SlideShare a Scribd company logo
1 of 25
Download to read offline
The Sign Of A Quadratic
The Sign Of A Quadratic
Positive Definite
y
x
The Sign Of A Quadratic
Positive Definite
y
x
The Sign Of A Quadratic
Positive Definite
y
x
0 , 0a   
The Sign Of A Quadratic
Positive Definite
y
x
0 , 0a   
Negative Definite
y
x
The Sign Of A Quadratic
Positive Definite
y
x
0 , 0a   
Negative Definite
y
x
The Sign Of A Quadratic
Positive Definite
y
x
0 , 0a   
Negative Definite
y
x
0 , 0a   
Indefinite
Indefinite
y
x
Indefinite
y
x
0 , 0a   
Indefinite
y
x
0 , 0a   
y
x
Indefinite
y
x
0 , 0a   
y
x
0 , 0a   
Indefinite
y
x
0 , 0a   
y
x
0 , 0a   
y
x
Indefinite
y
x
0 , 0a   
y
x
0 , 0a   
y
x
0 , 0a   
Indefinite
y
x
0 , 0a   
y
x
0 , 0a   
y
x
0 , 0a   
y
x
Indefinite
y
x
0 , 0a   
y
x
0 , 0a   
y
x
0 , 0a   
y
x
0 , 0a   
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
0 
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
0 
2
36 4 0k 
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
0 
2
36 4 0k 
2
9k 
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
0 
2
36 4 0k 
2
9k 
3 or 3k k  
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
0 
2
36 4 0k 
2
9k 
3 or 3k k  
3k 
2
e.g. Find the values of which makes 6 0 positive definitek kx x k  
0a 
0k 
0 
2
36 4 0k 
2
9k 
3 or 3k k  
3k 
Exercise 8G; 2ace, 3bd, 4bd, 5bd, 6, 12, 15, 17*

More Related Content

Viewers also liked

11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)Nigel Simmons
 
11 x1 t09 05 product rule (2012)
11 x1 t09 05 product rule (2012)11 x1 t09 05 product rule (2012)
11 x1 t09 05 product rule (2012)Nigel Simmons
 
11 x1 t09 01 limits & continuity (2012)
11 x1 t09 01 limits & continuity (2012)11 x1 t09 01 limits & continuity (2012)
11 x1 t09 01 limits & continuity (2012)Nigel Simmons
 
11 x1 t09 03 rules for differentiation (2012)
11 x1 t09 03 rules for differentiation (2012)11 x1 t09 03 rules for differentiation (2012)
11 x1 t09 03 rules for differentiation (2012)Nigel Simmons
 
11 x1 t09 02 first principles (2013)
11 x1 t09 02 first principles (2013)11 x1 t09 02 first principles (2013)
11 x1 t09 02 first principles (2013)Nigel Simmons
 
11 x1 t10 03 equations reducible to quadratics (2013)
11 x1 t10 03 equations reducible to quadratics (2013)11 x1 t10 03 equations reducible to quadratics (2013)
11 x1 t10 03 equations reducible to quadratics (2013)Nigel Simmons
 
11 x1 t09 01 limits & continuity (2013)
11 x1 t09 01 limits & continuity (2013)11 x1 t09 01 limits & continuity (2013)
11 x1 t09 01 limits & continuity (2013)Nigel Simmons
 
11 x1 t10 01 graphing quadratics (2013)
11 x1 t10 01 graphing quadratics (2013)11 x1 t10 01 graphing quadratics (2013)
11 x1 t10 01 graphing quadratics (2013)Nigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
11 x1 t09 02 first principles (2012)
11 x1 t09 02 first principles (2012)11 x1 t09 02 first principles (2012)
11 x1 t09 02 first principles (2012)Nigel Simmons
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)Nigel Simmons
 
11X1 T09 06 quotient and reciprocal rules (2010)
11X1 T09 06 quotient and reciprocal rules (2010)11X1 T09 06 quotient and reciprocal rules (2010)
11X1 T09 06 quotient and reciprocal rules (2010)Nigel Simmons
 
11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)Nigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)Nigel Simmons
 

Viewers also liked (14)

11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)
 
11 x1 t09 05 product rule (2012)
11 x1 t09 05 product rule (2012)11 x1 t09 05 product rule (2012)
11 x1 t09 05 product rule (2012)
 
11 x1 t09 01 limits & continuity (2012)
11 x1 t09 01 limits & continuity (2012)11 x1 t09 01 limits & continuity (2012)
11 x1 t09 01 limits & continuity (2012)
 
11 x1 t09 03 rules for differentiation (2012)
11 x1 t09 03 rules for differentiation (2012)11 x1 t09 03 rules for differentiation (2012)
11 x1 t09 03 rules for differentiation (2012)
 
11 x1 t09 02 first principles (2013)
11 x1 t09 02 first principles (2013)11 x1 t09 02 first principles (2013)
11 x1 t09 02 first principles (2013)
 
11 x1 t10 03 equations reducible to quadratics (2013)
11 x1 t10 03 equations reducible to quadratics (2013)11 x1 t10 03 equations reducible to quadratics (2013)
11 x1 t10 03 equations reducible to quadratics (2013)
 
11 x1 t09 01 limits & continuity (2013)
11 x1 t09 01 limits & continuity (2013)11 x1 t09 01 limits & continuity (2013)
11 x1 t09 01 limits & continuity (2013)
 
11 x1 t10 01 graphing quadratics (2013)
11 x1 t10 01 graphing quadratics (2013)11 x1 t10 01 graphing quadratics (2013)
11 x1 t10 01 graphing quadratics (2013)
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
11 x1 t09 02 first principles (2012)
11 x1 t09 02 first principles (2012)11 x1 t09 02 first principles (2012)
11 x1 t09 02 first principles (2012)
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)
 
11X1 T09 06 quotient and reciprocal rules (2010)
11X1 T09 06 quotient and reciprocal rules (2010)11X1 T09 06 quotient and reciprocal rules (2010)
11X1 T09 06 quotient and reciprocal rules (2010)
 
11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11 x1 t10 06 sign of a quadratic (2013)

  • 1. The Sign Of A Quadratic
  • 2. The Sign Of A Quadratic Positive Definite y x
  • 3. The Sign Of A Quadratic Positive Definite y x
  • 4. The Sign Of A Quadratic Positive Definite y x 0 , 0a   
  • 5. The Sign Of A Quadratic Positive Definite y x 0 , 0a    Negative Definite y x
  • 6. The Sign Of A Quadratic Positive Definite y x 0 , 0a    Negative Definite y x
  • 7. The Sign Of A Quadratic Positive Definite y x 0 , 0a    Negative Definite y x 0 , 0a   
  • 10. Indefinite y x 0 , 0a   
  • 11. Indefinite y x 0 , 0a    y x
  • 12. Indefinite y x 0 , 0a    y x 0 , 0a   
  • 13. Indefinite y x 0 , 0a    y x 0 , 0a    y x
  • 14. Indefinite y x 0 , 0a    y x 0 , 0a    y x 0 , 0a   
  • 15. Indefinite y x 0 , 0a    y x 0 , 0a    y x 0 , 0a    y x
  • 16. Indefinite y x 0 , 0a    y x 0 , 0a    y x 0 , 0a    y x 0 , 0a   
  • 17. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k  
  • 18. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a 
  • 19. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k 
  • 20. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k  0 
  • 21. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k  0  2 36 4 0k 
  • 22. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k  0  2 36 4 0k  2 9k 
  • 23. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k  0  2 36 4 0k  2 9k  3 or 3k k  
  • 24. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k  0  2 36 4 0k  2 9k  3 or 3k k   3k 
  • 25. 2 e.g. Find the values of which makes 6 0 positive definitek kx x k   0a  0k  0  2 36 4 0k  2 9k  3 or 3k k   3k  Exercise 8G; 2ace, 3bd, 4bd, 5bd, 6, 12, 15, 17*