SlideShare a Scribd company logo
1 of 36
Download to read offline
Effects of combining Nb ó
and Mo in
HSLA Steels: From austenite
conditioning to final microstructure

N. Isasti, B. Pereda, B. López, J.M. Rodriguez-Ibabe and Pello Uranga
puranga@ceit.es

CEIT and TECNUN (University of Navarra)

Donostia-San Sebastian, Basque Country, Spain
Summary
MULTIPLE MICROALLOYING

Nb-Mo MICROALLOYED STEELS

• High strength
• Low temperature toughness
Nb-Mo microalloyed steels

Niobium

Molybdenum

Strain
Accumulation
Microstructural
refinement

Increase of
hardenability
Combined effect of Nb-Mo on
• Austenite Conditioning
– Softening kinetics
– Non-recrystallization temperature

• Phase Transformation
– CCT Diagrams
– Unit size and microstructural homogeneity

• Mechanical Properties
– Tensile tests
– Strengthening contributions
CHEMICAL COMPOSITIONS
Materials

Steel

C

Mn

Si

Nb

Mo

Al

N

CMn

0.05

1.58

0.05

-

0.01

0.03

0.005

3NbMo0

0.05

1.6

0.06

0.029

0.01

0.028

0.005

3NbMo16

0.05

1.58

0.04

0.03

0.16

0.027

0.005

3NbMo31

0.05

1.57

0.05

0.028

0.31

0.028

0.005

6NbMo0

0.05

1.56

0.05

0.06

0.01

0.028

0.004

6NbMo16

0.05

1.6

0.05

0.061

0.16

0.03

0.005

6NbMo31

0.05

1.57

0.05

0.059

0.31

0.031

0.005
1. AUSTENITE CONDITIONING
Nb-Mo Steels during hot-working
• The use of Nb is well known because of its effect
retarding recrystallization.
• The addition of Mo to Nb microalloyed steels may
introduce significant changes in the microstructural
evolution during hot working.
• For example, it has been reported that Mo in solid
solution produces a strong retardation effect on
dynamic and static recrystallization.
• Therefore, the combination of both elements
enhances strain accumulation prior to final cooling
strategy.
Static Recrystallization Kinetics
t 0.5  9.92 x10 11  D0   5.6 D0

 0.15

 275000

 180000 


  0.53  exp 
 185   Nbeff 
  exp 
 RT 

 T


Nbeff  Nb
Nbeff
for 0.03% Nb-Mo microalloyed steels
for 0.06% Nb-Mo microalloyed steels
Nbeff

for Nb microalloyed steels

 1.19Nb  0.09Mo

 1.19Nb  0.032Mo

50
3Nb
3Nb-Mo
6Nb
6Nb-Mo16
6Nb-Mo31

DSRX  1.8D



0.56
0

1

t0.5 (cal.)

40

30

20

10

0
0

10

20

30

t0.5 (exp.)

40

50
Dependence of Tnr as a function of the
interpass time ( = 0.4)
1100
1075

Tnr (ºC)

1050

6Nb-Mo31
6Nb

1025

3Nb-Mo31
1000
975

3Nb

950
0

10

20

Interpass time (s)

30

40
Low Nb (0.03%Nb)

Fractional Softening (%)

tip = 10 s,

 = 0.4

100

Tnr = 985ºC

80
60

Precipitation

3Nb

T nr =1026 ºC
40
20

solute drag

3Nb-Mo31

0
7

7.5

8

10000/T (1/K)

8.5

9
High Nb (0.06% Nb)

Fractional Softening (%)

tip = 30 s,

 = 0.4

100

Precipitation

T nr =1030ºC

80

6Nb

60

T nr= 1045ºC
40

6Nb-Mo31

20
0
7

7.5

8

10000/T (1/K)

8.5

9
2. PHASE TRANSFORMATIONS
Thermomechanical schedule
CONTINUOUS COOLING TRANSFORMATION STUDY

Precipitate
dissolution

Austenite
conditioning

Continuous
cooling

Cooling rates: 0.1-200ºC/s

Cycle A→ Undeformed austenite
Cycle B→ Deformed austenite (Strain = 0.4)
Cycle C → Deformed austenite (Strain = 0.8)
Transformation Products
PF
DP

POLYGONAL FERRITE
DEGENERATED PEARLITE

GF

M

QF
BF

BAINITIC FERRITE
MARTENSITE

QUASIPOLIGONAL FERRITE
GRANULAR FERRITE
Continuous Cooling Transformation diagrams (CCT)
EFFECT OF CHEMICAL COMPOSITION
Effect of the addition of Mo
1000

Temperature (ºC)

800

PF
DP

GF+QF

600
BF

400
ºC/s

200
Cycle A

HV

6NbMo0
6NbMo31

200 100 50

20

10 5

2

1

0.5

221 220 240 196 178 170 167 158 154
285 253 229 210 207 199 197 196 176

0.1
139
136

0
0.1

1

Mo↑

10
100
Time (s)
Transformation start
temperature ↓

1000

10000
Continuous Cooling Transformation diagrams (CCT)
EFFECT OF CHEMICAL COMPOSITION
Effect of the addition of Nb

1000

Temperature (ºC)

LOW Nb

PF+P

Nb↑

Transformation start
temperature ↓

HIGH Nb

800

Nb↑

Transformation start
temperature ≈

DP

GF+QF

600
BF

400
Steel

200

0

Cycle A

CMn
3NbMo0
6NbMo0

0.1

HV

1

200 100 50

20

10 5

2

1

0.5

192 180 155 145 133 131 136 121 131
256 239 202 201 181 194 180 155 156
277 292 256 223 220 204 200 176 162

10
100
Time (s)

1000

Cycle A

Cycle B

CMn

ºC/s

D0 (μm)

19

105.3

121.6

3NbMo0

17

117.6

135.9

6NbMo0

14

142.9

165

3NbMo31

12

166.7

192.5

6NbMo31

14

142.9

165

0.1

107
150
130

10000

Sv (mm-1 )
Continuous Cooling Transformation diagrams (CCT)
EFFECT OF THE THERMOMECHANICAL SCHEDULE
Effect of the amount of deformation in austenite
1000

Temperature (ºC)

800

PF

DP
QF+GF

600
Ms

BF

400

200

0

ºC/s 200 100 50
6NbMo31
ε=0 (Cycle A) HV 285 253 229
ε=0.4 (Cycle B)
246 246 232
ε=0.8 (Cycle C)
246 261 247

0.1

1

20

10 5

1

0.5

210 207 199 197 196 176
220 215 204 192 183 181
229 217 205 199 186 175

10
100
Time (s)

ACCUMULATED
DEFORMATION ↑

2

1000

0.1

136
155
153

10000

Transformation start
temperature ↑
EBSD Quantification
6NbMo0 (1ºC/s)
RECRISTALLYZED γ

DEFORMED γ
EBSD Quantification
Mean crystallographic unit sizes
16

16

15º

4º

6NbMo0_Cycle A

6NbMo0_Cycle A

6NbMo0_Cycle B

12

Mean Grain Size (µm)

Mean Grain Size (µm)

6NbMo0_Cycle B
6NbMo31_Cycle A
6NbMo31_Cycle B

8

4

12

6NbMo31_Cycle A
6NbMo31_Cycle B

8

4

(b)

(a)
0
0.01

0.1

1
10
Cooling Rate (K/s)

Accumulation of
deformation in γ

100

1000

Cycle B

0
0.01

0.1

1
10
Cooling Rate (K/s)

Microstructural
refinement

100

1000
EBSD Quantification
Microstructural heterogeneity → Dc20%/Dmean
Dc20%

Cut off grain size at 80% area fraction
in a grain size distribution histogram

12
6NbMo0_Cycle B

10

6NbMo31_Cycle B

Dc20% / D mean (15º)

6NbMo0_Cycle C

8

6NbMo31_Cycle C

FORMATION OF BAINITIC
FERRITE

6
4
2
0
0.01

0.1

1
10
Cooling Rate (K/s)

100

1000

FERRITIC MICROSTRUCTURES
3. MECHANICAL PROPERTIES
Thermomechanical schedules
COILING SIMULATIONS – PLANE STRAIN COMPRESSION

Precipitate
dissolution

Austenite
conditioning

Isothermal
maintenance

Coiling temperatures:
650ºC, 550ºC, 450ºC
Final Microstructures
6NbMo0

550ºC

QUASIPOLIGONAL FERRITE
GRANULAR FERRITE

650ºC

POLYGONAL FERRITE
PERLITE
3. MECHANICAL PROPERTIES
Strength
Mechanical properties
YIELD STRENGTH - TENSILE STRENGTH

Yield Strength/Tensile
strength (MPa)

700

600
TS

500

YS

400
3NbMo0
3NbMo31
6NbMo0
6NbMo31

300
400

450

500
550
600
Coiling temperature (ºC)

650

700
Mechanical properties
CORRELATION BETWEEN MICROSTRUCTURE-MECHANICAL
PROPERTIES

σ y  f (σ0 ,  ss ,   ,  gs ,  ppt )

Composition
Dislocation
Density

Precipitation
Grain/Unit Size
Mechanical properties
Grain Size

 1
π
σ gs  1.05 * αMμ b   f i θ i 
 f i ·d 2º 2
10 θi 15º 
2θi 15º



Low angle
boundary fraction

High angle
boundary fraction

A. Iza-Mendia, I. Gutierrez, Materials Science and Engineering A, vol. 561, 2013, pp, 40-51
Mechanical properties
Grain Size
500

Yield Strength (MPa)

Nb-Mo
450

Nb
400
3NbMo0
3NbMo31
6NbMo0
6NbMo31

350
3

4
5
Mean grain size 2º (μm)

MICROSTRUCTURAL
REFINEMENT

6

• Mechanical strentgh ↑
•Toughness ↑
Mechanical properties
Dislocation Density

σ ρ  αMμb ρ

2
ρ
ub

Kernel Average
misorientation for θ<2º
Mechanical properties
6NbMo31

Precipitation
Hardening

100 nm

100 nm

550ºC

650ºC

9
3NbMo0

0.5

σ ppt

f
x
 10.8 v ln(
)
4
x
6.125  10

Mean size of precipitates (nm)

3NbMo31
6NbMo0
6NbMo31

8

7

6
400

450

500
550
600
Coiling Temperature (ºC)

650

700
Contributions to Strength
3NbMo31

3NbMo0
MOD
EXP

423
387

426
401

407
414

456
460

56%

57%

7%

4%

22%

26%

18%

431
397

15%

14%

80%

σy (MPa)

61%

62%

58%

60%

40%

2%

2%

20%

20%

σy (MPa)

80%

435
457

19%

100%

100%

MOD
EXP

63%

60%

40%

5%

0%

20%

20%

20%
17%

17%

17%

0%

0%
650

650

550
450
Coiling temperature (ºC)

428
406

454
410

445
408

100%

100%

80%

MOD
EXP

457
426

482
434

461
473

57%

59%

12%

5%

80%
59%

59%

σy (MPa)

σy (MPa)

60%

60%

40%

4%

20%

20%
16%

8%

10%

19%

17%

14%

63%

60%

40%

14%

0%
21%

18%

20%
16%

13%

22%

14%

0%

0%
650

550
450
Coiling temperature (ºC)

650

UNIT SIZE
PRECIPITATION
DISLOCATIONS

6NbMo31

6NbMo0
MOD
EXP

550
450
Coiling temperature (ºC)

550
450
Coiling temperature (ºC)

COMPOSITION
CONCLUSIONS
Conclusions
• Nb and Mo show synergetic mechanisms
ideal for:
– Strain accumulation during austenite
conditioning
– Transformation start temperature control
– Microstructural refinement after transformation

• The formation of low-angle boundary
substructure is the main contribution to
strength
ACKNOWLEDGEMENTS
Acknowledgements
• IMOA and CBMM
• Prof. Hardy Mohrbacher
• Spanish Government MINECO (MAT200909250 and MAT2012-31056)
• Basque Government (PI2011-17)

• Thermomechanical Treatments Group at CEIT
Effects of combining Nb ó
and Mo in
HSLA Steels: From austenite
conditioning to final microstructure

N. Isasti, B. Pereda, B. López, J.M. Rodriguez-Ibabe and Pello Uranga
puranga@ceit.es

CEIT and TECNUN (University of Navarra)

Donostia-San Sebastian, Basque Country, Spain

More Related Content

Similar to Effects of combining Nb and Mo in HSLA Steels: From austenite conditioning to final microstructure

WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptxWARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptxsudhakargeruganti
 
Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
Multiphase Bainitic Steels at the Max Planck Institut in DüsseldorfMultiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
Multiphase Bainitic Steels at the Max Planck Institut in DüsseldorfDierk Raabe
 
Power piont ch2 phase-transformation-in-metals (1)
Power piont   ch2 phase-transformation-in-metals (1)Power piont   ch2 phase-transformation-in-metals (1)
Power piont ch2 phase-transformation-in-metals (1)temkin abdlkader
 
Magnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelMagnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelAPOORVKRISHNA1
 
Phase transformation physical metallurgy
Phase transformation physical metallurgyPhase transformation physical metallurgy
Phase transformation physical metallurgyDeepak Patel
 
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...Pello Uranga
 
Amit_Mtech_presentation
Amit_Mtech_presentationAmit_Mtech_presentation
Amit_Mtech_presentationamit kunte
 
ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steelsDierk Raabe
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1Naman Dave
 
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsDevelopment of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsKEMET Electronics Corporation
 
Na based supercapacitors
Na based supercapacitorsNa based supercapacitors
Na based supercapacitorsCharu Lakshmi
 
heat tratment & iron carbon diagram
heat tratment & iron carbon diagramheat tratment & iron carbon diagram
heat tratment & iron carbon diagrammukeshkumar2062
 
Defense presentation
Defense presentationDefense presentation
Defense presentationJayur Mistry
 

Similar to Effects of combining Nb and Mo in HSLA Steels: From austenite conditioning to final microstructure (20)

WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptxWARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
 
Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
Multiphase Bainitic Steels at the Max Planck Institut in DüsseldorfMultiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
 
Ch10 m
Ch10 mCh10 m
Ch10 m
 
ResearchSummary
ResearchSummaryResearchSummary
ResearchSummary
 
Power piont ch2 phase-transformation-in-metals (1)
Power piont   ch2 phase-transformation-in-metals (1)Power piont   ch2 phase-transformation-in-metals (1)
Power piont ch2 phase-transformation-in-metals (1)
 
HeatTreatment-WPW.pptx
HeatTreatment-WPW.pptxHeatTreatment-WPW.pptx
HeatTreatment-WPW.pptx
 
Magnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelMagnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steel
 
Khalid Presentation on BNOC 2013
Khalid Presentation on BNOC 2013Khalid Presentation on BNOC 2013
Khalid Presentation on BNOC 2013
 
High strength if steels
High strength if steelsHigh strength if steels
High strength if steels
 
FYP PPT
FYP PPTFYP PPT
FYP PPT
 
Phase transformation physical metallurgy
Phase transformation physical metallurgyPhase transformation physical metallurgy
Phase transformation physical metallurgy
 
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
 
Amit_Mtech_presentation
Amit_Mtech_presentationAmit_Mtech_presentation
Amit_Mtech_presentation
 
ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steels
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1
 
Heat Treatment: Lecture Q&P, M3 concept
Heat Treatment: Lecture Q&P, M3 conceptHeat Treatment: Lecture Q&P, M3 concept
Heat Treatment: Lecture Q&P, M3 concept
 
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsDevelopment of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
 
Na based supercapacitors
Na based supercapacitorsNa based supercapacitors
Na based supercapacitors
 
heat tratment & iron carbon diagram
heat tratment & iron carbon diagramheat tratment & iron carbon diagram
heat tratment & iron carbon diagram
 
Defense presentation
Defense presentationDefense presentation
Defense presentation
 

More from Pello Uranga

Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...
Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...
Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...Pello Uranga
 
Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...
Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...
Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...Pello Uranga
 
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steelDynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steelPello Uranga
 
Role of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct RollingRole of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct RollingPello Uranga
 
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...Pello Uranga
 
Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...
Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...
Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...Pello Uranga
 
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...Pello Uranga
 

More from Pello Uranga (8)

Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...
Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...
Heterogeneity and Microstructural Features Intervening in the Ductile-Brittle...
 
Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...
Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...
Study of Metadynamic Recrystallization Phenomena in Coarse Grained Nb Microal...
 
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steelDynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
 
Role of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct RollingRole of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct Rolling
 
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
 
Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...
Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...
Effect of Alloying Additions in the Final Microstructure of Nb-Mo steels Proc...
 
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
 
Ikerlaria ni?
Ikerlaria ni?Ikerlaria ni?
Ikerlaria ni?
 

Recently uploaded

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 

Recently uploaded (20)

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 

Effects of combining Nb and Mo in HSLA Steels: From austenite conditioning to final microstructure

  • 1. Effects of combining Nb ó and Mo in HSLA Steels: From austenite conditioning to final microstructure N. Isasti, B. Pereda, B. López, J.M. Rodriguez-Ibabe and Pello Uranga puranga@ceit.es CEIT and TECNUN (University of Navarra) Donostia-San Sebastian, Basque Country, Spain
  • 2. Summary MULTIPLE MICROALLOYING Nb-Mo MICROALLOYED STEELS • High strength • Low temperature toughness Nb-Mo microalloyed steels Niobium Molybdenum Strain Accumulation Microstructural refinement Increase of hardenability
  • 3. Combined effect of Nb-Mo on • Austenite Conditioning – Softening kinetics – Non-recrystallization temperature • Phase Transformation – CCT Diagrams – Unit size and microstructural homogeneity • Mechanical Properties – Tensile tests – Strengthening contributions
  • 7. Nb-Mo Steels during hot-working • The use of Nb is well known because of its effect retarding recrystallization. • The addition of Mo to Nb microalloyed steels may introduce significant changes in the microstructural evolution during hot working. • For example, it has been reported that Mo in solid solution produces a strong retardation effect on dynamic and static recrystallization. • Therefore, the combination of both elements enhances strain accumulation prior to final cooling strategy.
  • 8. Static Recrystallization Kinetics t 0.5  9.92 x10 11  D0   5.6 D0  0.15  275000   180000      0.53  exp   185   Nbeff    exp   RT    T  Nbeff  Nb Nbeff for 0.03% Nb-Mo microalloyed steels for 0.06% Nb-Mo microalloyed steels Nbeff for Nb microalloyed steels  1.19Nb  0.09Mo  1.19Nb  0.032Mo 50 3Nb 3Nb-Mo 6Nb 6Nb-Mo16 6Nb-Mo31 DSRX  1.8D  0.56 0 1 t0.5 (cal.) 40 30 20 10 0 0 10 20 30 t0.5 (exp.) 40 50
  • 9. Dependence of Tnr as a function of the interpass time ( = 0.4) 1100 1075 Tnr (ºC) 1050 6Nb-Mo31 6Nb 1025 3Nb-Mo31 1000 975 3Nb 950 0 10 20 Interpass time (s) 30 40
  • 10. Low Nb (0.03%Nb) Fractional Softening (%) tip = 10 s,  = 0.4 100 Tnr = 985ºC 80 60 Precipitation 3Nb T nr =1026 ºC 40 20 solute drag 3Nb-Mo31 0 7 7.5 8 10000/T (1/K) 8.5 9
  • 11. High Nb (0.06% Nb) Fractional Softening (%) tip = 30 s,  = 0.4 100 Precipitation T nr =1030ºC 80 6Nb 60 T nr= 1045ºC 40 6Nb-Mo31 20 0 7 7.5 8 10000/T (1/K) 8.5 9
  • 13. Thermomechanical schedule CONTINUOUS COOLING TRANSFORMATION STUDY Precipitate dissolution Austenite conditioning Continuous cooling Cooling rates: 0.1-200ºC/s Cycle A→ Undeformed austenite Cycle B→ Deformed austenite (Strain = 0.4) Cycle C → Deformed austenite (Strain = 0.8)
  • 14. Transformation Products PF DP POLYGONAL FERRITE DEGENERATED PEARLITE GF M QF BF BAINITIC FERRITE MARTENSITE QUASIPOLIGONAL FERRITE GRANULAR FERRITE
  • 15. Continuous Cooling Transformation diagrams (CCT) EFFECT OF CHEMICAL COMPOSITION Effect of the addition of Mo 1000 Temperature (ºC) 800 PF DP GF+QF 600 BF 400 ºC/s 200 Cycle A HV 6NbMo0 6NbMo31 200 100 50 20 10 5 2 1 0.5 221 220 240 196 178 170 167 158 154 285 253 229 210 207 199 197 196 176 0.1 139 136 0 0.1 1 Mo↑ 10 100 Time (s) Transformation start temperature ↓ 1000 10000
  • 16. Continuous Cooling Transformation diagrams (CCT) EFFECT OF CHEMICAL COMPOSITION Effect of the addition of Nb 1000 Temperature (ºC) LOW Nb PF+P Nb↑ Transformation start temperature ↓ HIGH Nb 800 Nb↑ Transformation start temperature ≈ DP GF+QF 600 BF 400 Steel 200 0 Cycle A CMn 3NbMo0 6NbMo0 0.1 HV 1 200 100 50 20 10 5 2 1 0.5 192 180 155 145 133 131 136 121 131 256 239 202 201 181 194 180 155 156 277 292 256 223 220 204 200 176 162 10 100 Time (s) 1000 Cycle A Cycle B CMn ºC/s D0 (μm) 19 105.3 121.6 3NbMo0 17 117.6 135.9 6NbMo0 14 142.9 165 3NbMo31 12 166.7 192.5 6NbMo31 14 142.9 165 0.1 107 150 130 10000 Sv (mm-1 )
  • 17. Continuous Cooling Transformation diagrams (CCT) EFFECT OF THE THERMOMECHANICAL SCHEDULE Effect of the amount of deformation in austenite 1000 Temperature (ºC) 800 PF DP QF+GF 600 Ms BF 400 200 0 ºC/s 200 100 50 6NbMo31 ε=0 (Cycle A) HV 285 253 229 ε=0.4 (Cycle B) 246 246 232 ε=0.8 (Cycle C) 246 261 247 0.1 1 20 10 5 1 0.5 210 207 199 197 196 176 220 215 204 192 183 181 229 217 205 199 186 175 10 100 Time (s) ACCUMULATED DEFORMATION ↑ 2 1000 0.1 136 155 153 10000 Transformation start temperature ↑
  • 19. EBSD Quantification Mean crystallographic unit sizes 16 16 15º 4º 6NbMo0_Cycle A 6NbMo0_Cycle A 6NbMo0_Cycle B 12 Mean Grain Size (µm) Mean Grain Size (µm) 6NbMo0_Cycle B 6NbMo31_Cycle A 6NbMo31_Cycle B 8 4 12 6NbMo31_Cycle A 6NbMo31_Cycle B 8 4 (b) (a) 0 0.01 0.1 1 10 Cooling Rate (K/s) Accumulation of deformation in γ 100 1000 Cycle B 0 0.01 0.1 1 10 Cooling Rate (K/s) Microstructural refinement 100 1000
  • 20. EBSD Quantification Microstructural heterogeneity → Dc20%/Dmean Dc20% Cut off grain size at 80% area fraction in a grain size distribution histogram 12 6NbMo0_Cycle B 10 6NbMo31_Cycle B Dc20% / D mean (15º) 6NbMo0_Cycle C 8 6NbMo31_Cycle C FORMATION OF BAINITIC FERRITE 6 4 2 0 0.01 0.1 1 10 Cooling Rate (K/s) 100 1000 FERRITIC MICROSTRUCTURES
  • 22. Thermomechanical schedules COILING SIMULATIONS – PLANE STRAIN COMPRESSION Precipitate dissolution Austenite conditioning Isothermal maintenance Coiling temperatures: 650ºC, 550ºC, 450ºC
  • 25. Mechanical properties YIELD STRENGTH - TENSILE STRENGTH Yield Strength/Tensile strength (MPa) 700 600 TS 500 YS 400 3NbMo0 3NbMo31 6NbMo0 6NbMo31 300 400 450 500 550 600 Coiling temperature (ºC) 650 700
  • 26. Mechanical properties CORRELATION BETWEEN MICROSTRUCTURE-MECHANICAL PROPERTIES σ y  f (σ0 ,  ss ,   ,  gs ,  ppt ) Composition Dislocation Density Precipitation Grain/Unit Size
  • 27. Mechanical properties Grain Size   1 π σ gs  1.05 * αMμ b   f i θ i   f i ·d 2º 2 10 θi 15º  2θi 15º   Low angle boundary fraction High angle boundary fraction A. Iza-Mendia, I. Gutierrez, Materials Science and Engineering A, vol. 561, 2013, pp, 40-51
  • 28. Mechanical properties Grain Size 500 Yield Strength (MPa) Nb-Mo 450 Nb 400 3NbMo0 3NbMo31 6NbMo0 6NbMo31 350 3 4 5 Mean grain size 2º (μm) MICROSTRUCTURAL REFINEMENT 6 • Mechanical strentgh ↑ •Toughness ↑
  • 29. Mechanical properties Dislocation Density σ ρ  αMμb ρ 2 ρ ub Kernel Average misorientation for θ<2º
  • 30. Mechanical properties 6NbMo31 Precipitation Hardening 100 nm 100 nm 550ºC 650ºC 9 3NbMo0 0.5 σ ppt f x  10.8 v ln( ) 4 x 6.125  10 Mean size of precipitates (nm) 3NbMo31 6NbMo0 6NbMo31 8 7 6 400 450 500 550 600 Coiling Temperature (ºC) 650 700
  • 31. Contributions to Strength 3NbMo31 3NbMo0 MOD EXP 423 387 426 401 407 414 456 460 56% 57% 7% 4% 22% 26% 18% 431 397 15% 14% 80% σy (MPa) 61% 62% 58% 60% 40% 2% 2% 20% 20% σy (MPa) 80% 435 457 19% 100% 100% MOD EXP 63% 60% 40% 5% 0% 20% 20% 20% 17% 17% 17% 0% 0% 650 650 550 450 Coiling temperature (ºC) 428 406 454 410 445 408 100% 100% 80% MOD EXP 457 426 482 434 461 473 57% 59% 12% 5% 80% 59% 59% σy (MPa) σy (MPa) 60% 60% 40% 4% 20% 20% 16% 8% 10% 19% 17% 14% 63% 60% 40% 14% 0% 21% 18% 20% 16% 13% 22% 14% 0% 0% 650 550 450 Coiling temperature (ºC) 650 UNIT SIZE PRECIPITATION DISLOCATIONS 6NbMo31 6NbMo0 MOD EXP 550 450 Coiling temperature (ºC) 550 450 Coiling temperature (ºC) COMPOSITION
  • 33. Conclusions • Nb and Mo show synergetic mechanisms ideal for: – Strain accumulation during austenite conditioning – Transformation start temperature control – Microstructural refinement after transformation • The formation of low-angle boundary substructure is the main contribution to strength
  • 35. Acknowledgements • IMOA and CBMM • Prof. Hardy Mohrbacher • Spanish Government MINECO (MAT200909250 and MAT2012-31056) • Basque Government (PI2011-17) • Thermomechanical Treatments Group at CEIT
  • 36. Effects of combining Nb ó and Mo in HSLA Steels: From austenite conditioning to final microstructure N. Isasti, B. Pereda, B. López, J.M. Rodriguez-Ibabe and Pello Uranga puranga@ceit.es CEIT and TECNUN (University of Navarra) Donostia-San Sebastian, Basque Country, Spain