x f ๏„Ai Xi * ๏„Ai have a mass of ๏„mi. ๏„mi = s ๏„Ai = s f(xi) ๏„xi Accumulate ๏„Ai and ๏„mi, take the limit, then state in integral form: ๏„Ai = f(xi) ๏„xi ๐ด = เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘€ = ฯƒ เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ฯƒ. ๐ด Note : in this case, xi* is located in the middle of partition i
  • 10. X-axis a=0 Y-axis ) (x f y = b xi yi * The partition i has center of mass (xi*, yi*) ๏„Ai xi * Identify the position of xi* and yi* xi* = xi and ๐‘€๐‘ฆ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ yi* = ยฝ f(xi) โˆ†๐‘š๐‘ฆ๐‘–= ๐‘ฅ๐‘– โˆ— โˆ†๐‘š๐‘– = ๐‘ฅ๐‘– โˆ— ๐œŽโˆ†๐ด๐‘– Identify the moments of โˆ†myi and โˆ†mxi โˆ†๐‘š๐‘ฅ๐‘–= ๐‘ฆ๐‘– โˆ— โˆ†๐‘š๐‘– = ๐‘ฆ๐‘– โˆ— ๐œŽโˆ†๐ด๐‘– Accumulate ๏„myi and ๏„mxi, take the limit, then state in integral form: ๐‘€๐‘ฅ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ 1 2 ๐‘“ ๐‘ฅ . ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐œŽ 2 เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ So, the center of mass of the plane will be: = ๐œŽ โ€ซืฌโ€ฌ๐‘Ž ๐‘ ๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐œŽ๐ด = 1 2 ๐œŽ โ€ซืฌโ€ฌ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ ๐œŽ๐ด
  • 11. sb. y b a ) (x f y = ) (x g y = 0 sb. x ๏„xi xi ) ( ) ( i i x g x f โˆ’ ๏„Ai Note : in this case, xi* is located in the middle of partition i ๏„Ai have a mass of ๏„mi. ๏„mi = s ๏„Ai = s (f(xi)-g(xi)) ๏„xi Accumulate ๏„Ai and ๏„mi, take the limit, then state in integral form: ๏„Ai = f(xi)-g(xi) ๏„xi ๐ด = เถฑ ๐‘Ž ๐‘ (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ ๐‘€ = ฯƒ เถฑ ๐‘Ž ๐‘ (๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ = ฯƒ. ๐ด The partition i has center of mass (xi*, yi*) yi * Identify the position of xi* and yi* xi* = xi and yi* = ยฝ (f(xi) - g(xi)) + g(xi) = ยฝ (f(xi) + g(xi)) xi *
  • 12. sb. y b a ) (x f y = ) (x g y = 0 sb. x ๏„xi xi ) ( ) ( i i x g x f โˆ’ ๏„Ai xi * yi * ๐‘€๐‘ฆ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ(๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ Accumulate ๏„myi and ๏„mxi, take the limit, then state in integral form: ๐‘€๐‘ฅ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ 1 2 (๐‘“ ๐‘ฅ + ๐‘”(๐‘ฅ)). (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ = ๐œŽ 2 เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 โˆ’ ๐‘” ๐‘ฅ 2 ๐‘‘๐‘ฅ So, the center of mass of the plane will be: = ๐œŽ โ€ซืฌโ€ฌ๐‘Ž ๐‘ ๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ ๐œŽ๐ด = 1 2 ๐œŽ โ€ซืฌโ€ฌ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 โˆ’ ๐‘” ๐‘ฅ 2 ๐‘‘๐‘ฅ ๐œŽ๐ด
  • 13. Find the center of mass of a region bounded by : f(x) = 4 โ€“ x2, x = 0, and y = 0. (At first quadrant) โˆ†x 2 x y 0 f(x) = 4 โ€“ x2 4 x f(x) M = s A x* = x My = M x* = s A x M = s A y* = ยฝ f(x) Mx = M y* = s A ยฝ f(x) M = s A = 16 3 ๐œŽ โˆ†๐ด = ๐‘“ ๐‘ฅ โˆ†๐‘ฅ ๐ด = เถฑ 0 2 ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
  • 14. So, the center of mass is (3/4, 8/5) + + โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. ๐‘“ ๐‘ฅ โˆ†๐‘ฅ ๐‘€๐‘ฆ = ๐œŽ เถฑ 0 2 ๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐œŽ เถฑ 0 2 ๐‘ฅ 4 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐œŽ = ๐œŽ ๐œŽ โˆ†๐‘€๐‘ฅ = 1 2 ๐œŽ. ๐‘“ ๐‘ฅ 2โˆ†๐‘ฅ ๐‘€๐‘ฅ = 1 2 ๐œŽ เถฑ 0 2 ๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ = ๐œŽ = ๐œŽ = ๐œŽ ๐œŽ = 4๐œŽ เต— 16 3 ๐œŽ = 3 4 = เต— 128 15 ๐œŽ เต— 16 3 ๐œŽ = 8 5
  • 15. Find the center of mass of a region bounded by parabola y2 = 10x and line y = x, if Mass density ฯƒ = 1. 0 sb. y sb. x 10 y2 = 10x y = x 10 x* = x y* = ยฝ [f(x) - g(x)] + g(x) = ยฝ [f(x) + g(x)] M = s A = 1. A = A โˆ†x x f(x)-g(x)
  • 16. = 4 = 5 So, the center of mass is (4, 5) โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. โˆ†๐ด = x. ๐‘€๐‘ฆ = เถฑ 0 10 ๐‘ฅ 10. ๐‘ฅ 1 2 โˆ’ ๐‘ฅ ๐‘‘๐‘ฅ โˆ†๐‘€๐‘ฅ = ๐œŽ. ๐‘ฆ. โˆ†๐ด = ๐œŽ. ๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ = ๐œŽ. 1 2 (๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ )(๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ MX
  • 17. Center of Mass of A Solid of Revolution(1) โ€ข A region bounded by y = f(x), x = a, x = b, and X-axis, is rotated around X-axis. โ€ข Approximate the volume of the partition, add up, take a limit and state ini integral form: ๏„V = ๏ฐr2h โ†’ ๏„Vi = ๏ฐ f(xi)2๏„xi V = lim ๏ƒฅ ๏ฐ f(xi)2๏„xi โ€ข Partition ๏„Vi has a mass of ๏„mi : ๏„mi = r ๏„Vi = r ๏ฐ f(xi)2๏„xi M = lim ๏ƒฅ r ๏ฐ f(xi)2๏„xi โ€ข Moment ๏„Mi to YOZ-plane (๏„Myz) : ๏„Myz = xi*r๏„Vi = xi*r๏ฐf(xi)2๏„xi Myz = lim ๏ƒฅ xi* r ๏ฐ f(xi)2๏„xi โ€ข So, the center of mass is : ๏„xi ๏„xi xi y z x ) (x f ) ( i x f r = y x b a = 0 b a = 0 ) (x f y = ๏ฐ ๏ฐ Note: here, ฯ is mass density for 3-D object
  • 18. Center of Mass of A Solid of Revolution (2) โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X- axis, rotated around Y-axis. โ€ข Using shell method: ๏„V = 2๏ฐrh๏„r โ†’ ๏„Vi = 2๏ฐxif(xi)๏„xi โ€ข Partition ๏„Vi has a mass of ๏„mi ๏„mi = r ๏„Vi = 2r๏ฐxif(xi)๏„xi โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz) ๏„Mxz = yi* r ๏„Vi = yi* r 2๏ฐxif(xi)๏„xi = ยฝ f(xi) r 2๏ฐxif(xi)๏„xi โ€ข So, the center of mass is : a=0 x b x ๏„x ) (x f y = f(x) y bโ€™ r = x ๏„x h = f(x) a=0 x b y bโ€™ z Mxz M = 2r๏ฐ
  • 19. Center of Mass of A Solid of Revolution (3) โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X- axis, rotated around Y-axis. โ€ข Using washer method: ๏„V = ๏ฐ(R2-r2)h โ†’ ๏„Vi ๏‚ป ๏ฐ(b2-f(yi)2)๏„yi โ€ข Partition ๏„Vi has a mass of ๏„mi ๏„mi = r ๏„Vi = r๏ฐ(b2-f(yi)2)๏„yi โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz) ๏„Mxz = yi* r ๏„Vi = yi* r๏ฐ(b2-f(yi)2)๏„yi โ€ข So: a=0 x b 2 x y = y bโ€™ ๏„y r=x=f(y) R = b y bโ€™ a=0 z x ๏ฐ ๏ฐ Mxz
  • 20. Find the center of mass of a region bounded by: y = 4 โ€“ x2, x = 0, and y = 0, rotated around X-axis, if Mass Density = 1. โˆ†x 2 x y 0 Y = 4 โ€“ x2 4 x y M = r V x* = x Myz = M x* = r V x M = r V = V
  • 21. So, the center of mass is (5/8, 0)
  • 22. Find the center of mass of a region bounded by: y = 4 โ€“ x2, x = 0, and y = 0, rotatetd around Y-axis, if mass density = 1. โˆ†x 2 x y 0 Y = 4 โ€“ x2 4 x y M = r V y* = ยฝ y Mxz = M y* = r V ยฝ y M = r V = V
  • 23. So, the center of mass is (0, 4/3) Mxz Mxz a b
  • 24. Exercise 2 y x = y x โˆ’ = 6 2 Y 6 X 0 6 Calculate the center of mass of the solid of revolution: 1. If the plane is rotated around the X-axis 2. If the plane is rotated around the Y-axis
  • 25. 4 y y = 2x 2 2 x y = x Calculate the center of mass of the solid of revolution: 1. If the plane is rotated around the X-axis 2. If the plane is rotated around the Y-axis
  • 27. โ€ข Moment of inertia (IL) of a mass with respect to a line-L is the second moment of a plane to line-L. It is the multiplication of the mass and the square of the distance (perpendicular) between the elements to L. โ€ข Moment of inertia with respect to X-axis is Iy, and Moment of inertia with respect to Y-axis is Ix Moment of Inertia of A Plane 0 sb. x sb. y yi* xi* ๏„mi ๐ผ๐‘ฆ โ‰ˆ ๐‘ฅ1 โˆ—2 . โˆ†๐‘š1 + ๐‘ฅ2 โˆ—2 . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘– โˆ—2 . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘› โˆ—2 . โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฅ๐‘– โˆ—2 . โˆ†๐‘š๐‘– ๐ผ๐‘ฅ โ‰ˆ ๐‘ฆ1 โˆ—2 . โˆ†๐‘š1 + ๐‘ฆ2 โˆ—2 . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘– โˆ—2 . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘› โˆ—2 . โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฆ๐‘– โˆ—2 . โˆ†๐‘š๐‘–
  • 28. Moment Inertia of A Plane If n approaching infinity then : M = ฯƒ A dM = ฯƒ dA (ฯƒ = mass density for 2-D) ๐ผ๐‘ฅ = lim ๐‘›โ†’โˆž เท ๐‘–=1 ๐‘› ๐‘ฆ๐‘– โˆ—2 โˆ†๐‘š๐‘– = เถฑ๐‘ฆ2๐‘‘๐‘€ ๐ผ๐‘ฆ = lim ๐‘›โ†’โˆž เท ๐‘–=1 ๐‘› ๐‘ฅ๐‘– โˆ—2 โˆ†๐‘š๐‘– = เถฑ๐‘ฅ2๐‘‘๐‘€ With the same steps as we did for center of mass equations, try to generate the equations for moment inertia using integral.