SlideShare a Scribd company logo
1 of 102
Download to read offline
Soumyth
THEORY OF MACHINES
1
CONTENTS
INTRODUCTION.............................................................................................................................................................................2
MOTION ANALYSIS.....................................................................................................................................................................16
VELOCITY ANALYSIS OF DOUBLE SLIDER CRANK MECHANISM ..................................................................................22
ACCELERATION ANALYSIS.......................................................................................................................................................23
STATIC FORCE ANLAYSIS..........................................................................................................................................................29
DYNAMIC FORCE ANALYSIS ....................................................................................................................................................31
BALANCING OF ROTATING MASS ..........................................................................................................................................37
BALANCING OF RECIPROCATING MASS...............................................................................................................................40
TURNING MOMENT DIAGRAMS..............................................................................................................................................48
FLYWHEEL....................................................................................................................................................................................50
CAMS ..............................................................................................................................................................................................51
GEARS.............................................................................................................................................................................................57
GEAR TRAINS ...............................................................................................................................................................................71
GOVERNORS .................................................................................................................................................................................75
GYROSCOPE ..................................................................................................................................................................................82
VIBRATIONS .................................................................................................................................................................................86
2
INTRODUCTION
Mechanisms and Machines
If several bodies are assembled in such a way that the motion of one cause constrained and predictable motion
to the other, is called mechanism.
A machine is a mechanism or a combination of mechanisms which, apart from imparting definite motions to the
parts, also transmits and modifies the available mechanical energy into some kind of desired work.
Kinematics deals with the relative motions of different parts of a mechanism without taking into consideration
the forces producing the motions.
Dynamics involves the calculations of forces impressed upon different parts of a mechanism.
Completely constrained motion
When the motion between two elements of a pair is in a definite direction
irrespective of the direction of the force applied, it is known as completely
constrained motion. The constrained motion may be linear or rotary.
Incompletely constrained motion
When the motion between two elements of a pair is possible in more than one
direction of the force applied, it is known as incompletely constrained motion.
Successfully constrained motion
When the motion between two elements of a pair is possible in more than one direction but is
made to have motion in one direction by using some external means, it is successfully
constrained motion.
Rigid and Resistant bodies
A body is said to be rigid if under the action of forces, it does not deform or the distance
between the two points on it remains same.
Resistant bodies are those which are rigid for the purposes they have to serve.
Link
A resistant body or a group of resistant bodies with rigid connections preventing their relative motion is known
as link. A link can also be defined as a member or a combination of members of a mechanism, connecting other
members and having motion relative to them.
Links can be classified into binary, ternary and
quaternary.
Mechanis
m
Machine
3
Kinematic pair
A kinematic pair is a joint of two links having relative motion between them.
Kinematic pairs according to Nature of contact: Lower pair and Higher pair.
Kinematic pairs according to Nature of Mechanical Constraint: Closed pair and Unclosed pair.
Kinematic pairs according to nature of relative motion:
a) Sliding pair, b) turning pair, c) rolling pair, d) screw pair, e) spherical pair.
Types of Joints
Binary joint
If two links are joined at same connection, it is called a binary joint. At B.
Ternary joint
If three links are joined at a connection, it is known as a ternary joint. At T.
Quaternary Joint
If four links are joined at a connection, it is known as quaternary joint. At Q.
4
Kinematic chain
When all the links are connected in such a way that 1st
link is connected to the last link in order to get the closed
chain and if all the relative motion in these closed chains are constrained then such a chain is known as
kinematic chain.
Degrees of freedom
An unconstrained rigid body moving in space can have translational motion along any three mutually
perpendicular axes and rotational motions about these axes. A rigid body possesses six degrees of freedom.
Degrees of freedom of a pair can be defined as the number of independent relative
motions, both translational and rotational, a pair can have.
Degrees of freedom = 6 โ€“ Number of restraints (no. of motion which are not
possible)
Lower pair โŸถ 1 DOF
Higher pair โŸถ 3 DOF
Spherical pair โ†’ Degree of freedom โ€“ 3
Pair Restrain Degree of Freedom
3T+2R =5 6-5=1
1T=1 6-5=1
Aim: - To find out Degree of Freedom for 2D plane mechanism
๐น = [3 ยท (๐ฟ โˆ’ 1) โˆ’ 2๐‘— โˆ’ โ„Ž] โŸถ ๐พ๐‘ข๐‘ก๐‘ง๐‘๐‘Ž๐‘๐‘˜ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
L โ†’ no. of Links, j โ†’ no. of binary joint, h โ†’ no. of higher pair
3(๐ฟ โˆ’ 1) โ†’ ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘› 2๐ท ๐‘๐‘™๐‘Ž๐‘›๐‘Ž๐‘Ÿ ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š
Note: -
๐น = [3 ยท (๐ฟ โˆ’ 1) โˆ’ 2๐‘— โˆ’ โ„Ž] โˆ’ ๐น๐‘Ÿ
5
Fr โ†’ no. of those motions, which are not the part of mechanism (Dummy motion)
Frโ†’ s (NOT A PART OF MECHANISM)
Example
6
If F = 0, no relative motion [Frame/structure]
If F < 0, No relative motion [Super
structure/indeterminate structure]
If F = 1, kinematic chain If F > 1, Unconstrained chain
Degree of freedom is no. of input required to get the constrained output/input in any chain.
An alternate way
1. ๐ผ๐‘“ (๐‘— +
โ„Ž
2
) = (
3๐‘™
2
โˆ’ 2) โ†’ ๐พ๐‘–๐‘›๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘–๐‘›
2. ๐ผ๐‘“ (๐‘— +
โ„Ž
2
) > (
3๐‘™
2
โˆ’ 2) โ†’ ๐น๐‘Ÿ๐‘Ž๐‘š๐‘’ โงธ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’ โงธ๐‘ ๐‘ข๐‘๐‘’๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’
๐ผ๐‘“ (๐ฟ๐ป๐‘† โ€“ ๐‘…๐ป๐‘†) = 0.5 โ†’ ๐น๐‘Ÿ๐‘Ž๐‘š๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’
(๐ฟ๐ป๐‘† โˆ’ ๐‘…๐ป๐‘†) > 0.5 โ†’ ๐‘†๐‘ข๐‘๐‘’๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’
3. ๐ผ๐‘“ (๐‘— +
โ„Ž
2
) < (
3๐‘™
2
โˆ’ 2) โ†’ ๐‘ˆ๐‘›๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘’๐‘‘ ๐‘โ„Ž๐‘Ž๐‘–๐‘›
7
Spring (links of variable length) as a
link
DOF of an open chain
(One binary joint will restrict 2 motions in 2D)
Grublerโ€™s equation
For those mechanism in which F = 1 & h = 0
Applied Kutzback equation
๐น = 3 ยท (๐‘™ โˆ’ 1) โˆ’ 2๐‘— โˆ’ โ„Ž
1 = 3๐‘™ โˆ’ 3 โˆ’ 2๐‘—
3๐‘™ โˆ’ 2๐‘— โˆ’ 4 = 0 โ†’ ๐บ๐‘Ÿ๐‘ข๐‘๐‘™๐‘’๐‘Ÿโ€ฒ
๐‘  ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
l should be even for satisfying Grublerโ€™s equation and lmin = 4 (for lower pairs)
lmin = 4 โ†’ First mechanism in Lower pair โ†’ Simple mechanism (canโ€™t have a chain with 2 links)
a) Four bar mechanism
b) Single slider crank mechanism
c) Double slider crank mechanism
8
Four bar mechanism (Quadric cycle mechanism)
4 links + 4 turning pair
Best position โ†’ Fixed (because it governs both input & output)
Worst position โ†’ coupler (because it is just a transmitting body
Input/output
(Having only one option of motion i.e., rotation)
โŸถ Complete rotation (360ยฐ) โ†’ crank
โŸถ Partial rotation (<360ยฐ) (Oscillation) โ†’ Rocker/lever
Inversions
Mechanisms which are obtained by fixing one by one different link.
โ€ข Double crank mechanism
โ€ข Crank โ€“ rocker mechanism
โ€ข Double โ€“ rocker mechanism
Grashofโ€™s Law
For the continuous relative motion between the number of links in four bar mechanism the summation of longer
of shortest and greatest should not be greater than summation of length of other two links.
For continuous relative motion
(๐‘† + ๐ฟ) โ‰ค (๐‘ + ๐‘ž)
Best position โ†’ fixed (because it governs both input and output)
Best link for complete rotation โ†’ shortest (s)
Is S+L < p + q (Law satisfied)
1. S โ†’ fixed โ†’ Double crank
2. S โ†’ Adjacent to fix โ†’ Crank-Rocker
3. S โ†’ couple โ†’ Double Rocker
If (S+L) = (p + q) law is satisfied.
a) Not having equal pair or equal link
5, 4, 3, 2
Same as previous
b) Having equal pair or equal link
2, 2, 5, 5
๐‘  ๐‘  ๐‘™ ๐‘™
i) Parallelogram linkage (same length of
the links)
S โ€“ fixed โ†’ Double crank
l โ€“ fixed โ†’ double crank
ii) Detroit linkage
S โ€“ fixed โ†’ Double crank
l โ€“ fixed โ†’ double crank
If (S+L) > (p + q) law is not satisfied
Any link fixed โ†’ double rocker
If no. of links = l
No. of inversions โ‰ค l (less when for different fixing relative motion is same)
9
Some practical examples of 4 bar mechanisms
Beam engine mechanism (James Watt)
Coupling Rod of locomotives
Transmission angle (ฮผ)
An angle between the coupler link and the output link in four bar mechanism is known as transmission angle.
๐ด๐ถ2
= ๐‘Ž2
+ ๐‘2
โˆ’ 2๐‘Ž๐‘ ๐‘๐‘œ๐‘  ๐œƒ = ๐‘2
+ ๐‘‘2
โˆ’ 2๐‘๐‘‘ ๐‘๐‘œ๐‘  ๐œ‡
Differentiating both sides,
(โˆ’2๐‘Ž๐‘) ยท (โˆ’ ๐‘ ๐‘–๐‘› ๐œƒ) ยท ๐‘‘๐œƒ = (โˆ’2๐‘๐‘‘) ยท (โˆ’ ๐‘ ๐‘–๐‘› ๐œ‡) ยท ๐‘‘๐œ‡
๐‘‘๐œ‡
๐‘‘๐œƒ
= (
๐‘Ž๐‘
๐‘๐‘‘
) ยท
๐‘ ๐‘–๐‘› ๐œƒ
๐‘ ๐‘–๐‘› ๐œ‡
For ฮผ to be max/min,
๐‘‘๐œ‡
๐‘‘๐œƒ
= 0 โ†’ (
๐‘Ž๐‘
๐‘๐‘‘
) ยท
๐‘ ๐‘–๐‘› ๐œƒ
๐‘ ๐‘–๐‘› ๐œ‡
= 0 โ†’ ๐‘ ๐‘–๐‘› ๐œƒ = 0
๐œฝ = ๐ŸŽยฐ, ๐Ÿ๐Ÿ–๐ŸŽยฐ โ†’ ๐œ‡๐‘š๐‘–๐‘› = 0ยฐ, ๐œ‡๐‘š๐‘Ž๐‘ฅ = 180
James Watt Beam engine couldnโ€™t be used as steam engine, so he
converted one of the turning pair into 4 bar to a sliding pair. (Sliding
pair Mechanism)
Rotation โŸท Oscillation
Crank โŸท Rocker
Ex: - Sewing Machine
4 turning pairs
4 links
Ex: - Steam engine
10
Single Slider crank mechanism (Drag-link Mechanism)
Ist
inversion (Cylinder fixed)
Rotation โŸท Oscillation
Crank โŸท Piston
Output โŸต Input (Piston to Crank) โŸถ Reciprocating engine
Input โŸถ Output (Crank to Piston) โŸถ Reciprocating compressor
IInd
Inversion (Crank fixed)
โ†’ Whitworth quick return motion mechanism
โ†’ Rotary IC engine mechanism (Gnome engine)
IIIrd
Inversion (Connecting Rod fixed)
โ†’ Crank and slotted lever quick return mechanism
โ†’ Oscillating cylinder engine mechanism
IVth
Inversion (Slider/Piston Fixed)
โ†’ Hand Pump (Pendulum pump, Bull engine)
11
Crank and slotted Lever (Quick Return Motion Mechanism)
IIIrd
Inversion (Connecting Rod Fixed)
Quick Return Ratio (QRR)
๐‘„๐‘…๐‘… =
๐‘‡๐‘–๐‘š๐‘’๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘”
๐‘‡๐‘–๐‘š๐‘’๐‘…๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘›
=
๐›ฝ
๐›ผ
> 1 (๐’‚๐’๐’˜๐’‚๐’š๐’”)
Stroke R1R2
๐‘…1๐‘…2 = ๐ถ1๐ถ2 = 2 ร— ๐ถ1๐‘€ = 2 ร— ๐ด๐ถ1 ร— ๐‘๐‘œ๐‘ 
๐›ผ
2
= 2 ร— ๐ด๐ถ1 ร— (
๐‘‚๐ต1
๐‘‚๐ด
) =
2 ร— ๐ด๐ถ ร— ๐‘‚๐ต
๐‘‚๐ด
๐‘†๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ =
2 ร— ๐ด๐ถ ร— ๐‘‚๐ต
๐‘‚๐ด
=
2 ร— [๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘ ๐‘™๐‘œ๐‘ก๐‘ก๐‘’๐‘‘ ๐‘๐‘Ž๐‘Ÿ] ร— [๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜]
[๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ÿ๐‘œ๐‘‘]
As ฮฑ < ฮฒ, return stroke is quicker than Cutting stroke, so it is called Quick return mechanism.
QRR can never be less than 1.
12
Whitworth Quick Return Motion Mechanism
IInd
Inversion (crank fixed)
Rotation โŸถ Rotation (Double crank)
Stroke โŸน R1R2 โŸน C1C2 โŸน2 (OC)
Oscillating Cylinder Mechanism
IIIrd
Mechanism (Connecting Rod fixed)
Rotary IC Engine Mechanism (GNOME Engine)
IInd
Inversion
13
Hand Pump
IVth
Inversion (slider fixed)
When combustion takes place inside the
cylinder
Input force comes on piston
This force is transmitted to Connecting Rod
Connecting Rod and piston both rotate
Cylinder block rotates
(Propeller is mounted on Cylinder block)
14
Double slider crank chain
(4 links + 2 Turning Pairs+ 2 Sliding Pairs)
1. Slotted plate is fixed (Elliptical Trammels)
๐‘๐‘œ๐‘  ๐œƒ =
๐‘ฅ
๐ด๐‘ƒ
๐‘ ๐‘–๐‘› ๐œƒ =
๐‘ฆ
๐ต๐‘ƒ
๐‘ฅ2
๐ด๐‘ƒ2
+
๐‘ฆ2
๐ต๐‘ƒ2
= 1 โ†’ ๐ธ๐‘™๐‘™๐‘–๐‘๐‘ ๐‘’
Locus of any point โ€˜Pโ€™ on link AB except midpoint is on ellipse.
15
2. If any of the slider is fixed (Switch yoke mechanism)
Rotary to Reciprocatory
Practical use โŸถ Power hex
3. If link connecting slider is fixed (old ham coupling)
Oldham coupling is used to connect shaft having lateral misalignment.
Maximum sliding velocity of this intermediate plate links = rw = (distance between the shaft) ร— (wdriver)
Mechanical Advantage (M.A)
๐‘€๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘๐‘Ž๐‘™ ๐ด๐‘‘๐‘ฃ๐‘Ž๐‘›๐‘ก๐‘Ž๐‘”๐‘’ =
๐น๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
๐น๐‘–๐‘›๐‘๐‘ข๐‘ก
=
๐‘‡๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
๐‘‡๐‘–๐‘›๐‘๐‘ข๐‘ก
๐œ‚๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š =
๐‘ƒ๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
๐‘ƒ๐‘–๐‘›๐‘๐‘ข๐‘ก
=
๐น๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ร— ๐‘‰๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
๐น๐‘–๐‘›๐‘๐‘ข๐‘ก ร— ๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก
=
๐‘‡๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ร— ๐‘ค๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
๐‘‡๐‘–๐‘›๐‘๐‘ข๐‘ก ร— ๐‘ค๐‘–๐‘›๐‘๐‘ข๐‘ก
๐‘€. ๐ด =
๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก
๐‘‰๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
ร— ๐œ‚๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š =
๐‘ค๐‘–๐‘›๐‘๐‘ข๐‘ก
๐‘ค๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก
ร— ๐œ‚๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š
16
MOTION ANALYSIS
Motion of a link
Let a rigid link OA, of length r, rotate about a fixed-point O with uniform angular velocity ฯ‰ rad/s in the
counter-clockwise direction. OA turns through a small angle ฮดฮธ in a small interval of time ฮดt. Then A will travel
along the arc AAโ€ฒ as shown.
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘‚ =
๐ด๐‘Ÿ๐‘ ๐ด๐ดโ€ฒ
๐›ฟ๐‘ก
โŸน ๐‘ฃ๐‘Ž๐‘œ =
๐‘Ÿ ยท ๐›ฟ๐œƒ
๐›ฟ๐‘ก
๐‘คโ„Ž๐‘’๐‘› ๐›ฟ๐‘ก โ†’ 0, ๐‘ฃ๐‘Ž๐‘œ = ๐‘Ÿ
๐‘‘๐œƒ
๐‘‘๐‘ก
= ๐‘Ÿ๐œ”
The velocity of A is ฯ‰r and is perpendicular to OA. Itโ€™s represented by a vector oa.
Consider a point B on the link OA.
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ต = ๐œ” ร— ๐‘‚๐ต โŠฅ ๐‘ก๐‘œ ๐‘‚๐ต
๐จ๐›
๐จ๐š
=
๐œ” ยท ๐‘‚๐ต
๐œ” ยท ๐‘‚๐ด
=
๐‘‚๐ต
๐‘‚๐ด
Magnitude of instantaneous linear velocity of a point on a rotating body is proportional to its distance from the
axis of rotation.
Four link Mechanism
AB is the driver rotating at an angular speed of ฯ‰ rad/s in the clockwise direction if it is a crank or moving at
this angular velocity at this instant if itโ€™s a rocker.
It is required to find the absolute velocity of C.
๐‘ฃ๐‘๐‘Ž = ๐‘ฃ๐‘๐‘ + ๐‘ฃ๐‘๐‘Ž
Velocity of any point on the fixed link AD is always zero.
Therefore, the velocity of C relative to A is the same as velocity of C relative to D.
๐‘ฃ๐‘๐‘‘ = ๐‘ฃ๐‘๐‘Ž + ๐‘ฃ๐‘๐‘ (๐‘œ๐‘Ÿ) ๐๐œ = ๐š๐› + ๐›๐œ
๐’—๐’ƒ๐’‚ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  ๐Ž ยท ๐‘จ๐‘ฉ, ๐‘Ž๐‘›๐‘‘ ๐’—๐’„๐’ƒ & ๐’—๐’…๐’„ ๐‘Ž๐‘Ÿ๐‘’ ๐‘ข๐‘›๐‘˜๐‘›๐‘œ๐‘ค๐‘›.
17
Velocity diagram is constructed as follows,
1. Take the first vector ab, as it is completely known.
2. To add vector bc to ab, raw a line โŠฅ BC through b, of any length. Since the direction-sense of bc is
unknown, it can lie in either side of b. A convenient length of the line can be taken on both sides of b.
3. Through d, draw a line โŠฅ DC to locate the vector dc. The intersection of this line with the line of vector
bc locates the point c.
4. Mark arrowheads on the vectors bc and dc to give the proper sense. Then dc is the magnitude and
represents the direction of the velocity of C relative to A (or D). it is also the absolute velocity of the
point C (A & D being fixed points).
5. Remember that the arrowheads on vector bc can be put in any direction because both ends of the link
BC are movable. If the arrowhead is put from c to b, then the vector is read as cb. The above equation is
modified as
โ†’ ๐๐œ = ๐š๐› โˆ’ ๐œ๐› โŸน ๐๐œ + ๐œ๐› = ๐š๐›
The velocity of an intermediate point on any of the links can be found easily by dividing the corresponding
velocity vector in the same ratio as the point divides the link. For point E in the link BC,
๐›๐ž
๐›๐œ
=
๐ต๐ธ
๐ต๐ถ
ae represents the absolute velocity of E.
Angular velocity of Links
๐‘ฃ๐‘๐‘ = ๐›๐œ ๐‘ฃ๐‘๐‘ = ๐œ๐›
๐‘ฃ๐‘๐‘ = ๐œ”๐‘๐‘ ร— ๐ต๐ถ = ๐œ”๐‘๐‘ ร— ๐ถ๐ต โ†’ ๐œ”๐‘๐‘ =
๐‘ฃ๐‘๐‘
๐ถ๐ต
๐œ”๐‘๐‘ =
๐‘ฃ๐‘๐‘
๐ถ๐ต
;
The magnitude of ฯ‰cb = ฯ‰bc as vcb = vbc and the direction of rotation is the same.
๐‘ฃ๐‘๐‘‘ = ๐๐œ
๐œ”๐‘๐‘‘ =
๐‘ฃ๐‘๐‘‘
๐ถ๐ท
Slider-crank Mechanism
Figure shows OA is the crank moving with uniform angular velocity ฯ‰ rad/s in the clockwise direction. At point
B, a slider moves on the fixed guide G. AB is the coupler joining
A and B. it is required to find the velocity of the slider at B.
๐‘ฃ๐‘๐‘œ = ๐‘ฃ๐‘๐‘Ž + ๐‘ฃ๐‘Ž๐‘œ (๐‘œ๐‘Ÿ) ๐‘ฃ๐‘๐‘” = ๐‘ฃ๐‘Ž๐‘œ + ๐‘ฃ๐‘๐‘Ž
๐ ๐› = ๐จ๐š + ๐š๐›
Take the vector vao which is completely known.
Vba is โŠฅAB, draw a line โŠฅAB through a;
Through g (or a), draw a line parallel to the motion of B.
The intersection of the two lines locates the point b.
gb (or ob) indicates the velocity of the slider B relative to the
guide G. this is also the absolute velocity of the slider (G is fixed).
The slider moves towards the right as indicated by gb. When the crank assumes the position OAโ€ฒ while rotating,
it will be found that the vector gb lies on the left of g indicating that B moves towards left.
For the given configuration, the coupler AB has angular velocity in the counter-clockwise direction, the
magnitude being
๐‘ฃ๐‘๐‘Ž
๐ต๐ด(๐‘œ๐‘Ÿ ๐ด๐ต)
18
Crank and Slotted lever Mechanism
A crank and slotted lever mechanism is a form of quick return mechanism used for slotting and shaping
machines.
OP is the crank rotating at an angular velocity of ฯ‰ rad/s in the clockwise direction about the center O. at the
end of the crank, a slider P is pivoted which moves on an oscillating link AR.
In such problems, it is convenient if a point Q on the link AR immediately below P is assumed to exist (P & Q are
known as coincident points). As the crank rotates, there is relative movement of the points P and Q along AR.
๐‘ฃ๐‘ž๐‘œ = ๐‘ฃ๐‘ž๐‘ + ๐‘ฃ๐‘๐‘œ (๐‘œ๐‘Ÿ) ๐‘ฃ๐‘ž๐‘Ž = ๐‘ฃ๐‘๐‘œ + ๐‘ฃ๐‘ž๐‘
๐š๐ช = ๐จ๐ฉ + ๐ฉ๐ช
Take the vector vpo which is completely known.
Vqa is โŠฅAR, draw a line โŠฅAR through a;
Vpq is โˆฅ AR, draw a line โˆฅAR through p.
The intersection locates the point q. observe that the velocity diagrams obtained in the two cases are the same
expect that the direction of vpq is the reverse of that of vqp
As the vectors oq and qp are perpendicular to each other, the vector vpo may be assumed to have two
components, one perpendicular to AR and the other parallel to AR.
The component of velocity along AR, ie., qp indicates the relative velocity between Q & P or the velocity of
sliding of the block on link AR.
Now, the velocity of R is perpendicular to AR. As the velocity of Q perpendicular to AR is known, the point r will
lie on the vector aq produced such that ar/aq = AR/AQ
To find the velocity of ram S, write the velocity vector equation,
๐‘ฃ๐‘ ๐‘œ = ๐‘ฃ๐‘ ๐‘Ÿ + ๐‘ฃ๐‘Ÿ๐‘œ (๐‘œ๐‘Ÿ) ๐‘ฃ๐‘ ๐‘” = ๐‘ฃ๐‘Ÿ๐‘œ + ๐‘ฃ๐‘ ๐‘Ÿ
๐ ๐ฌ = ๐จ๐ซ + ๐ซ๐ฌ
19
vro is already there in the diagram. Draw a line through r perpendicular to RS for the vector vsr and a line
through g, parallel to the line of motion of the slider S on the guide G, for the vector vsg. In this way the point s is
located.
The velocity of the ram S = os (or gs) towards right for the given position of the crank.
๐ด๐‘™๐‘ ๐‘œ, ๐œ”๐‘Ÿ๐‘  =
๐‘ฃ๐‘Ÿ๐‘ 
๐‘…๐‘†
๐ถ๐‘™๐‘œ๐‘๐‘˜๐‘ค๐‘–๐‘ ๐‘’
Usually, the coupler RS is long and its obliquity is neglected. Then or โ‰ˆ os.
๐‘‡๐‘–๐‘š๐‘’ ๐‘œ๐‘“ ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘”
๐‘‡๐ผ๐‘š๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘›
=
๐œƒ
๐›ฝ
When the crank assumes the position OPโ€™ during the cutting stroke, the component of velocity along AR (i.e, pq)
is zero and oq is maximum (=op)
๐‘Ÿ โ†’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜(๐‘‚๐‘ƒ), ๐‘™ โ†’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘ ๐‘™๐‘œ๐‘ก๐‘ก๐‘’๐‘‘ ๐‘™๐‘’๐‘ฃ๐‘’๐‘Ÿ(๐ด๐‘…), ๐‘ โ†’ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘“๐‘–๐‘ฅ๐‘’๐‘‘ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’๐‘ (๐ด๐‘‚)
๐ท๐‘ข๐‘Ÿ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’, ๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ = ๐œ” ร— ๐‘‚๐‘ƒโ€ฒ
ร—
๐ด๐‘…
๐ด๐‘„
= ๐œ”๐‘Ÿ ร—
๐‘™
๐‘ + ๐‘Ÿ
This is by neglecting the obliquity of the link RS, i.e., assuming the velocity of S equal to that of R.
Similarly, during the return stroke,
๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ = ๐œ” ร— ๐‘‚๐‘ƒโ€ฒโ€ฒ
ร—
๐ด๐‘…
๐ด๐‘„โ€ฒโ€ฒ
= ๐œ”๐‘Ÿ ร—
๐‘™
๐‘ โˆ’ ๐‘Ÿ
๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ (๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘”)
๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ (๐‘Ÿ๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘›)
=
๐œ”๐‘Ÿ ร—
๐‘™
๐‘ + ๐‘Ÿ
๐œ”๐‘Ÿ ร—
๐‘™
๐‘ โˆ’ ๐‘Ÿ
=
๐‘ โˆ’ ๐‘Ÿ
๐‘ + ๐‘Ÿ
20
Velocity analysis (Instantaneous center method approach)
๐œ”๐ด๐ต =
๐‘ฃ๐ด
๐ด๐ผ
=
๐‘ฃ๐ต
๐ต๐ผ
=
๐‘ฃ๐ถ
๐ถ๐ผ
=
๐‘ฃ๐ท
๐ท๐ผ
=
๐‘ฃ๐ธ
๐ธ๐ผ
=
๐‘ฃ๐น
๐น๐ผ
= โ‹ฏ
IโŸถ defined for the relative motion between two links
I24 โŸถ Instantaneous center for the relative motion between link 2 and link 4.
In general, when the link moves, its relative motion IC keeps on changing.
Locus of I-center for the relative motion between the links โŸน centrode.
Locus of I-center of rotation for the relative motion between the links โŸน Axode.
Motions Centrode Axode
General Motion Curve Curved surface
Pure Translation Straight line Plane surface
Pure rotation Point Straight line
In general, the motion of a link in a mechanism is neither pure translation nor pure rotation.
It is a combination of translation and rotation which we normally say the link is in general motion.
But any link at any instant can be assumed to be in pure rotation with respect to the point in the space
known as instantaneous center of rotation. this center is also known as virtual center.
๐‘๐‘œ. ๐‘œ๐‘“ ๐ผ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Ž ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š =
๐’ ยท (๐’ โˆ’ ๐Ÿ)
๐Ÿ
๐ฟ โŸถ ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘™๐‘–๐‘›๐‘˜๐‘ 
Sir Arnold, Kennedy
In reality, AA1 & BB1 โŸถ 0 (โ‰ˆ0).
AA1 and BB1 are very small (negligible).
The link AB at this instant is in General motion.
21
Basics of I-center for a mechanism
Turning pair
Rolling pair
Sliding pair
๐น๐‘œ๐‘Ÿ ๐‘™ = 6, ๐‘๐‘œ. ๐‘œ๐‘“ ๐ผ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘  =
๐’ ยท (๐’ โˆ’ ๐Ÿ)
๐Ÿ
= 15
I12 I13 I14 I15 I16
I23 I24 I25 I26
I34 I35 I36
I45 I46
I56
22
Kennedyโ€™s theorem
For the relative motion between the no. of links in a mechanism any three links, their three IยทC must lie in
straight line.
Theorem of angular velocities
Any I.C Imn can be treated as on link m or its on link n.
๐‘‰๐ผ๐‘š๐‘›
= ๐œ”๐‘š๐‘› ยท (๐ผ๐‘š๐‘›๐ผ1๐‘š
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…) = ๐œ”๐‘› ยท (๐ผ๐‘š๐‘›๐ผ1๐‘›
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…)
This theorem is applied at Imn.
Total I.C in use
๐ผ๐‘š๐‘›
๐ผ1๐‘š
๐ผ1๐‘›
}
๐‘™๐‘–๐‘›๐‘˜ 1
๐‘™๐‘–๐‘›๐‘˜ ๐‘š
๐‘™๐‘–๐‘›๐‘˜ ๐‘›
If I1m, I1n lies on same side of Imn โŸถ same direction, otherwise opposite direction.
Relative velocity method
VELOCITY ANALYSIS OF DOUBLE SLIDER CRANK
MECHANISM
Links 2 & 4 are relatively translating i.e., there is no orientation change b/w
links.
๐‘‰2 = ๐‘‰๐ผ23
= ๐œ”3 โˆ— ๐ผ23 โˆ— ๐ผ13
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐œ”3 =
๐‘‰2
๐ผ23 โˆ— ๐ผ13
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
=
๐‘‰2
๐ฟ2 ๐‘ ๐‘–๐‘› ๐œƒ
๐‘‰4 = ๐‘‰๐ผ34
= ๐œ”3 โˆ— ๐ผ34 โˆ— ๐ผ13
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘‰4 =
๐‘‰2
๐ฟ2 ๐‘ ๐‘–๐‘› ๐œƒ
โˆ— ๐ฟ2 ๐‘๐‘œ๐‘  ๐œƒ
๐‘‰4 =
๐‘‰2
๐‘ก๐‘Ž๐‘› ๐œƒ
The velocity of point B w.r.t point A will
be in the direction perpendicular to the
link AB
Intersection of 12, 14 & 23, 34 is at โˆž.
So, I24 is at โˆž.
23
ACCELERATION ANALYSIS
The rate of change of velocity w.r.t time is known as acceleration and it acts in the direction of change in
velocity. Itโ€™s a vector quantity.
Let a link OA, of length r, rotate in circular path in the clockwise direction. It has an instantaneous angular
velocity ฯ‰ and an angular acceleration ฮฑ in the same direction, i.e., the angular velocity increases in the
clockwise direction.
๐‘‡๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด, ๐‘ฃ๐‘Ž = ๐œ”๐‘Ÿ
๐‘ถ๐‘จ ๐‘–๐‘  ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐œน๐œฝ, ๐‘ก๐‘œ ๐‘ถ๐‘จโ€™, ๐‘–๐‘› ๐‘Ž ๐‘ ๐‘๐‘Ž๐‘› ๐‘œ๐‘“ ๐œน๐’•.
๐ด๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘‚๐ดโ€ฒ
, ๐œ”๐‘Ž
โ€ฒ
= ๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก
๐‘‡๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ดโ€ฒ
, ๐‘ฃ๐‘Ž
โ€ฒ
= (๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ
The tangential velocity of Aโ€™ (๐’—๐’‚
โ€ฒ
) have two components of velocity, one parallel and other perpendicular to OA.
๐‘จ๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐ด โŠฅ ๐’•๐’ ๐‘‚๐ด =
๐‘ฃ๐‘Ž
โ€ฒ
ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ ๐‘ฃ๐‘Ž
๐›ฟ๐‘ก
=
((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ) โˆ’ (๐œ”๐‘Ÿ)
๐›ฟ๐‘ก
๐ด๐‘  ๐›ฟ๐‘ก โ†’ 0, ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โ†’ 1 โŸน ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘จ โŠฅ ๐‘ก๐‘œ ๐‘ถ๐‘จ =
((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท 1) โˆ’ (๐œ”๐‘Ÿ)
๐›ฟ๐‘ก
๐‘ป๐’‚๐’๐’ˆ๐’†๐’๐’•๐’Š๐’‚๐’ ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ โ†’ ๐’‡๐’‚๐’
๐’•
= ๐œถ ยท ๐’“ = (
๐‘‘๐œ”
๐‘‘๐‘ก
) ยท ๐‘Ÿ =
๐‘‘๐‘ฃ
๐‘‘๐‘ก
๐‘จ๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐ด โˆฅ ๐’•๐’ ๐‘‚๐ด =
๐‘ฃ๐‘Ž
โ€ฒ
ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ โˆ’ 0
๐›ฟ๐‘ก
=
((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ)
๐›ฟ๐‘ก
๐ด๐‘  ๐›ฟ๐‘ก โ†’ 0, ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ โ†’ ๐›ฟ๐œƒ โŸน ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘จ โŠฅ ๐‘ก๐‘œ ๐‘ถ๐‘จ =
((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท ๐›ฟ๐œƒ)
๐›ฟ๐‘ก
= ๐œ” ยท ๐‘Ÿ ยท
๐›ฟ๐œƒ
๐›ฟ๐‘ก
= ๐œ”๐‘Ÿ ยท ๐œ”
๐‘น๐’‚๐’…๐’Š๐’‚๐’ ๐’๐’“ ๐‘ช๐’†๐’๐’•๐’“๐’Š๐’‘๐’†๐’•๐’‚๐’ ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ โ†’ ๐’‡๐’‚๐’
๐’„
= ๐œ”2
ยท ๐‘Ÿ =
๐‘ฃ2
๐‘Ÿ
When ฮฑ=0, Tangential acceleration = 0, only Centripetal acceleration will be present.
When ฯ‰ =0, Centripetal acceleration will be zero, A has linear motion.
When ฮฑ is negative, tangential acceleration will be in negative direction.
24
Four-link mechanism
Acceleration diagram Construction: -
a) Select the pole point a1 or d1.
b) Take the first vector from the above table,
i.e., take a1ba to a convenient scale in the
proper direction and sense.
c) Add the second vector to the first and then
the third vector to the second.
d) For the addition of the fourth vector, draw a
line perpendicular to BC through the head cb
of the third vector. The magnitude of the
fourth vector is unknown and cc can lie on
either side of cb.
e) Take the fifth vector from d1.
f) For the addition of sixth vector to the fifth,
draw a line perpendicular to DC through the
head cd of the fifth vector.
The intersection of this line with line drawn
in the step (d) locates the point c1.
Total acceleration of B=a1b1
Total acceleration of C relative to B = b1c1
Total acceleration of C = d1c1
S. no Vector Magnitude Direction Sense
1 ๐‘“๐‘๐‘Ž
๐‘
๐‘œ๐‘Ÿ ๐’‚๐Ÿ๐’ƒ๐’‚
(๐’‚๐’ƒ)2
๐ด๐ต
โˆฅ AB โŸถ A
2 ๐‘“๐‘๐‘Ž
๐‘ก
๐‘œ๐‘Ÿ ๐’ƒ๐’‚๐’ƒ๐Ÿ ฮฑ ร— AB โŠฅ AB or a1ba or โˆฅ ab โŸถ b
3
๐‘“๐‘๐‘
๐‘
๐‘œ๐‘Ÿ ๐’ƒ๐Ÿ๐’„๐’ƒ (๐’ƒ๐’„)2
๐ต๐ถ
โˆฅ AB โŸถ B
4 ๐‘“๐‘๐‘
๐‘ก
๐‘œ๐‘Ÿ ๐’„๐’ƒ๐’„๐Ÿ - โŠฅ BC or b1cb -
5
๐‘“๐‘๐‘‘
๐‘
๐‘œ๐‘Ÿ ๐’…๐Ÿ๐’„๐’… (๐’ƒ๐’„)2
๐ท๐ถ
โˆฅ DC โŸถ D
6 ๐‘“๐‘๐‘‘
๐‘ก
๐‘œ๐‘Ÿ ๐’„๐’…๐’„๐Ÿ - โŠฅ DC or d1cd -
Acceleration of intermediate points on the links can be obtained by dividing the acceleration vectors in the same
ratio as the points divide the links. For point E on the link BC,
๐ต๐ธ
๐ต๐ถ
=
๐‘1๐‘’1
๐‘1๐‘1
a1e1 gives the total acceleration of the point E.
25
Slider crank Mechanism
Acceleration of B relative to O = Acceleration of B relative to A + Acceleration of A relative to O.
๐‘“๐‘๐‘œ = ๐‘“๐‘๐‘Ž + ๐‘“๐‘Ž๐‘œ
๐‘“๐‘๐‘” = ๐‘“๐‘Ž๐‘œ + ๐‘“๐‘๐‘Ž = ๐‘“๐‘Ž๐‘œ + (๐‘“๐‘๐‘Ž
๐‘
+ ๐‘“๐‘๐‘Ž
๐‘ก
)
๐’ˆ๐Ÿ๐’ƒ๐Ÿ = ๐’๐Ÿ๐’‚๐Ÿ + ๐’‚๐Ÿ๐’ƒ๐’‚ + ๐’ƒ๐’‚๐’ƒ๐Ÿ
Crank OA rotates at a uniform velocity. So, the acceleration of A relative to O has only the centripetal
component.
Slider moves in a linear direction and has no centripetal component.
S. no Vector Magnitude Direction Sense
1 ๐’‡๐’‚๐’๐’๐’“ ๐’๐Ÿ๐’‚๐Ÿ
(๐’๐’‚)2
๐‘‚๐ด
โˆฅ AB โŸถ O
2 ๐’‡๐’ƒ๐’‚
๐’„
๐’๐’“ ๐’‚๐Ÿ๐’ƒ๐’‚
(๐’‚๐’ƒ)2
๐ด๐ต
โŠฅ AB or a1ba or โˆฅ ab โŸถ A
3 ๐’‡๐’ƒ๐’‚
๐’•
๐’๐’“ ๐’ƒ๐’‚ ๐’ƒ๐Ÿ โ”€ โˆฅ AB โ”€
4 ๐’‡๐’ƒ๐’ˆ ๐’๐’“ ๐’ˆ๐Ÿ ๐’ƒ๐Ÿ โ”€ โŠฅ BC or b1cb โ”€
Construction
1. Take the first vector fao
2. Add the second vector to the first
3. For the third vector, draw a line โŠฅ to AB through the head ba of the second vector
4. For the fourth vector, draw a line through g1 parallel to the line of motion of the slider
Acceleration of the slider B = o1b1 (or g1b1)
Total acceleration of B relative to A = a1b1
The direction of slider is opposite to that of velocity. Therefore, the acceleration is negative, or the slider
decelerates while moving.
26
Coriolis Acceleration Component
It is seen that the acceleration of a moving point relative to a fixed body may have two components of
acceleration: the centripetal and tangential.
However, in some cases, the point may have its motion relative to a
moving body system, for example, motion of a slider on a rotating link.
Following analysis is made to investigate the acceleration at that point
P.
Let a link AR rotate about a fixed-point A on it. P is a point on a slider
on the link.
ฯ‰ = angular velocity of link, ฮฑ = angular acceleration of the link,
v = linear velocity of the slider on the link,
f = linear acceleration of the slider on the link,
r = radial distance of point P on the slider.
In a short interval of time ฮดt, let ฮดฮธ be the angular displacement of the
link and ฮดr be the radial displacement of the slider in the outward
direction.
After the short interval of time ฮดt, let
๐œ”โ€ฒ
= ๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก๐‘ฃโ€ฒ
= ๐‘ฃ + ๐‘“ ยท ๐›ฟ๐‘ก๐‘Ÿโ€ฒ
= ๐‘Ÿ + ๐›ฟ๐‘Ÿ
Acceleration of P parallel to AR
๐ผ๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = ๐’— = ๐’—๐’‘๐’’
๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = (๐‘ฃโ€ฒ
ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ ๐œ”โ€ฒ
ยท ๐‘Ÿโ€ฒ
ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ)
๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น =
(๐‘ฃโ€ฒ
ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ ๐œ”โ€ฒ
ยท ๐‘Ÿโ€ฒ
ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ) โˆ’ ๐‘ฃ
๐›ฟ๐‘ก
=
((๐‘ฃ + ๐‘“ ยท ๐›ฟ๐‘ก) ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ (๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท (๐‘Ÿ + ๐›ฟ๐‘Ÿ) ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ) โˆ’ ๐‘ฃ
๐›ฟ๐‘ก
In the limit, as ฮดt โŸถ 0, cos ฮดฮธ โŸถ 1, sin ฮดฮธ โŸถ 0.๐›ฟ๐œƒ
๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = ๐‘“ โˆ’ ๐œ”๐‘Ÿ
๐‘‘๐œƒ
๐‘‘๐‘ก
= ๐‘“ โˆ’ ๐œ”๐‘Ÿ๐œ” = ๐’‡ โˆ’ ๐Ž๐Ÿ
๐’“
Acceleration of P along AR = (Acceleration of slider) โ”€ (Centripetal acceleration)
This is the acceleration of f along AR in the radially outward direction. f will be negative if the slider has
deceleration while moving in the outward direction or has acceleration while moving in the outward direction.
Acceleration of P perpendicular to AR,
๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ƒ โŠฅ ๐ด๐‘… =
(๐‘ฃโ€ฒ
ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ + ๐œ”โ€ฒ
๐‘Ÿโ€ฒ
ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ) โˆ’ ๐‘ฃ
๐›ฟ๐‘ก
=
((๐‘ฃ + ๐‘“ ยท ๐›ฟ๐‘ก) ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ (๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท (๐‘Ÿ + ๐›ฟ๐‘Ÿ) ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ) โˆ’ ๐œ”๐‘Ÿ
๐›ฟ๐‘ก
In the limit, as ฮดt โŸถ 0, cos ฮดฮธ โŸถ 1, sin ฮดฮธ โŸถ 0.
๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท โŠฅ ๐‘จ๐‘น = ๐‘ฃ
๐‘‘๐œƒ
๐‘‘๐‘ก
+ ๐œ”
๐‘‘๐‘Ÿ
๐‘‘๐‘ก
+ ๐›ผ ยท ๐‘Ÿ = ๐‘ฃ ยท ๐œ” + ๐œ” ยท ๐‘ฃ + ๐›ผ ยท ๐‘Ÿ = ๐Ÿ๐Ž๐’— + ๐œถ๐’“
Acceleration of P โŠฅ AR = 2ฯ‰v + Tangential acceleration
The component 2ฯ‰v is known as the Coriolis acceleration component.
It is positive if both ฯ‰ and v are either positive or negative.
The Coriolis component is positive if the link AR rotates clockwise and the slider moves radially outwards or
link rotates counter-clockwise and the slider moves radially inwards.
27
The direction of the Coriolis acceleration component is obtained by rotating the radial velocity vector v through
90ยฐ in the direction of rotation of the link.
Let Q be a point on the link AR immediately beneath the point P at the instant. Then
๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท โˆฅ ๐‘ก๐‘œ ๐‘จ๐‘น + ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท โŠฅ ๐‘ก๐‘œ ๐‘จ๐‘น
๐‘“๐‘๐‘Ž = (๐‘“ โˆ’ ๐œ”2
๐‘Ÿ) + (2๐œ”๐‘ฃ + ๐›ผ๐‘Ÿ) = ๐‘“ + (๐›ผ๐‘Ÿ โˆ’ ๐œ”2
๐‘Ÿ) + 2๐œ”๐‘ฃ
๐‘“๐‘๐‘Ž = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘ธ + ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ธ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘จ + ๐‘ช๐’๐’“๐’Š๐’๐’๐’Š๐’” ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’„๐’๐’Ž๐’‘๐’๐’๐’†๐’๐’•
๐’‡๐’‘๐’‚ = ๐‘“๐‘๐‘ž
โ€ฒ
+ ๐‘“๐‘ž๐‘Ž + ๐’‡๐’„๐’“
๐‘“๐‘๐‘ž
โ€ฒ
โ†’ ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘Ž๐‘› ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘’๐‘Ÿ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘’๐‘‘ ๐‘œ๐‘› ๐‘™๐‘–๐‘›๐‘˜ ๐‘จ๐‘น ๐‘ค๐‘œ๐‘ข๐‘™๐‘‘ ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘™๐‘–๐‘‘๐‘’๐‘Ÿ.
Remember Coriolis component of acceleration exists only if there are two coincident points which has
โ€ข Linear relative velocity of sliding
โ€ข Angular motion about fixed finite centres of rotation.
๐’‡๐’‘๐’‚ = ๐‘“๐‘๐‘ž
โ€ฒ
+ ๐‘“๐‘ž๐‘Ž + ๐’‡๐’„๐’“
= (๐‘“๐‘๐‘ž
โ€ฒ
+ ๐’‡๐’„๐’“
) + ๐‘“๐‘ž๐‘Ž = ๐’‡๐’‘๐’’ + ๐’‡๐’’๐’‚
Crank and Slotted-Lever Mechanism
Crank OP rotates at uniform angular velocity of ฯ‰ rad/s clockwise.
๐‘“๐‘๐‘Ž = ๐‘“๐‘๐‘ž + ๐‘“๐‘ž๐‘Ž (๐‘œ๐‘Ÿ) ๐‘“
๐‘๐‘œ = ๐‘“๐‘ž๐‘Ž + ๐‘“๐‘๐‘ž
๐’๐Ÿ๐’‘๐Ÿ = ๐’‚๐Ÿ๐’’๐’‚ + ๐’’๐’‚๐’’๐Ÿ + ๐’’๐Ÿ๐’‘๐’’ + ๐’‘๐’’๐’‘๐Ÿ
28
Construction of Acceleration diagram:
1. Take the first vector fpo which is completely known.
2. Take the second vector from the point a1 (or o1). This vector is also known.
3. Only the direction of the third vector ๐’‡๐’’๐’‚
๐’•
is known. Draw a line โŠฅ to AQ through the head qa of the
second vector.
4. As the head of the third vector is not available, the fourth vector cannot be added to it.
Take the last vector ๐’‡๐’‘๐’’
๐’„๐’“
which is completely known. Place this vector in the proper direction and sense
so that p1 becomes the head of the vector.
pq canโ€™t lie on the right side of p1 because then the vector would become p1pq and not pqp1.
5. For the fourth vector, draw a line parallel to AR through the point pq of the fifth vector.
the intersection of this line with line drawn in the step 3 locates the point q1.
6. Total acceleration of P relative to Q, fpq = q1p1
total acceleration of Q relative to A, fqa = a1q1
the acceleration of R relative to A is given on a1q1 produced such that
๐‘Ž1๐‘Ÿ1
๐‘Ž1๐‘ž1
=
๐ด๐‘…
๐ด๐‘„
S. no Vector Magnitude Direction Sense
1 ๐’‡๐’‘๐’๐’๐’“ ๐’๐Ÿ๐’‘๐Ÿ ฯ‰ ร— OP โˆฅ OP โŸถ O
2 ๐’‡๐’’๐’‚
๐’„
๐’๐’“ ๐’‚๐Ÿ๐’’๐’‚
(๐’‚๐’’)2
๐ด๐‘„
โˆฅ AQ โŸถ A
3 ๐’‡๐’’๐’‚
๐’•
๐’๐’“ ๐’’๐’‚ ๐’’๐Ÿ โ”€ โŠฅ AQ or a1qa โ”€
4 ๐’‡๐’‘๐’’
๐’”
๐’๐’“ ๐’’๐Ÿ๐’‘๐’’ โ”€ โˆฅ AR โ”€
5 ๐’‡๐’‘๐’’
๐’„๐’“
๐’๐’“ ๐’‘๐’’๐’‘๐Ÿ Coriolis component* โŠฅ AR Refer*
๐‘“๐‘๐‘ž
๐‘๐‘Ÿ
= 2๐œ”1๐‘ฃ๐‘๐‘ž (๐œ”1 = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘–๐‘๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด๐‘…) = 2 (
๐’‚๐’’
๐ด๐‘„
) ๐‘ž๐‘
29
STATIC FORCE ANLAYSIS
There are 2 types of forces on a mechanism
1. Constraint forces- A pair of action and reaction forces which constrain two bodies to behave in a
manner depending upon the nature of connection are known as constraint forces.
2. Applied forces- Forces acting from outside on a system of bodies are called applied forces.
A body is in static equilibrium if it remains in its state of rest or motion.
โ€ข The vector sum of all forces acting on the body is zero. (โˆ‘ ๐น
โƒ— = 0)
โ€ข The vector sum of all moments about the arbitrary point is zero. (โˆ‘ ๐‘€
โƒ—โƒ—โƒ— = 0)
2-FORCE SYSTEM 3-FORCE SYSTEM
A member under the action of 2 force system will be in equilibrium if
โ€ข The forces are of same magnitude
โ€ข The forces act along the same line
โ€ข The forces are in opposite directions.
A member under the action of 3 force system will be in equilibrium if
โ€ข The resultant of action of 3 forces is zero.
โ€ข The lines of action of the forces intersect at a point.
A member under the action of two applied forces and an applied torque will be in equilibrium if
โ€ข The forces are in equal in magnitude, parallel in direction and opposite in sense
โ€ข The forces form a couple which is equal and opposite to applied torque.
30
Equilibrium of four force members
First look for the forces completely known and combine them into a single force using vector addition method,
then we can use three force method.
FREE BODY DIAGRAM
SUPERPOSITION
In linear systems, if a number of loads act on a system of forces, the net effect is equal to superposition of the
effects of the individual loads taken at a time.
PRINCIPLE OF VIRTUAL WORK
The work done during a virtual displacement from the equiibrium is equal to zero.
According to the principle of virtual work,
๐‘Š = ๐‘‡๐›ฟ๐œƒ + ๐น๐›ฟ๐‘ฅ = 0
An virtual displacement must take place during the same interval ฮดt,
๐‘‡
๐‘‘๐œƒ
๐‘‘๐‘ก
+ ๐น
๐‘‘๐‘ฅ
๐‘‘๐‘ก
= 0
๐‘‡๐œ” + ๐น๐‘ฃ = 0
๐‘‡ = โˆ’
๐น
๐œ”
๐‘ฃ
(ฯ‰โ†’angular velocity, vโ†’linear velocity)
31
DYNAMIC FORCE ANALYSIS
Dโ€™ALEMBERTโ€™S PRINCIPLE
Inertia forces and couples, and the external forces and torques on a body together give static equilibrium.
Inertia is a property of matter by virtue of which a body resists any change in velocity.
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐น๐‘– = โˆ’๐‘š๐‘“๐‘”
(๐‘“๐‘” โ†’ ๐‘Ž๐‘Ž๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ)
Inertia force acts in opposite direction to that of acceleration.
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘๐‘œ๐‘ข๐‘๐‘™๐‘’ ๐ถ๐‘– = โˆ’๐ผ๐‘”. ๐›ผ
(๐ผ๐‘” โ†’ ๐‘š๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘Ž๐‘๐‘œ๐‘ข๐‘ก ๐‘Ž๐‘› ๐‘Ž๐‘ฅ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐บ)
According to Dโ€™Alembertโ€™s principle
โˆ‘ ๐น + ๐น๐‘– = 0
โˆ‘ ๐‘‡ + ๐ถ๐‘– = 0
EQUIVALENT OFFSET INERTIA FORCE
If the body is acted upon by the forces such that resultant force does not pass through the centre of mass, a
couple is acting on the system.
It is possible to replace inertia force and inertia couple by an equivalent offset force, this is done by displacing
the line of action of inertia force from the centre of mass.
โ„Ž =
๐ถ๐‘–
๐น๐‘–
=
๐‘˜2
๐›ผ
๐‘“๐‘”
(๐ถ๐‘– = ๐น๐‘–. โ„Ž)
(๐ถ๐‘– = โˆ’๐ผ๐‘”. ๐›ผ)(๐น๐‘– = โˆ’๐‘š๐‘“๐‘”)
DYNAMIC ANALYSIS OF FOUR LINK MECHANISM
For dynamic analysis of four-link mechanisms, the following procedure is followed.
1. Draw the velocity and acceleration diagram of the mechanism from the configuration diagram by usual
methods.
2. Determine the linear acceleration of the centers of masses of various links, and the angular
accelerations of the links
3. Calculate the inertia forces and inertia couples from the relations ๐น๐‘– = โˆ’๐‘š๐‘“๐‘” and ๐ถ๐‘– = โˆ’๐ผ๐‘”. ๐›ผ .
4. Replace Fi with equivalent offset inertia force to consider Fi as well as Ci.
5. Assume equivalent offset inertia forces on the links as static forces and analyze the mechanism by any of
the methods.
32
STATIC ANALYSIS OF SLIDER CRANK MECHANISMS
Velocity and acceleration of a piston
๐‘ฅ = ๐ต1๐ต = ๐ต๐‘‚ โˆ’ ๐ต1๐‘‚ = ๐ต๐‘‚ โˆ’ (๐ต1๐ด1 + ๐ด1๐‘‚)
๐‘ฅ = (๐‘Ÿ + ๐‘™) โˆ’ (๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘™ ๐‘๐‘œ๐‘  ๐›ฝ)
(๐’ = ๐’“๐’)
๐‘ฅ = ๐‘Ÿ[(๐‘› + 1) โˆ’ (๐‘› ๐‘๐‘œ๐‘  ๐›ฝ + ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)]
๐‘๐‘œ๐‘  ๐›ฝ =
1
๐‘›
โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ
๐‘ฅ = ๐‘Ÿ[(๐‘› + 1) โˆ’ (โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ + ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)]
๐‘ฅ = ๐‘Ÿ[(1 โˆ’ ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ) + (๐‘› โˆ’ โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ)]
If (l>>>>n) n2
is very large and (n2
-sin2
๏ฑ ๏€ n2
)
๐‘ฅ = ๐‘Ÿ(1 โˆ’ ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)
Velocity of the piston
๐‘ฃ =
๐‘‘๐‘ฅ
๐‘‘๐œƒ
ร—
๐‘‘๐œƒ
๐‘‘๐‘ก
๐‘ฃ = ๐‘Ÿ๐œ” [๐‘ ๐‘–๐‘› ๐œƒ +
๐‘ ๐‘–๐‘› 2๐œƒ
2โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ
]
๐‘ฃ = ๐‘Ÿ๐œ” [๐‘ ๐‘–๐‘› ๐œƒ +
๐‘ ๐‘–๐‘› 2๐œƒ
2๐‘›
]
Acceleration of the piston
๐‘“ =
๐‘‘๐‘ฃ
๐‘‘๐œƒ
ร—
๐‘‘๐œƒ
๐‘‘๐‘ก
๐‘“ = ๐‘Ÿ๐œ”2
[๐‘๐‘œ๐‘  ๐œƒ +
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
]
๐‘“ = ๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ (if n>>>cos 2๏ฑ)
Velocity of the piston will be maximum at crank angle ๏ฑ, to find ๏ฑ
๐‘‘๐‘ฃ
๐‘‘๐œƒ
= 0
(n2
>> sin2
๏ฑ)
33
๐‘‘
๐‘‘๐œƒ
[๐‘ ๐‘–๐‘›๐œƒ +
๐‘ ๐‘–๐‘›2๐œƒ
2๐‘›
] = 0 (๐‘› = 3.5)
๐œƒ = 75.5ยฐ, 284.5ยฐ
๐ด๐‘ก ๏ฑ = 75.5ยฐ, ๐‘› = 3.5
๐‘ฃ๐‘  = 1.037๐‘Ÿ๐œ”.
๐ด๐‘ก ๏ฑ = 284.5ยฐ, ๐‘› = 3.5
๐‘ฃ๐‘  = โˆ’1.037๐‘Ÿ๐œ”.
Acceleration of the piston will be maximum at crank angle ๏ฑ, to find ๏ฑ
๐‘‘๐‘Ž๐‘ 
๐‘‘๐œƒ
= 0
๐‘‘
๐‘‘๐œƒ
[๐‘๐‘œ๐‘  ๐œƒ +
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
] = 0 (n=3.5)
๏ฑ=151ยฐ, 209ยฐ
๐ด๐‘ก ๏ฑ = 151ยฐ, ๏ฑ = 209ยฐ,
๐‘Ž๐‘  = โˆ’0.723 ยท ๐‘Ÿ ยท ๐œ”2
.
๐ด๐‘ก ๏ฑ = 0ยฐ,
๐‘Ž๐‘  = โˆ’1.3 ยท ๐‘Ÿ ยท ๐œ”.
Angular velocity and angular acceleration of connecting rod
๐‘ ๐‘–๐‘› ๐›ฝ =
๐‘ ๐‘–๐‘› ๐œƒ
๐‘›
Differentiating with respecting to time, we get
๐ด๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ÿ๐‘œ๐‘‘ = ๐œ”๐‘ =
๐‘‘๐›ฝ
๐‘‘๐‘ก
๐œ”๐‘ = ๐œ”
๐‘๐‘œ๐‘  ๐œƒ
โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ
(ฯ‰-angular velocity of rod)
๐›ผ๐‘ = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ÿ๐‘œ๐‘‘ =
๐‘‘๐œ”
๐‘‘๐‘ก
๐›ผ๐‘ = โˆ’๐œ”2
๐‘ ๐‘–๐‘› ๐œƒ [
๐‘›2
โˆ’ 1
(๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ)3 2
โ„
]
34
DYNAMIC ANALYSIS OF SLIDER CRANK MECHANISM
(neglecting the effect of the weights and the inertia effect of the connecting rod)
Piston Effort
It is the net or effective force applied on the piston.
Force on piston due to gas pressure = Fp
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘“ = ๐‘š๐‘Ÿ๐œ”2
(๐‘๐‘œ๐‘  ๐œƒ +
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
)
F = Fp - Fb - Ff
In case of vertical engines, the weight of the piston or reciprocating parts also acts as force and thus,
F=Fp + mg - Fb - Ff
Force (thrust) along the connecting rod
Fc = Force in the connecting rod
๐น๐‘ ร— ๐‘๐‘œ๐‘  ๐›ฝ = ๐น
๐น๐‘ =
๐น
๐‘๐‘œ๐‘  ๐›ฝ
Thrust on the sides of cylinder
It is the normal reaction on the cylinder walls
๐น๐‘› = ๐น๐‘ ๐‘ ๐‘–๐‘› ๐›ฝ = ๐‘“ ๐‘ก๐‘Ž๐‘› ๐›ฝ
Crank Effort
Force is exerted on the crankpin because of the force on the piston.
35
Ft = crank effort
๐น๐‘ก ร— ๐‘Ÿ = ๐น๐‘๐‘Ÿ ๐‘ ๐‘–๐‘› ๐›ฝ
๐น๐‘ก = ๐น๐‘ ๐‘ ๐‘–๐‘› ๐›ฝ =
๐น
๐‘๐‘œ๐‘  ๐›ฝ
๐‘ ๐‘–๐‘›(๐œƒ + ๐›ฝ)
Thrust on the Bearings
๐น๐‘Ÿ = ๐น๐‘ ๐‘๐‘œ๐‘  ๐›ฝ =
๐น
๐‘๐‘œ๐‘  ๐›ฝ
๐‘๐‘œ๐‘ (๐œƒ + ๐›ฝ)
Turning Moment on Crankshaft
๐‘‡ = ๐น๐‘ก ร— ๐‘Ÿ =
๐น
๐‘๐‘œ๐‘  ๐›ฝ
๐‘ ๐‘–๐‘›(๐œƒ + ๐›ฝ) ร— ๐‘Ÿ
๐‘‡ = ๐น๐‘Ÿ (๐‘ ๐‘–๐‘› ๐œƒ +
๐‘ ๐‘–๐‘› 2๐œƒ
2โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ
)
๐‘‡ = ๐น๐‘ก ร— ๐‘Ÿ = ๐น ร— ๐‘‚๐ท
Dynamically equivalent 2-point mass system (connecting rod)
๐ผ๐‘๐‘Ÿ
๐บ
= ๐‘š๐‘๐‘Ÿ๐พ๐บ
๐‘๐‘Ÿ
๐พ๐บ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘œ๐‘“ ๐‘”๐‘ฆ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘๐‘œ๐‘ข๐‘ก ๐บ.
๐‘ + ๐‘‘ = ๐ฟ
For complete dynamic equivalence b/w actual Connecting Rod & 2-point mass system
1. mb + ms = mcr
2. mb. b = ms. d
3. ๐‘š๐‘๐‘2
+ ๐‘š๐‘ ๐‘‘2
= ๐‘š๐‘๐‘Ÿ๐พ๐‘”
2
Solving for 1 & 2 & 3
๐‘š๐‘ =
๐‘‘
๐ฟ
๐‘š๐‘๐‘Ÿ ๐‘š๐‘  =
๐‘
๐ฟ
๐‘š๐‘๐‘Ÿ
๐พ๐บ
2
= ๐‘. ๐‘‘
It is the condition on b & d so that 2-point mass system is completely dynamically equivalent.
๐ผ = ๐‘š๐‘๐‘2
+ ๐‘š๐‘ ๐‘‘2
= ๐‘š๐‘๐‘Ÿ. ๐‘. ๐‘‘
Result can be compared with equivalent length of simple pendulum
36
The equivalent length of simple pendulum is
Generally, ๐‘ฒ๐‘ฎ
๐Ÿ
โ‰ค ๐’ƒ. ๐’…
(Inertia couple) actual connecting rod < inertia couple of equivalent system (taken)
On the 2-point mass system, a correction couple is applied.
๐‘‡๐‘ = ๐‘š๐‘๐‘Ÿ๐พ๐บ
2
๐›ผ โˆ’ ๐‘š๐‘๐‘Ÿ๐‘๐‘‘๐›ผ
๐‘‡๐‘ = โˆ’๐‘š๐‘๐‘Ÿ๐›ผ(๐‘๐‘‘โˆ’๐พ๐บ
2)
Correction couple must be applied in the direction of angular acceleration
๐น
๐‘ =
๐‘‡๐‘
๐ฟ
37
BALANCING OF ROTATING MASS
Often an unbalance of forces is produced in rotary or reciprocating machinery due to inertia forces (ex-
centrifugal force in rotating mass) associated with the moving masses.
Balancing is the process of designing or modifying machinery so that unbalance is reduced to an acceptable
level and if possible is eliminated entirely.
Static Balancing
A system of rotating masses is said to be in static balancing if the combined mass center of the system lies on the
axis of rotation.
๐น = ๐‘š1๐’“๐Ÿ๐œ”2
+ ๐‘š2๐’“๐Ÿ๐œ”2
+ ๐‘š3๐’“๐Ÿ‘๐œ”2
๐‘š1๐’“๐Ÿ๐œ”2
+ ๐‘š2๐’“๐Ÿ๐œ”2
+ ๐‘š3๐’“๐Ÿ‘๐œ”2
+ ๐‘š๐‘๐’“๐’„๐œ”2
= 0
๐‘š1๐’“๐Ÿ + ๐‘š2๐’“๐Ÿ + ๐‘š3๐’“๐Ÿ‘ + ๐‘š๐‘๐’“๐’„ = 0
โˆ‘ ๐‘š๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘๐‘Ÿ๐‘ ๐‘๐‘œ๐‘  ๐œƒ๐‘ = 0
โˆ‘ ๐‘š๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘๐‘Ÿ๐‘ ๐‘ ๐‘–๐‘› ๐œƒ๐‘ = 0
๐‘š๐‘๐‘Ÿ๐‘ = โˆš(๐›ด๐‘š๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐›ด๐‘š๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œƒ)2
๐‘ก๐‘Ž๐‘› ๐œƒ๐‘ =
๐›ด๐‘š๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ
๐›ด๐‘š๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œƒ
38
Dynamic Balancing
When several masses rotate in different planes, the centrifugal forces, in addition to being out of balance, also
form couples.
A system of rotating masses is in dynamic balance when there does not exist any centrifugal force as well as
resultant couple.
Transferring Force from one plane to another plane-
Force of mass m will be replaced by Force F1 and as a
result a couple will be acting at O along OA.
Balancing of Several Masses in Different Planes
For complete balancing of the rotor, the resultant force, and the resultant couple both should be zero.
If resultant force and couple are not zero, then mass placed in reference plane may satisfy force equation, but
for couple equation to be balanced, two forces in different transverse planes are required.
๐‘š1๐’“1๐œ”2
+ ๐‘š2๐’“2๐œ”2
+ ๐‘š3๐’“3๐œ”2
+ ๐‘š๐‘1๐’“๐‘1๐œ”2
+ ๐‘š๐‘2๐’“๐‘2๐œ”2
= 0
๐‘š1๐’“1 + ๐‘š2๐’“2 + ๐‘š3๐’“3 + ๐‘š๐‘1๐’“๐‘1 + ๐‘š๐‘2๐’“๐‘2 = 0
๐›ด๐‘š๐’“ + ๐‘š๐‘1๐’“๐‘1 + ๐‘š๐‘2๐’“๐‘2 = 0
Let the counter masses be placed in transverse planes at axial locations at O & Q.
Taking moments about O,
๐‘š1๐’“1๐‘™1๐œ”2
+ ๐‘š2๐’“2๐‘™2๐œ”2
+ ๐‘š3๐’“3๐‘™3๐œ”2
+ ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2๐œ”2
= 0
๐‘š1๐’“1๐‘™1 + ๐‘š2๐’“2๐‘™2 + ๐‘š3๐’“3๐‘™3 + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 = 0
๐›ด๐‘š๐’“๐‘™1 + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 = 0
39
This can be also solved analytically,
๐›ด๐‘š๐’“๐‘™1 ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2 = 0
๐›ด๐‘š๐’“๐‘™1 ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2 = 0
๐›ด๐‘š๐’“๐‘™ ๐‘๐‘œ๐‘  ๐œƒ = โˆ’๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2
๐›ด๐‘š๐’“๐‘™ ๐‘ ๐‘–๐‘› ๐œƒ = โˆ’๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2
๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 = โˆš(๐›ด๐‘š๐’“๐‘™ ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐›ด๐‘š๐’“๐‘™ ๐‘ ๐‘–๐‘› ๐œƒ)2
๐‘ก๐‘Ž๐‘› ๐œƒ๐ถ2 =
โˆ’๐›ด๐‘š๐’“๐‘™1 ๐‘ ๐‘–๐‘› ๐œƒ
โˆ’๐›ด๐‘š๐’“๐‘™1 ๐‘๐‘œ๐‘  ๐œƒ
Substituting the value of m2 & ๏ฑC2 in above equations, we get
๐‘š๐‘1๐’“๐‘1 = โˆš(๐›ด๐‘š๐’“ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2)2 + (๐›ด๐‘š๐’“ ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2)2
๐‘ก๐‘Ž๐‘› ๐œƒ๐ถ1 =
โˆ’(๐›ด๐‘š๐’“ ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2)
โˆ’(๐›ด๐‘š๐’“ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2)
40
BALANCING OF RECIPROCATING MASS
๐‘“ = ๐‘Ÿ๐œ”2
(๐‘๐‘œ๐‘  ๐œƒ +
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
)
๐น๐‘… = ๐‘š๐‘“ = ๐‘š๐‘Ÿ๐œ”2
(๐‘๐‘œ๐‘  ๐œƒ +
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
)
๐น๐‘… = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
FR=Force required to accelerate the
reciprocating parts.
FI = Inertia force due to reciprocating parts
FN = Force on the sides of the cylinder walls
or normal force acting on the crosshead
guides
FB = Force acting on the crankshaft bearing
or main bearing.
FI & FR are balanced and FBH is unbalanced and acting along OA (FBH = FU) (FU = unbalanced force = FI=FR)
There will be an unbalanced force & unbalanced couple caused by FN & FBV (unbalanced couple = ๐น๐‘ ร— ๐‘ฅ =
๐น๐ต๐‘‰ ร— ๐‘ฅ)
Both FU and unbalanced couple vary in magnitude while rotating and causes serious vibration.
โ†’ ๐’Ž๐’“๐Ž๐Ÿ
๐’„๐’๐’” ๐œฝ is called primary unbalancing force and ๐’Ž๐’“๐Ž๐Ÿ ๐’„๐’๐’” ๐Ÿ๐œฝ
๐’
is called secondary unbalancing force.
Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine
The primary unbalanced force (mโ‹…ฯ‰2
โ‹…rcosฮธ) may be considered as the component of the centrifugal force
produced by a rotating mass m placed at the crank radius r.
B= mass of balancing force
b = distance of balancing force
We placed of mass of B, at b distance.
๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ = ๐ต๐œ”2
๐‘ ๐‘๐‘œ๐‘  ๐œƒ
๐’Ž๐’“ = ๐‘ฉ๐’ƒ
But still vertical force of mass B is not balanced (Bฯ‰2
b sin๏ฑ) and there will be to-fro motion of system.
So, there will be only partial balancing of the system (B will be c.m & b=r)
41
Unbalanced force along the line of stroke = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ โˆ’ ๐’„. ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ
= (1 โˆ’ ๐’„)๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ
Unbalanced force along the perpendicular to the line of stroke=c.mrฯ‰2
sin๏ฑ.
Resultant unbalanced force at any instant= โˆš((1 โˆ’ ๐’„)๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐’„. ๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐œƒ . )2
Effect of Partial Balancing of Reciprocating Parts of Two Cylinder Locomotives
The effect of an unbalanced primary force along the line of stroke is to produce.
1. Variation in tractive force along the line of stroke
2. Swaying couple.
3. Hammer blow
A single or uncoupled locomotive is one, in which the effort is transmitted to one pair of the wheels only;
whereas in coupled locomotives, the driving wheels are connected to the leading and trailing wheel by an
outside coupling rod.
Hammer Blow
The effect of an unbalanced primary force perpendicular to the line of stroke is to produce variation in pressure
on the rails, which results in hammering action on the rails.
The maximum magnitude of the unbalanced force along the perpendicular to the line of stroke is known as a
hammer blow. Its value is mrฯ‰2
.
Variation of Tractive force
The resultant unbalanced force due to the two cylinders, along the line of stroke, is known as tractive force.
Since the crank for the second cylinder is at right angle to the first crank, therefore the angle of inclination for
the second crank will be (90ยฐ + ฮธ).
We know that unbalanced force along cylinder 1 = (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ
Unbalanced force along cylinder 2= (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (90 + ๐œƒ) = โˆ’(1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2
๐‘ ๐‘–๐‘› ๐œƒ
๐น๐‘‡ = ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘›๐‘’ = (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ โˆ’ (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2
๐‘ ๐‘–๐‘› ๐œƒ = (๐Ÿ โˆ’ ๐’„)๐’Ž๐’“๐Ž๐Ÿ
(๐’„๐’๐’” ๏ฑ โˆ’ ๐’”๐’Š๐’ ๐œฝ)
๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘‘ ๐‘€๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ยฑโˆš๐Ÿ(๐Ÿ โˆ’ ๐’„)๐’Ž๐’“๐Ž๐Ÿ
42
Swaying Couple
The unbalanced forces along the line of stroke for the two cylinders constitute a couple about the centre YY
between the cylinders. This couple has swaying effect about a vertical axis, and tends to sway the engine
alternately in clockwise and anticlockwise directions. Hence the couple is known as swaying couple.
๐‘†๐‘ค๐‘Ž๐‘ฆ๐‘–๐‘›๐‘” ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = (1 โˆ’ ๐‘)๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ ร—
๐‘Ž
2
โˆ’ (1 โˆ’ ๐‘)๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘ (90 + ๐œƒ) ร—
๐‘Ž
2
๐‘†๐‘ค๐‘Ž๐‘ฆ๐‘–๐‘›๐‘” ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = (๐Ÿ โˆ’ ๐’„)๐’Ž๐Ž๐Ÿ
๐’“(๐’„๐’๐’” ๐œฝ + ๐’”๐’Š๐’ ๐œฝ) ร—
๐’‚
๐Ÿ
๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘‘ ๐‘€๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘†๐‘ค๐‘Ž๐‘ฆ๐‘–๐‘›๐‘” ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ยฑ
๐’‚
โˆš๐Ÿ
(๐Ÿ โˆ’ ๐’„)๐’Ž๐Ž๐Ÿ
Secondary Balancing
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2๐œƒ
๐‘›
๐ผ๐‘ก ๐‘๐‘Ž๐‘› ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘๐‘’ ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘ก๐‘’๐‘› ๐‘Ž๐‘  = ๐‘š (
๐‘Ÿ
4๐‘›
) (2๐œ”)2
๐‘๐‘œ๐‘  2๐œƒ
The effect of secondary forces is equivalent to an imaginary crank of length โ€˜r/4nโ€™ rotating at twice the angular
speed.
It is equal to component of primary force along the length of stroke.
Balancing of Inline Engines
The following two conditions must be satisfied to give the primary balance of the reciprocating parts of a multi-
cylinder engine,
1. The algebraic sum of the primary forces must be equal to zero. In other words, the primary force polygon
must close.
2. The algebraic sum of the couples about any point in the plane of the primary forces must be equal to zero. In
other words, the primary couple polygon must close.
The reciprocating mass is transferred to crank pin to give the primary balance of the
reciprocating engine, which is along the line of stroke and treated as revolving masses.
43
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘๐‘œ๐‘ข๐‘๐‘™๐‘’ = โˆ‘๐‘š๐œ”2
๐‘Ÿ๐‘™ ๐‘๐‘œ๐‘  ๐œƒ
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š (
๐‘Ÿ
4๐‘›
) (2๐œ”)2
๐‘๐‘œ๐‘  2๐œƒ
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’
= โˆ‘๐‘š (
๐‘Ÿ
4๐‘›
) (2๐œ”)2
๐‘™ ๐‘๐‘œ๐‘  2๐œƒ
Three-cylinder inline engine with crank offset of 120หš
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ = ๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘ (120 + ๐œƒ) + ๐‘š๐œ”2
๐‘Ÿ ๐‘๐‘œ๐‘ (240 + ๐œƒ) = 0
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š (
๐‘Ÿ
4๐‘›
) (2๐œ”)2
๐‘๐‘œ๐‘  2๐œƒ = ๐‘š (
๐‘Ÿ
4๐‘›
) (2๐œ”)2
(๐‘๐‘œ๐‘  2๐œƒ + ๐‘๐‘œ๐‘ (240 + 2๏ฑ) + ๐‘๐‘œ๐‘ (480 + 2๐œƒ)) = 0
๐‘€๐‘ = ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘š๐‘Ÿ๐œ”2
๐‘™ ๐‘๐‘œ๐‘ (240 + ๐œƒ) โˆ’ ๐‘š๐‘Ÿ๐œ”2
๐‘™ ๐‘๐‘œ๐‘  ๐œƒ = ๐‘š๐‘Ÿ๐œ”2
๐‘™(๐‘๐‘œ๐‘ (240 + ๐œƒ) โˆ’ ๐‘๐‘œ๐‘  ๐œƒ)
๐‘€๐‘ ๐’Ž๐’‚๐’™ = ๐‘š๐‘Ÿ๐œ”2
๐‘™(2๏‚ด ๐‘๐‘œ๐‘  30) = โˆš3๐‘š๐‘Ÿ๐œ”2
๐‘™
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘€๐‘  =
๐‘š๐‘Ÿ๐œ”2
๐‘™
๐‘›
(๐‘๐‘œ๐‘ (480 + 2๐œƒ) โˆ’ ๐‘๐‘œ๐‘  2๐œƒ)
๐‘€๐‘  ๐’Ž๐’‚๐’™ =
โˆš3๐‘š๐‘Ÿ๐œ”2
๐‘™
๐‘›
Inline 2-cylinder engine
Cranks are 180โฐ apart and have equal reciprocating masses.
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘Ÿ๐œ”2[๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘ (180ยฐ + ๐œƒ)] = 0
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘€๐‘ = ๐‘š๐‘Ÿ๐œ”2
[
๐‘™
2
๐‘๐‘œ๐‘  ๐œƒ + (โˆ’
๐‘™
2
) ๐‘๐‘œ๐‘ (1800
+ ๐œƒ)] = ๐‘š๐‘Ÿ๐œ”2
๐‘™ ๐‘๐‘œ๐‘  ๐œƒ
๐‘€๐‘ ๐’Ž๐’‚๐’™ = ๐’Ž๐’“๐Ž๐Ÿ
๐’ ๐‘Ž๐‘ก ๐œƒ = 0ยฐ & 180ยฐ
44
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘  =
๐‘š๐‘Ÿ๐œ”2
๐‘›
[๐‘๐‘œ๐‘  2๐œƒ + ๐‘๐‘œ๐‘ (360ยฐ + 2๐œƒ)] =
2๐‘š๐‘Ÿ๐œ”2
๐‘›
๐‘๐‘œ๐‘  2๐œƒ
๐น๐‘  ๐’Ž๐’‚๐’™ =
2๐‘š๐‘Ÿ๐œ”2
๐‘›
๐‘คโ„Ž๐‘’๐‘› ๐œƒ = 0ยฐ, 90ยฐ, 180ยฐ, 270ยฐ.
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘€๐‘  = ๐‘š๐‘Ÿ๐œ”2
[
๐‘™
2
๐‘๐‘œ๐‘  ๐œƒ + (โˆ’
๐‘™
2
) ๐‘๐‘œ๐‘ (3600
+ ๐œƒ)] = 0
Inline four-cylinder Four Stroke Engine
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘Ÿ๐œ”2[๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘ (180 + ๐œƒ) + ๐‘๐‘œ๐‘ (180 + ๐œƒ) + ๐‘๐‘œ๐‘  ๐œƒ] = 0
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘š๐‘Ÿ๐œ”2
[
3๐‘™
2
๐‘๐‘œ๐‘  ๐œƒ +
๐‘™
2
๐‘๐‘œ๐‘ (180 + ๐œƒ) + (โˆ’
3๐‘™
2
๐‘๐‘œ๐‘  ๐œƒ) + (โˆ’
๐‘™
2
๐‘๐‘œ๐‘ (180 + ๐œƒ))] = 0
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘  =
๐‘š๐‘Ÿ๐œ”2
๐‘›
[๐‘๐‘œ๐‘  2๐œƒ + ๐‘๐‘œ๐‘  2(180 + ๐œƒ) + ๐‘๐‘œ๐‘  2(180 + ๐œƒ) + ๐‘๐‘œ๐‘  2๐œƒ] =
4๐‘š๐‘Ÿ๐œ”2
๐‘›
๐‘๐‘œ๐‘  2๐œƒ
๐น๐‘  ๐’Ž๐’‚๐’™ =
4๐‘š๐‘Ÿ๐œ”2
๐‘›
๐‘Ž๐‘ก ๏ฑ = 0หš, 90หš, 180หš, 270หš
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘š๐‘Ÿ๐œ”2
[
3๐‘™
2
๐‘๐‘œ๐‘  ๐œƒ +
๐‘™
2
๐‘๐‘œ๐‘  2(180 + ๐œƒ) + (โˆ’
3๐‘™
2
๐‘๐‘œ๐‘  2๐œƒ) + (โˆ’
๐‘™
2
๐‘๐‘œ๐‘  2(180 + ๐œƒ))] = 0
45
Six-cylinder four stroke Engine
46
Balancing of radial engines
The method of direct and reverse cranks is used in balancing of radial or V-engines, in which
the connecting rods are connected to a common crank.
The indirect or reverse crank OCโ€ฒ is the image of the
direct crank OC, when seen through the mirror placed
at the line of stroke. When the direct crank revolves in
a clockwise direction, the reverse crank will revolve in
the anticlockwise direction.
Primary forces
Now let us suppose that the mass (m) of the
reciprocating parts is divided into two parts,
each equal to m / 2.
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ท ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜ =
๐‘š
2
๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ท ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘Ÿ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜ =
๐‘š
2
๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ท = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐œƒ
Component of centrifugal force perpendicular to OP are balanced.
Secondary forces
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2๐œƒ
๐‘›
= ๐‘š(2๐œ”)2 ๐‘Ÿ
4๐‘›
๐‘๐‘œ๐‘  2๐œƒ
Similar to primary balancing, masses are assumed
to be m/2 at D and Dโ€™.
Secondary direct crank and rotates at 2ฯ‰ rad/s in
the clockwise direction, while the crank ODโ€ฒ is the
secondary reverse crank and rotates at 2ฯ‰ rad/s
in the anticlockwise direction
m/2
m/2
47
Balancing of V-type engines
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 1 = ๐น๐‘ƒ1 = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ)
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ
๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 2 = ๐น๐‘ƒ2 = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ)
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟโ€ฒ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ
๐‘ป๐’๐’•๐’‚๐’ ๐‘ท๐’“๐’Š๐’Ž๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐’€ = ๐‘ญ๐‘ท๐‘ฝ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ + ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ
= ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐›ผ (๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) + ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ))
= ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐›ผ (2 ร— ๐‘๐‘œ๐‘  ๐›ผ ร— ๐‘๐‘œ๐‘  ๐œƒ)
= 2๐‘š๐‘Ÿ๐œ”2
. ๐‘๐‘œ๐‘ 2
๐›ผ . ๐‘๐‘œ๐‘  ๐œƒ
๐‘ป๐’๐’•๐’‚๐’ ๐‘ท๐’“๐’Š๐’Ž๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐‘ฟ = ๐‘ญ๐‘ท๐‘ฏ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ โˆ’ ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ
= ๐‘š๐‘Ÿ๐œ”2
๐‘ ๐‘–๐‘› ๐›ผ (๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) โˆ’ ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ))
= ๐‘š๐‘Ÿ๐œ”2
๐‘ ๐‘–๐‘› ๐›ผ (2 ร— ๐‘ ๐‘–๐‘› ๐›ผ ๐‘ ๐‘–๐‘› ๏ฑ )
= 2. ๐‘š๐‘Ÿ๐œ”2
. ๐‘ ๐‘–๐‘›2
๐›ผ . ๐‘ ๐‘–๐‘› ๐œƒ
๐‘น๐’†๐’”๐’–๐’๐’•๐’‚๐’๐’• ๐‘ท๐’“๐’Š๐’Ž๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’† = โˆš(๐น๐‘ƒ๐‘‰)2 + (๐น๐‘ƒ๐ป)2 = 2. ๐‘š๐‘Ÿ๐œ”2
โˆš(๐‘๐‘œ๐‘ 2 ๐›ผ . ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐‘ ๐‘–๐‘›2 ๐›ผ . ๐‘ ๐‘–๐‘› ๐œƒ)2
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 1 = ๐น๐‘†1 = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ)
๐‘›
๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘†1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ)
๐‘›
๐‘๐‘œ๐‘  ๐›ผ
๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ)
๐‘›
๐‘ ๐‘–๐‘› ๐›ผ
๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 2 = ๐น๐‘†2 = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ)
๐‘›
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘†2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ)
๐‘›
๐‘๐‘œ๐‘  ๐›ผ
๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘†2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟโ€ฒ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ)
๐‘›
๐‘ ๐‘–๐‘› ๐›ผ
๐‘ป๐’๐’•๐’‚๐’ ๐‘บ๐’†๐’„๐’๐’๐’…๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐’€ = ๐‘ญ๐‘บ๐‘ฝ = ๐‘š๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐›ผ (
๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ)
๐‘›
+
๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ)
๐‘›
) =
2๐‘š
๐‘›
๐‘Ÿ๐œ”2
๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘  2๐›ผ ๐‘๐‘œ๐‘  2๐œƒ
๐‘ป๐’๐’•๐’‚๐’ ๐‘บ๐’†๐’„๐’๐’๐’…๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐‘ฟ = ๐‘ญ๐‘บ๐‘ฏ = ๐‘š๐‘Ÿ๐œ”2
๐‘ ๐‘–๐‘› ๐›ผ (
๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ)
๐‘›
โˆ’
๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ)
๐‘›
) =
2๐‘š
๐‘›
๐‘Ÿ๐œ”2
๐‘ ๐‘–๐‘› ๐›ผ ๐‘ ๐‘–๐‘› 2๐›ผ ๐‘ ๐‘–๐‘› 2๐œƒ
๐‘น๐’†๐’”๐’–๐’๐’•๐’‚๐’๐’• ๐‘บ๐’†๐’„๐’๐’๐’…๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’† = โˆš(๐น๐‘†๐‘‰)2 + (๐น๐‘†๐ป)2 =
2๐‘š
๐‘›
๐‘Ÿ๐œ”2
โˆš(๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘  2๐›ผ ๐‘๐‘œ๐‘  2๐œƒ)2 + (๐‘ ๐‘–๐‘› ๐›ผ ๐‘ ๐‘–๐‘› 2๐›ผ ๐‘ ๐‘–๐‘› 2๐œƒ)2
48
TURNING MOMENT DIAGRAMS
During 1 revolution of crank shaft, ๐‘‡ = ๐น๐‘Ÿ (๐‘ ๐‘–๐‘› ๐œƒ +
๐‘ ๐‘–๐‘› 2๐œƒ
2โˆš๐‘›2โˆ’๐‘ ๐‘–๐‘›2 ๐œƒ
)
๐‘‡๐‘ข๐‘Ÿ๐‘›๐‘–๐‘›๐‘” ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก(๐‘‡) = ๐‘“(๐œƒ) = ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜ ๐‘Ž๐‘›๐‘”๐‘™๐‘’
F is the net piston effort, r is the crank radius, ๏ฑ is the crank angle.
T ๏‚น constant, but we want constant ฯ‰.
๐‘‡ = ๐ผ โˆ
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘’๐‘‘ = โˆซ ๐‘‡
4๐œ‹ 2๐œ‹
โ„
0
๐‘‘๐œƒ
Average work produced =
Tmeanร—4ฯ€(2ฯ€)
๐‘‡๐‘š๐‘’๐‘Ž๐‘› =
โˆซ ๐‘‡
4๐œ‹ 2๐œ‹
โ„
0
๐‘‘๐œƒ
4๐œ‹(2๐œ‹)
Tmean = mean resisting torque
The area of the turning moment diagram represents the work done per revolution. In actual practice, the engine
is assumed to work against the mean resisting torque.
โžข If (T โ€“Tmean) is positive, the flywheel accelerates and if (T โ€“ Tmean) is negative, then the flywheel retards.
49
Fluctuation of energy
The fluctuation of energy may be determined by the turning moment diagram for one complete cycle of
operation.
The variations of energy above and below the mean resisting torque line are called fluctuations of energy. The
areas BbC, CcD, DdE, etc. represent fluctuations of energy.
The difference between the maximum and the minimum energies is known as maximum fluctuation of energy.
Maximum energy in flywheel
= E + a1
Minimum energy in the flywheel
= E + a1 โ€“ a2 + a3 โ€“ a4
Maximum fluctuation of energy,
ฮ” E = Maximum energy โ€“ Minimum energy
= (E + a1) โ€“ (E + a1 โ€“ a2 + a3 โ€“ a4) = a2 โ€“ a3 + a4
Coefficient of Fluctuation of Energy
It may be defined as the ratio of the maximum fluctuation of energy to the work done per cycle.
๐ถ๐‘’ =
๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘“๐‘™๐‘ข๐‘๐‘ก๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘๐‘ฆ ๐‘๐‘ฆ๐‘๐‘™๐‘’
Work done per cycle = Tmean ร— ๏ฑ
๐‘‡๐‘š๐‘’๐‘Ž๐‘› =
๐‘ƒ
๐œ”
=
๐‘ƒร—60
2๐œ‹๐‘
N = Speed in r.p.m
๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘๐‘’๐‘Ÿ ๐‘๐‘ฆ๐‘๐‘™๐‘’ =
๐‘ƒร—60
๐‘›
n= no. of working strokes per minute
50
FLYWHEEL
โžข A flywheel used in machines serves as a reservoir, which stores energy during the period when the supply of
energy is more than the requirement and releases it during the period when the requirement of energy is
more than the supply.
โžข It is used to store the energy when the demand of energy of energy is less and deliver it when the demand of
energy is high.
โžข The excess energy developed during power stroke is absorbed by the flywheel and releases it to the crankshaft
during other strokes in which no energy is developed, thus rotating the crankshaft at a uniform speed.
โžข Hence a flywheel does not maintain a constant speed, it simply reduces the fluctuation of speed. In other
words, a flywheel controls the speed variations caused by the fluctuation of the engine turning moment
during each cycle of operation.
I= moment of inertia of flywheel, ฯ‰1= maximum speed, ฯ‰2= minimum speed, ฯ‰= mean speed,
E= kinetic energy of the flywheel at mean speed, e= maximum fluctuation of energy,
๐พ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘๐‘ก๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ ๐‘๐‘’๐‘’๐‘‘ =
๐œ”1โˆ’๐œ”2
๐œ”
๐‘’ =
1
2
๐ผ๐œ”1
2
โˆ’
1
2
๐ผ๐œ”2
2
=
1
2
๐ผ(๐œ”1
2
โˆ’ ๐œ”2
2) = ๐ผ
(๐œ”1 + ๐œ”2)
2
(๐œ”1 โˆ’ ๐œ”2) = ๐ผ๐œ”(๐œ”1 โˆ’ ๐œ”2) = ๐ผ๐œ”2
(๐œ”1 โˆ’ ๐œ”2)
๐œ”
= ๐ผ๐œ”2
๐พ
๐‘’ = ๐ผ๐œ”2
๐พ โ‡’ ๐พ =
๐‘’
๐ผ๐œ”2
=
๐‘’
2 ร—
๐ผ๐œ”2
2
=
๐‘’
2๐ธ
๐‘’ = 2๐ธ๐พ
Dimensions of Flywheel Rims
๐ถ๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก / ๐‘ข๐‘›๐‘–๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž = [๐œŒ ยท (๐‘Ÿ. ๐‘‘๏ฑ)๐‘ก]. ๐‘Ÿ๐œ”2
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’/ ๐‘ข๐‘›๐‘–๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž = 2 ยท ๐œŒ. ๐‘Ÿ2
. ๐‘ก. ๐œ”2
For equilibrium
๐œŽ(2๐‘ก). 1 = 2๐œŒ. ๐‘Ÿ2
. ๐‘ก. ๐œ”2
๐œŽ = ๐œŒ. ๐‘Ÿ2
. ๐œ”2
= ๐œŒ๐‘ฃ2
๐‘ฃ = 2๐œ‹๐‘ 60
โ„
๐‘š = ๐œŒ. ๐œ‹. ๐‘. ๐‘‘. ๐‘ก
Punching press
Here flywheel is used to reduce the fluctuation of speed, when torque is
constant, and load is varying.
d - diameter of punch, t โ€“ thickness of hole, r- radius of crank shaft
Energy required to punch the plate/unit shear area = E
Total energy required for punching 1 hole = E ยท(ฯ€.d.t)
Time required for 1 punching cycle = T
Avg. time required per second = power of motor(P) =
๐ธ๐œ‹๐‘‘๐‘ก
๐‘‡
๐‘ƒ = ๐‘‡๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’๐‘š๐‘’๐‘Ž๐‘› ร— ๐œ”๐‘š๐‘’๐‘Ž๐‘›
Actual punching time = Tp
Energy given by motor during punching=
๐ธ๐œ‹๐‘‘๐‘ก
๐‘‡
ร— ๐‘‡๐‘
๐›ฅ๐ธ = ๐ธ๐œ‹๐‘‘๐‘ก โˆ’
๐ธ๐œ‹๐‘‘๐‘ก
๐‘‡
ร— ๐‘‡๐‘
๐›ฅ๐ธ = ๐ธ๐œ‹๐‘‘๐‘ก [1 โˆ’
๐‘ก
4๐‘Ÿ
]
51
CAMS
A cam is a rotating machine element which gives reciprocating or oscillating motion to another element
known as follower.
Classification of Cams & Followers
Classification of Followers
Surface in Contact Motion of the follower Path of motion of follower
Knife edge follower Reciprocating or translating follower Radial follower
Roller follower Oscillating or rotating follower Offset follower
Mushroom follower
Spherical faced follower
Classification of Cams
Shape Follower Movement Manner of Constraint of Follower
Wedge and Flat cams Rise โ€“ Return โ€“ Rise Pre โ€“ loaded Spring cam
Radial of Disc Cams Dwell โ€“ Rise โ€“ Return โ€“ Dwell Positive โ€“ drive Cam
Spiral cams Dwell โ€“ Rise โ€“ Dwell โ€“ Return โ€“ Return Gravity cam
Cylindrical Cams
Conjugate Cams
Globodial Cams
Cam Nomenclature
โ€ข By giving offset to line of follower w.r.t cam center, pressure angle can be reduced there by reducing side
thrust.
โ€ข When base circle size increases, pressure angle reduces.
โ€ข When dwell period increases, pressure angle reduces. (dwell periodโ€“ follower remains at rest)
52
Follower motion programming
๐‘† = ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘“(๏ฑ) (๏ฑ -> cam rotation angle)
๐‘ฃ =
๐‘‘๐‘ 
๐‘‘๐‘ก
=
๐‘‘๐‘ 
๐‘‘๏ฑ
ร—
๐‘‘๏ฑ
๐‘‘๐‘ก
๐‘‘๐‘ 
๐‘‘๐‘ก
= ๐‘โ„Ž๐‘ฆ๐‘ ๐‘–๐‘๐‘Ž๐‘™ ๐‘ก๐‘–๐‘š๐‘’ ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’,
๐‘‘๐‘ 
๐‘‘๏ฑ
= ๐‘˜๐‘–๐‘›๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘ ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’,
๐‘‘๏ฑ
๐‘‘๐‘ก
= ๐œ” = ๐‘Ž๐‘›๐‘”. ๐‘ฃ๐‘’๐‘™. ๐‘œ๐‘“ ๐‘๐‘Ž๐‘š
๐‘Ž =
๐‘‘๐‘ฃ
๐‘‘๐‘ก
=
๐‘‘๐‘ฃ
๐‘‘๏ฑ
ร—
๐‘‘๏ฑ
๐‘‘๐‘ก
=
๐‘‘2
๐‘ 
๐‘‘๐œƒ2
(
๐‘‘๐œƒ
๐‘‘๐‘ก
)
2
๐‘—๐‘’๐‘Ÿ๐‘˜ (๐’‹) = ๐œ”3
๐‘‘3
๐‘ 
๐‘‘๐œƒ3
=
๐‘‘๐‘Ž
๐‘‘๐‘ก
Follower motion
There is Rise, Return, Dwell, Fall of Follower.
Since the follower moves with uniform velocity during its rise and return stroke, therefore the slope of the
displacement curves must be constant.
๐‘† =
๐‘ฃ๐œƒ
๐œ”
๏ฑ = ๐œ”๐‘ก ๐‘  = ๐‘ฃ. ๐‘ก
โ„Ž =
๐‘ฃ
๐œ”
๏ฆ๐‘Ž
๐‘ฃ๐‘Ž =
โ„Ž๐œ”
๏ฆ๐‘Ž
a=0
j=0
๐‘ฃ๐‘‘ =
โ„Ž๐œ”
๏ฆ๐‘‘
In order to have the acceleration and retardation within the finite limits.
This may be done by rounding off the sharp corners of the displacement diagram at the beginning and at the end
of each stroke.
53
Simple Harmonic motion of Follower
Construction
s= follower displacement, h= maximum follower displacement, v= velocity of the follower,
f= acceleration of the follower, ๏ฑ = cam rotation angle,
๏ฆ =cam rotation angle for maximum follower displacement, ฮฒ= angle on the harmonic circle
๐ด๐‘ก ๐‘Ž๐‘›๐‘ฆ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐’” =
โ„Ž
2
โˆ’
โ„Ž
2
๐‘๐‘œ๐‘  ๐›ฝ
๐›ฝ = ๐œ‹
๐œƒ
๐œ‘
๐’” =
โ„Ž
2
โˆ’
โ„Ž
2
๐‘๐‘œ๐‘  ๐œ‹
๐œƒ
๐œ‘
=
โ„Ž
2
(1 โˆ’ ๐‘๐‘œ๐‘  ๐œ‹
๐œƒ
๐œ‘
)
=
โ„Ž
2
(1 โˆ’ ๐‘๐‘œ๐‘ 
๐œ‹๐œ”๐‘ก
๐œ‘
)
๐’— =
๐‘‘๐‘ 
๐‘‘๐‘ก
=
โ„Ž
2
๐œ‹๐œ”
๐œ‘
๐‘ ๐‘–๐‘›
๐œ‹๐œ”๐‘ก
๐œ‘
=
โ„Ž
2
๐œ‹๐œ”
๐œ‘
๐‘ ๐‘–๐‘›
๐œ‹๏ฑ
๐œ‘
๐’—๐‘š๐‘Ž๐‘ฅ =
โ„Ž
2
๐œ‹๐œ”
๐œ‘
๐‘Ž๐‘ก ๏ฑ =
๐œ‘
2
๐’‡ =
๐‘‘๐’—
๐‘‘๐’•
=
โ„Ž
2
(
๐œ‹๐œ”
๐œ‘
)
2
๐‘๐‘œ๐‘ 
๐œ‹๏ฑ
๐œ‘
๐’‡๐‘š๐‘Ž๐‘ฅ =
โ„Ž
2
(
๐œ‹๐œ”
๐œ‘
)
2
๐‘Ž๐‘ก ๏ฑ = 0หš
๏ฑo = angle of ascent, ๏ฑR = angle of descent
Here acceleration is abruptly increasing from zero to maximum, which results in infinite jerk, vibration and
noise.
54
Constant acceleration and deceleration (Parabolic)
Here, there is acceleration in the first half and deceleration in the second half and the displacement curve is
parabolic.
๐’” = ๐‘ฃ๐‘œ๐‘ก +
1
2
๐‘“๐‘ก2
๐’” =
1
2
๐‘“๐‘ก2
๐‘Ž๐‘  ๐‘ฃ๐‘œ = 0
๐‘“ =
2๐‘ 
๐‘ก2
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐’” =
โ„Ž
2
& ๐œ”๐‘ก =
๐œ‘
2
, ๐‘ก =
๐œ‘
2๐œ”
๐’‡ =
4โ„Ž๐œ”2
๐œ‘2
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐’— = ๐‘“๐‘ก =
4โ„Ž๐œ”2
๐œ‘2
ร—
๐œƒ
๐œ”
=
4โ„Ž๐œ”
๐œ‘2
๐œƒ
๐’—๐’Ž๐’‚๐’™ =
4โ„Ž๐œ”
๐œ‘2
ร—
๐œ‘
2
=
2โ„Ž๐œ”
๐œ‘
Here acceleration is abruptly increasing from maximum to minimum, which results in infinite jerk, vibration
and noise.
55
Constant Velocity
Constant velocity of follower implies the displacement of follower is proportional to cam rotation.
๐‘ฃ = 0 โ†’
๐‘‘๐’”
๐‘‘๐’•
= 0 โ†’ ๐‘  โˆ ๐œƒ
๐‘  = โ„Ž
๐œƒ
๐œ‘
= โ„Ž
๐œ”๐‘ก
๐œ‘
๐‘ฃ =
๐‘‘๐’”
๐‘‘๐’•
=
โ„Ž๐œ”
๐œ‘
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘“ =
๐‘‘๐’—
๐‘‘๐’•
= 0
There is an abrupt increase and decrease in velocity which results in
infinite inertia forces and not suitable for practical use.
Modified constant velocity program
56
Cycloid
A cycloid is locus of point on a circle rotating on a straight line.
๐‘  =
โ„Ž
๐œ‹
(
๐œ‹๐œƒ
๐œ‘
โˆ’
1
2
๐‘ ๐‘–๐‘›
2๐œ‹๐œƒ
๐œ‘
)
๐‘ฃ =
๐‘‘๐’”
๐‘‘๐’•
=
๐‘‘๐’”
๐‘‘๐œฝ
ร—
๐‘‘๐œฝ
๐‘‘๐’•
= [
โ„Ž
๐œ‘
โˆ’
โ„Ž
๐œ‘
๐‘๐‘œ๐‘ 
2๐œ‹๏ฑ
๐œ‘
] ๐œ”
๐‘ฃ = [
โ„Ž๐œ”
๐œ‘
โˆ’
โ„Ž๐œ”
๐œ‘
๐‘๐‘œ๐‘ 
2๐œ‹๏ฑ
๐œ‘
] =
โ„Ž๐œ”
๐œ‘
(1 โˆ’ ๐‘๐‘œ๐‘ 
2๐œ‹๏ฑ
๐œ‘
)
๐‘ฃ๐‘š๐‘Ž๐‘ฅ =
โ„Ž๐œ”
๐œ‘
๐‘Ž๐‘ก ๐œƒ =
๐œ‘
2
๐‘“ =
๐‘‘๐’—
๐‘‘๐’•
=
๐‘‘๐’—
๐‘‘๐œฝ
ร—
๐‘‘๐œฝ
๐‘‘๐’•
= [
2โ„Ž๐œ‹๐œ”2
๐œ‘2
๐‘ ๐‘–๐‘›
2๐œ‹๏ฑ
๐œ‘
]
๐‘“๐‘š๐‘Ž๐‘ฅ =
2โ„Ž๐œ‹๐œ”2
๐œ‘2
๐‘Ž๐‘ก ๐œƒ =
๐œ‹
4
There are no abrupt changes in velocity and acceleration.
So, this is the most ideal one to use.
57
GEARS
Concept of friction wheels
Toothed wheel
Motion and power transfer was primarily achieved by using
friction discs/wheels in contact. Due to friction force between the
wheel, motion and power are transferred from one axis to
another axis.
There is a limitation for maximum value for maximum value of
power transfer due to limiting static friction force. Hence beyond
certain input torque there will be slip between discs.
To overcome this problem, toothed wheels (GEARS) are used in
place of friction wheels to create a positive drive, improving
torque transmission capability
๐‘ฃ๐‘ = ๐œ”1๐‘Ÿ1 = ๐œ”2๐‘Ÿ2
๐‘ฃ๐‘ = 2๐œ‹๐‘1๐‘Ÿ1 = 2๐œ‹๐‘2๐‘Ÿ2
๐œ”1
๐œ”2
=
๐‘1
๐‘2
=
๐‘Ÿ1
๐‘Ÿ2
๐œ”1
๐œ”2
=
๐ผ12๐ผ23
๐ผ13๐ผ23
To ensure constant angular velocity in case of toothed wheels in
mesh, the Instantaneous centre of wheels shall be static as, meshing
progresses.
Classification of Gears
Parallel shafts
Depending upon the teeth of equivalent cylinders i.e., straight or helical, following are the main types of gears to
join parallel shafts.
Spur Gears
They have straight teeth parallel to the axes.
They have a line contact, which results in the high impact stresses and excessive noise at high speeds.
Spur Rack and Pinion
Spur rack is a special case of a spur gear where it is made of infinite diameter so that pitch surface is a plane.
It converts rotary motion into translatory motion.
Helical spur gears
In helical gears, the teeth are curved, each being helical in shape.
At the beginning of engagement, contact occurs only at the point of leading edge of curved teeth, as gear rotates,
the contact extends along a diagonal line across the teeth.
Load application is gradual which results in low impact stresses and reduction in noise.
58
Double-Helical and Herringbone gears
It is equivalent to a pair of helical gears secured together, one having right-hand helix and other having left-
hand helix.
Axial thrust which occurs in case of single-helical gears is eliminated in double-helical gears.
It can run at high speed with less noise and vibrations.
Intersecting shafts
The motion between 2 intersecting shafts is equivalent to the rolling if 2 cones, assuming no slipping. The gears,
in general are known as bevel gears.
When the teeth formed on cones are straight, the gears are known as straight bevel and when inclined, they are
known as helical bevel gears.
Straight bevel gear
The teeth are straight, radial to the point of intersection of the shaft axes and vary in cross section throughout
their length.
Shafts are connected at right angles and gears are of the same size.
Spiral bevel gear
Teeth of bevel gear are inclined at an angle to the face of bevel.
They are smother and quieter in action than straight bevel gears because of low impact stresses and gradual
application of load.
Zero bevel gear
Spiral bevel gear with curved teeth but with a zero-angle spiral angle.
They are quieter in action than the spiral bevel gear.
59
Skew Shafts
The two non-intersecting and non-parallel i.e. non-coplanar shaft connected by gears. This type of gearing also
has a line contact, the rotation of which about the axes generates the two pitch surfaces known as hyperboloids.
Crossed Helical Gear
By using a suitable choice of helix angle for the mating gears, two shafts can be set at any angle.
Worm gear
Worm gear is a special case of spiral gear in which the larger wheel, usually has a hollow shape (gear spacing
for rotating) such that other gearโ€™s teeth is fitted partially. The smaller wheel is called worm and has large
spiral angle.
Non-throated -The contact between the teeth is concentrated at a point.
Single-throated- Gear teeth are curved to envelop the worm. There is a line contact between the teeth.
Double-throated- There is an area contact between the teeth.
60
Gear Nomenclature
Pitch circle- It is an imaginary circle which by pure rolling action, would give the same motion as the actual
gear.
Pitch diameter- Diameter of a pitch circle.
Pitch point- Point of contact of two pitch circles is known as the pitch point.
Line of centers- A line through the centres of rotation of the mating gears
Pinion- It is the smaller gear and usually driving gear.
Rack- It is a part of a gear wheel of infinite diameter.
Circular pitch- It is the distance measured along the circumference of a pitch circle from a point on one tooth
to the corresponding point on the adjacent tooth.
๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘–๐‘ก๐‘โ„Ž (๐’‘) =
๐œ‹๐‘‘
๐‘‡
=
๐œ‹ ร— (๐‘๐‘–๐‘ก๐‘โ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ)
๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž
Diametral pitch- The number of teeth per unit length of pitch circle diameter in inches.
๐ท๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘™ ๐‘ƒ๐‘–๐‘ก๐‘โ„Ž(๐‘ท) =
๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž
๐‘๐‘–๐‘ก๐‘โ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
=
๐‘‡
๐‘‘
Module- It is the ratio of pitch diameter (in mm) to the number of teeth.
๐‘€๐‘œ๐‘‘๐‘ข๐‘™๐‘’(๐’Ž) =
๐‘๐‘–๐‘ก๐‘โ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž
=
๐‘‘
๐‘‡
๐’‘ = ๐…๐’Ž
Gear Ratio- It is the number of teeth on the gear to that of the pinion.
๐บ๐‘’๐‘Ž๐‘Ÿ ๐‘…๐‘Ž๐‘ก๐‘–๐‘œ(๐‘ฎ) =
๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘œ๐‘› ๐บ๐‘’๐‘Ž๐‘Ÿ
๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘œ๐‘› ๐‘๐‘–๐‘›๐‘–๐‘œ๐‘›
=
๐‘‡
๐‘ก
61
Velocity Ratio- The ratio of angular velocity of the follower to angular velocity of driving gear.
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ (๐‘ฝ๐‘น) =
๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘’๐‘Ÿ(๐Ÿ)
๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘‘๐‘Ÿ๐‘–๐‘ฃ๐‘’๐‘Ÿ (๐Ÿ)
=
๐œ”2
๐œ”1
=
๐‘2
๐‘1
=
๐‘‘1
๐‘‘2
=
๐‘‡1
๐‘‡2
Addendum circle- It is a circle passing through the tips of teeth.
Addendum- It is the radial height of a tooth above the pitch circle.
Dedendum or root circle- It is the circle passing through the roots of the teeth.
Dedendum- it is the radial depth of a tooth below the pitch circle.
Clearance- Radial difference between the addendum and dedendum of a tooth.
๐ถ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘’๐‘›๐‘๐‘’ = ๐ด๐‘‘๐‘’๐‘›๐‘‘๐‘ข๐‘š โˆ’ ๐ท๐‘’๐‘‘๐‘’๐‘›๐‘‘๐‘ข๐‘š = (๐‘‘ + 2๐‘š) โˆ’ (๐‘‘ โˆ’ 2๐œ‹๐‘š) = .157๐‘š
Backlash- Space Width โ€• Tooth thickness
Line of action- The force, the driving force exerts on the driven tooth, is
along a line from the pitch point to the point of contact of the two teeth. The
line is also common at the point of contact of the mating gears.
Pressure angle- The angle between the pressure line and the common
tangent to the pitch circles is known as the pressure angle.
Path of contact- It is the path traced by the point of contact of two teeth
from the beginning to the end of engagement.
CPโ†’ Path of approach
PDโ†’ Path of recess
Arc of contact- It is the path traced by a point on the pitch circle from the
beginning to the end of engagement of a given pair of teeth. The arc of
contact consists of two parts.
Arc of approach (AP/EP) - It is the portion of the path of contact from the beginning of the engagement to the
pitch point.
Arc of recess(PB/PF) -It is the portion of the path of contact from the pitch point to the end of the engagement of
a pair of teeth.
Angle of Action (ฮด) โ€“ It is the angle turned by a gear from the beginning of engagement to end of engagement
of a pair of teeth.
Angle of approach (ฮด) = angle of approach (ฮฑ) + angle of recess(ฮฒ)
Contact Ratio- It is angle of action divided by pitch angle.
๐ถ๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ =
๐›ผ + ๐›ฝ
๐›พ
๐ถ๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ =
๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก
๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘–๐‘ก๐‘โ„Ž
Law of Gearing
It states the condition which must be satisfied by the gear tooth profiles to maintain a constant angular velocity
ratio between 2 gears.
(ฯ€d1N1=ฯ€d2N2)
62
Point C on gear 1 is in contact with point D on gear 2, they have a common normal n-n.
If the curved surfaces are to remain in contact, one surface may slide relative to other along the common
tangent t-t.
The relative motion between the surfaces along the n-n must be zero to avoid the separation.
vc = velocity of C (on 1) perpendicular to AC = ฯ‰1.AC
vd = velocity of D (on 2) perpendicular to BD = ฯ‰1.BD ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ถ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘› โˆ’ ๐‘› = ๐‘ฃ๐ถ ร— ๐‘๐‘œ๐‘  ๐›ผ
๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘› โˆ’ ๐‘› = ๐‘ฃ๐ท ร— ๐‘๐‘œ๐‘  ๐›ฝ
๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘› โˆ’ ๐‘› = ๐‘ฃ๐ถ ร— ๐‘๐‘œ๐‘  ๐›ผ โˆ’ ๐‘ฃ๐ท ร— ๐‘๐‘œ๐‘  ๐›ฝ = 0
๐œ”1 ร— ๐ด๐ถ ร— ๐‘๐‘œ๐‘  ๐›ผ = ๐œ”2 ร— ๐ต๐ท ร— ๐‘๐‘œ๐‘  ๐›ฝ
๐œ”1 ร— ๐ด๐ถ ร—
๐ด๐ธ
๐ด๐ถ
= ๐œ”2 ร— ๐ต๐ท ร—
๐ต๐น
๐ต๐ท
๐œ”1
๐œ”2
=
๐ด๐ธ
๐ต๐น
=
๐ต๐‘ƒ
๐ด๐‘ƒ
For constant angular velocity ratio two gears, the common normal at the point of contact of two mating teeth
must pass through the pitch point. We see that the angular velocity ratio is inversely proportional to the ratio of
the distances of the point P from the centres A & B.
๐œ”1
๐œ”2
=
๐น๐‘ƒ
๐ธ๐‘ƒ
Velocity of Sliding
The velocity of sliding is the velocity of one tooth relative to its mating tooth along the common tangent at the
point of contact. If the curved surfaces of the two teeth of the gears 1 & 2 are to remain in contact, one can have
sliding motion relative to other along the common tangent t-t.
๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ถ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก โˆ’ ๐‘ก = ๐‘ฃ๐ถ ร— ๐‘ ๐‘–๐‘› ๐›ผ
๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก โˆ’ ๐‘ก = ๐‘ฃ๐ท ร— ๐‘ ๐‘–๐‘› ๐›ฝ
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘™๐‘–๐‘‘๐‘–๐‘›๐‘” = ๐‘ฃ๐ถ ร— ๐‘ ๐‘–๐‘› ๐›ผ โˆ’ ๐‘ฃ๐ท ร— ๐‘ ๐‘–๐‘› ๐›ฝ = (๐œ”1 + ๐œ”2)๐‘ท๐‘ช
Velocity of Sliding = Sum of angular velocities ร— distance between the pitch point and the point of contact.
Forms of teeth
Common forms of teeth that can satisfy the law of gearing
1. Cycloidal profile teeth
2. Involute profile teeth
Cycloidal profile teeth
In this type, the faces are epicycloids and flanks are hypocycloids.
Hypocycloid- Curve traced by a point on the circumference of a circle which is rolling on the interior of
another circle.
P is the point dividing AB by n-n.
63
Epicycloid- Curve traced by a point on the circumference of a circle rolling on the exterior of another circle.
Here the circle H rotates inside, along the circumference of pitch circle upto Point P which forms flank (only
small portion of curve is taken) and similarly circle E rotates outside till P forming face of flank.
Cycloid is always perpendicular(normal) to the line(CD) joining point of contact(D) and point on cycloid(C).
Law of gearing is satisfied as common normal at any point on cycloid always passes through the pitch point.
Involute Profile
An involute is the locus of a point on straight line which rolls without slipping on the circumference of a circle. It
is also the path traced by the end of cord(wire) being unwound from the
circumference of the circle.
As the line rolls on circle, the path traced by A is involute (AFBC)
A short length EF of the involute drawn can be utilized to make the profile of an
involute tooth.
Common tangent to base circle passes through pitch point.
Common tangent to base circles is generatrix line for involute profile.
Any point on common tangent traces involute profiles when
generatrix line rolls without slipping on base circles.
The tangent CE is normal to involute GC or tangent t-t and CF to DC
or t-t.
As both CE & CF both are normal to t-t and have a common point,
EPF is a straight line.
As wheel 1 rotates, GC pushes DH along the common tangent of base
circles, hence the path of contact is along the common tangent of
base circles.
This common tangent (ECH) is also common normal to involutes which passes through the pitch point.
Hypocycloid Epicycloid
64
Pressure angles in this case remain constant throughout the engagement of teeth.
โˆ ๐ด๐ธ๐‘ƒ = โˆ ๐ต๐น๐‘ƒ = ๐œ‘
๐ด๐ธ = ๐ด๐‘ƒ ๐‘๐‘œ๐‘  ๐œ‘
๐ต๐น = ๐ต๐‘ƒ ๐‘๐‘œ๐‘  ๐œ‘
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ ๐‘œ๐‘“ ๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘  =
๐‘ฃ1
๐‘ฃ2
=
๐ต๐‘ƒ
๐ด๐‘ƒ
=
๐ต๐น
๐ด๐ธ
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
For a pair of involute gears velocity ratio of gears in inversely proportional to pitch circle diameters as well as
base circle diameter.
Effect of Altering the Centre Distance on the Velocity Ratio for Involute Teeth
Gears
Any shift in centres of gears will change the centre distance.
If the involutes are still in contact, the common normal of two
involutes at the point of contact will be common tangent for both base
circles and its intersection with the line of centres will be new pitch
point.
Shifting of centres will not alter velocity ratio, but the pressure angle
increases (from ฯ† to ฯ†โ€ฒ) with the increase in the centre distance.
Comparison Between Involute and Cycloidal Gears
Cycloidal profile
Advantages Disadvantages
1
Cycloidal gears are stronger than the involute
gears, for the same pitch
1
Pressure angle is not constant
2
Results in less wear in cycloidal gears as
compared to involute gears
2 Manufacturing is difficult and costly
3 The interference does not occur at all 3 Centre distance cannot be maintained accurately
4
Due to wear and tear, it may not satisfy Law of
Gearing.
Involute profile
Advantages Disadvantages
1
The centre distance for a pair of involute gears can
be varied within limits without changing the
velocity ratio
1 Not suitable for lesser numbers of teeth.
2
The pressure angle, from the start of the
engagement of teeth to the end of the engagement,
remains constant
2
Undercut or interference between the teeth may
occur for this gear in case addendum modifications
are not performed properly
3
The involute teeth are easy to manufacture than
cycloidal teeth.
65
Systems of Gear Teeth
The following four systems of gear teeth are commonly used in practice
1. 14.5 ยฐ Composite system โ€“ it is used for general purpose
2. 14.5 ยฐ Full depth involute system โ€“ it was developed for use with gear hobs for spur and helical gears.
3. 20ยฐ Full depth involute system - The increase of the pressure angle from 14.5 ยฐ to 20ยฐ results in a stronger
tooth
4. 20ยฐ Stub involute system โ€“ it has a strong tooth to take heavy loads
S.no Particulars 14.5 ยฐ Composite system or Full
depth involute system
20ยฐ Full depth
involute system
20ยฐ Stub involute
system.
1 Addendum 1 m 1 m 0.8 m
2 Dedendum 1.25 m 1.25 m 1 m
3 Working depth 2 m 2 m 1.60 m
4 Minimum total
depth
2.25 m 2.25 m 1.80 m
5 Tooth thickness 1.5708 m 1.5708 m 1.5708 m
6 Minimum clearance 0.25 m 0.25 m 0.2 m
7 Fillet radius at root 0.4 m 0.4 m 0.4 m
Path of Contact
Gear 1 is the driver and wheel 2 is driven counter-clockwise.
Contact of two teeth is made where the addendum circle of wheel meets the line of action EF at C, it is broken
where addendum circle of gear meets line of action EF at D.
Path of contact = Path of access + Path of recess
CD = CP + PD
CD = (CF-PF) + (PF-DF)
๐ถ๐ท = [โˆš๐‘…๐‘Ž
2 โˆ’ ๐‘…๐‘Ž
2 ๐‘๐‘œ๐‘ 2 ๐œ‘ โˆ’ ๐‘…๐‘Ž ๐‘ ๐‘–๐‘› ๐œ‘] + [โˆš๐‘Ÿ๐‘Ž
2 โˆ’ ๐‘Ÿ๐‘Ž
2 ๐‘๐‘œ๐‘ 2 ๐œ‘ โˆ’ ๐‘Ÿ๐‘Ž ๐‘ ๐‘–๐‘› ๐œ‘] = โˆš๐‘…๐‘Ž
2 โˆ’ ๐‘…๐‘Ž
2 ๐‘๐‘œ๐‘ 2 ๐œ‘ + โˆš๐‘Ÿ๐‘Ž
2 โˆ’ ๐‘Ÿ๐‘Ž
2 ๐‘๐‘œ๐‘ 2 ๐œ‘ โˆ’ (๐‘… + ๐‘Ÿ) ๐‘ ๐‘–๐‘› ๐œ‘
Arc of Contact
Arc of contact is the path traced by a point on the pitch circle from the
beginning to the end of engagement of a given pair of teeth.
Pโ€™ Pโ€™โ€™ is the arc of contact, Pโ€™P is arc of approach and PPโ€™โ€™ is arc of recess.
Let the time to transverse the arc of approach is ta.
Then arc of approach = Pโ€™P =Tangential velocity of Pโ€™ ร— time of approach
๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž = ๐œ”๐‘Ž๐‘Ÿ ร— ๐‘ก๐‘Ž = ๐œ”๐‘Ž(๐‘Ÿ ๐‘๐‘œ๐‘  ๐œ‘)
๐‘ก๐‘Ž
๐‘๐‘œ๐‘  ๐œ‘
= (๐‘ก๐‘Ž๐‘›๐‘”. ๐‘ฃ๐‘’๐‘™. ๐‘œ๐‘“ ๐ป)๐‘ก๐‘Ž ร—
1
๐‘๐‘œ๐‘  ๐œ‘
=
๐ด๐‘Ÿ๐‘ ๐‘ฏ๐‘ฒ
๐‘๐‘œ๐‘  ๐œ‘
=
๐ด๐‘Ÿ๐‘ ๐‘ญ๐‘ฒ โˆ’ ๐ด๐‘Ÿ๐‘ ๐‘ญ๐‘ฏ
๐‘๐‘œ๐‘  ๐œ‘
=
๐‘ญ๐‘ท โˆ’ ๐‘ญ๐‘ทโ€ฒ
๐‘๐‘œ๐‘  ๐œ‘
=
๐‘ช๐‘ท
๐‘๐‘œ๐‘  ๐œ‘
Similarly, arc of recess is PPโ€™โ€™ = tang. vel. of P ร— time of recess
66
๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘๐‘’๐‘ ๐‘  =
๐‘ท๐‘ซ
๐‘๐‘œ๐‘  ๐œ‘
๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก =
๐‘ช๐‘ท
๐‘๐‘œ๐‘  ๐œ‘
+
๐‘ท๐‘ซ
๐‘๐‘œ๐‘  ๐œ‘
=
๐‘ช๐‘ซ
๐‘๐‘œ๐‘  ๐œ‘
๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก =
๐‘ƒ๐‘Ž๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก
๐‘๐‘œ๐‘  ๐œ‘
Number of pairs of teeth in contact (Contact ratio)
All the teeth lying in between the arc of contact will be meshing with the teeth on the other wheel.
๐‘‡โ„Ž๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘–๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก (๐’) =
๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก
๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘–๐‘ก๐‘โ„Ž
=
๐ถ๐ท
๐‘๐‘œ๐‘  ๐œ‘
1
๐‘
For continuous transmission of motion, at least one tooth of one wheel must be in contact with another tooth of
the second wheel. Therefore, n must be greater than unity.
Interference in Involute gears
At any instant, the portions of tooth profiles which are in action must be involutes, so that line of action does not
deviate.
If any of the two surfaces is not an involute, the two surfaces would not touch each other tangentially and the
transmission of the power would not be proper. Mating of two non-involute teeth is known as Interference.
Owing to non-involute profile, the contacting teeth have different velocities which can lock the gears.
If pinion is the driver, the line of action will be along EF which is the common tangent to base circles of two
gears. The teeth on pinion wheel are engaged at C and disengaged at D. Now if the addendum circle radius is
increased, D will shift towards F on PF and D coincides with F if add. radius of pinion is AF.
Any further increase in this value of radius will result in shifting the point of contact inside the base circle of the
wheel.
Since an involute can exist only outside the base circle, therefore, any profile of teeth inside the base circle will
be of involute type.
The profiles in such a case cannot be tangent to each other and tip of the pinion will try to dig out the flank of
the tooth of the wheel. Therefore, interference occurs in the mating of two gears.
If the addendum radius of wheel is greater than BE, the tip of the wheel tooth be in contact with a portion of the
non-involute profile of the teeth for some time of engagement. This causes interference.
To have no interference, addendum circles of the wheel and the pinion must intersect the line of action between
E & F.
The points E & F are called interference points.
67
Minimum Number of Teeth
We saw previously that maximum addendum radius of wheel to prevent interference is BE.
๐ต๐ธ2
= ๐ต๐น2
+ ๐น๐ธ2
= ๐ต๐น2
+ (๐น๐‘ƒ + ๐‘ƒ๐ธ)2
๐ต๐ธ2
= (๐‘… ๐‘๐‘œ๐‘  ๐œ‘)2
+ (๐‘… ๐‘ ๐‘–๐‘› ๐œ‘ + ๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œ‘)2
๐ต๐ธ = ๐‘…โˆš1 +
๐‘Ÿ
๐‘…
(
๐‘Ÿ
๐‘…
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘
Therefore, maximum value of addendum of the wheel is
aw max = BE โ€“ pitch radius
๐‘Ž๐‘ค ๐‘š๐‘Ž๐‘ฅ = ๐‘…โˆš1 +
๐‘Ÿ
๐‘…
(
๐‘Ÿ
๐‘…
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ ๐‘…
= ๐‘… [โˆš1 +
๐‘Ÿ
๐‘…
(
๐‘Ÿ
๐‘…
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1]
๐‘… =
๐‘š๐‘‡
2
, ๐‘Ÿ =
๐‘š๐‘ก
2
& ๐บ๐‘’๐‘Ž๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ (๐‘ฎ) =
๐‘‡
๐‘ก
=
๐‘…
๐‘Ÿ
๐‘Ž๐‘ค ๐‘š๐‘Ž๐‘ฅ =
๐‘š๐‘‡
2
[โˆš1 +
1
๐บ
(
1
๐บ
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1]
Let the adopted value of addendum in some cases be aw ร— m.
๐‘†๐‘œ, ๐‘Ž๐‘ค ร— ๐‘š โ‰ค
๐‘š๐‘‡
2
[โˆš1 +
1
๐บ
(
1
๐บ
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1]
๐‘‡ โ‰ฅ
2๐‘Ž๐‘ค
[โˆš1 +
1
๐บ
(
1
๐บ
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1]
๐‘‡ =
2๐‘Ž๐‘ค
[โˆš1 +
1
๐บ
(
1
๐บ
+ 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1]
This gives the minimum number of teeth on the wheel for the given value of gear ratio, pressure angle and the
addendum coefficient aw.
The minimum no. of teeth on pinion is ๐‘ก =
๐‘‡
๐บ
68
Undercutting
If interference canโ€™t be avoided by the design, it can be minimized by removing interfering portion of teeth. This
is termed Undercutting.
A form tool of same geometry as that of meshing gear teeth is used to remove material at interfering portion.
Due to undercutting, the strength of teeth is reduced.
Effect of wear & tear
Due to wear and tear, teeth size gets reduced but involute profile remains same as offset of involute profile is
involute.
It satisfies Law of Gearing.
Due to wear, back lash increases
Interference between Rack and Pinion
Here to avoid interference, the maximum value of addendum should be
such that C coincides with E.
It means that maximum addendum value of rack is GE.
Let the adopted value of addendum of the rack be arร—m where ar is the
addendum coefficient.
๐บ๐ธ = ๐‘ƒ๐ธ ร— ๐‘ ๐‘–๐‘› ๐œ‘ = ๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œ‘ ร— ๐‘ ๐‘–๐‘› ๐œ‘ = ๐‘Ÿ ๐‘ ๐‘–๐‘›2
๐œ‘ =
๐‘š๐‘ก
2
ร— ๐‘ ๐‘–๐‘›2
๐œ‘
To avoid interference,
๐บ๐ธ โ‰ฅ ๐‘Ž๐‘Ÿ ร— ๐‘š (๐‘œ๐‘Ÿ)
๐‘š๐‘ก
2
ร— ๐‘ ๐‘–๐‘›2
๐œ‘ โ‰ฅ ๐‘Ž๐‘Ÿ ร— ๐‘š (๐‘œ๐‘Ÿ)๐‘ก โ‰ฅ
2 ๐‘ ๐‘–๐‘›2
๐œ‘
๐‘š
๐‘ƒ๐‘Ž๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก = ๐ถ๐‘ƒ + ๐‘ƒ๐ท =
๐ด๐‘‘๐‘‘๐‘’๐‘š๐‘‘๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ÿ๐‘Ž๐‘๐‘˜
๐‘๐‘œ๐‘  ๐œ‘
+ โˆš๐‘Ÿ๐‘Ž
2 โˆ’ (๐‘Ÿ ๐‘๐‘œ๐‘  ๐œ‘)2 โˆ’ ๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œ‘
๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘๐‘Ž๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘ก๐‘œ ๐‘Ž๐‘ฃ๐‘œ๐‘–๐‘‘ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ = ๐ท๐ธ = โˆš๐‘Ÿ๐‘Ž
2 โˆ’ (๐‘Ÿ ๐‘๐‘œ๐‘  ๐œ‘)2
69
Helical Gears
In helical gears teeth are inclined to the axis of the gear, they can be right-handed or left-handed in which the
helix slopes away from the viewer when a gear is viewed parallel to the axis of the gear.
Here, the helix angle of gear 2 is reduced by a few
degrees so that the helix angle of gear 1 is ฯˆ1 and that
of gear 2 is ฯˆ2. Let the angle turned by it be ๏ฑ which is
the angle between the axes of two gears.
๏ฑ = ฯˆ1- ฯˆ2
when ฯˆ2 = 0 i.e., the helix angle of gear 2 is zero or
gear 2 is a Straight spur gear.
๏ฑ = ฯˆ1.
if ฯˆ2 ๏€ผ 0 i.e., helix angle of gear 2 is negative.
๏ฑ = ฯˆ1โ€• (โ€•ฯˆ2) = ฯˆ1 + ฯˆ2
From above, we can conclude that angle between shafts is equal to
๏ฑ= ฯˆ1โ€• ฯˆ2, in case of gears of opposite hands (ex- one left and one right hand)
๏ฑ= ฯˆ1+ ฯˆ2, in case of gears of same hand (ex- both left hand or both right hand)
In case of helical gears for parallel shafts, there will be line contact whereas for skew
shafts (non-parallel) there will be point of contact.
Helical gears with line of contact are stronger than spur gears and can transmit heavy
loads.
Pitch line velocities of gear 1 & 2 (for ฯˆ2 ๏€ผ 0)
The magnitude and direction of v12 represents the sliding velocity of gear 1 with respect to gear 2 parallel to t-t.
Side view Top view
Here the helix angle is
same ฯˆ1=ฯˆ2.
When ฯˆ1=ฯˆ2, the helix
angle is the same as
before.
Then ๏ฑ= ฯˆ1- ฯˆ2 = 0.
Itโ€™s a case of helical
gears joining parallel
shafts.
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes
Theory of machines notes

More Related Content

What's hot

FOUR BAR CHAIN AND INVERSIONS
FOUR BAR CHAIN AND INVERSIONSFOUR BAR CHAIN AND INVERSIONS
FOUR BAR CHAIN AND INVERSIONSsaahil kshatriya
ย 
Theories of Failure- Design of Machine Elements-I (DME)
Theories of Failure- Design of Machine Elements-I (DME)Theories of Failure- Design of Machine Elements-I (DME)
Theories of Failure- Design of Machine Elements-I (DME)DrMathewJohn1
ย 
Instantaneous center method
Instantaneous center methodInstantaneous center method
Instantaneous center methodRohit Singla
ย 
ICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of MachineICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of MachineKESHAV
ย 
Module 5 Cams
Module 5 CamsModule 5 Cams
Module 5 Camstaruian
ย 
Classification of Bearings
Classification of BearingsClassification of Bearings
Classification of BearingsNaseel Ibnu Azeez
ย 
Unit 2 Design Of Shafts Keys and Couplings
Unit 2 Design Of Shafts Keys and CouplingsUnit 2 Design Of Shafts Keys and Couplings
Unit 2 Design Of Shafts Keys and CouplingsMahesh Shinde
ย 
Failure Theories - Static Loads
Failure Theories - Static LoadsFailure Theories - Static Loads
Failure Theories - Static LoadsShubham Thakur
ย 
mechanism of machinery
mechanism of machinery mechanism of machinery
mechanism of machinery DilinesawBogale
ย 
Mechanism synthesis, graphical
Mechanism synthesis, graphicalMechanism synthesis, graphical
Mechanism synthesis, graphicalMecanismos Ucr
ย 
7.velocity analysis
7.velocity analysis7.velocity analysis
7.velocity analysisvarun teja G.V.V
ย 
1.4 law of gearing
1.4 law of gearing1.4 law of gearing
1.4 law of gearingKiran Wakchaure
ย 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IS.Vijaya Bhaskar
ย 
Ideal Models of Engine Cycles
Ideal Models of Engine CyclesIdeal Models of Engine Cycles
Ideal Models of Engine CyclesHassan Raza
ย 

What's hot (20)

Flat belt drives
Flat belt drivesFlat belt drives
Flat belt drives
ย 
Dual cycle
Dual cycleDual cycle
Dual cycle
ย 
FOUR BAR CHAIN AND INVERSIONS
FOUR BAR CHAIN AND INVERSIONSFOUR BAR CHAIN AND INVERSIONS
FOUR BAR CHAIN AND INVERSIONS
ย 
Dynamics of Machines: Question bank unitwise from vtu old question papers
Dynamics of Machines: Question bank unitwise from vtu old question papersDynamics of Machines: Question bank unitwise from vtu old question papers
Dynamics of Machines: Question bank unitwise from vtu old question papers
ย 
Theories of Failure- Design of Machine Elements-I (DME)
Theories of Failure- Design of Machine Elements-I (DME)Theories of Failure- Design of Machine Elements-I (DME)
Theories of Failure- Design of Machine Elements-I (DME)
ย 
Instantaneous center method
Instantaneous center methodInstantaneous center method
Instantaneous center method
ย 
ICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of MachineICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of Machine
ย 
Module 5 Cams
Module 5 CamsModule 5 Cams
Module 5 Cams
ย 
Classification of Bearings
Classification of BearingsClassification of Bearings
Classification of Bearings
ย 
Unit 2 Design Of Shafts Keys and Couplings
Unit 2 Design Of Shafts Keys and CouplingsUnit 2 Design Of Shafts Keys and Couplings
Unit 2 Design Of Shafts Keys and Couplings
ย 
Velocity and acceleration of mechanisms
Velocity and acceleration of mechanismsVelocity and acceleration of mechanisms
Velocity and acceleration of mechanisms
ย 
Failure Theories - Static Loads
Failure Theories - Static LoadsFailure Theories - Static Loads
Failure Theories - Static Loads
ย 
mechanism of machinery
mechanism of machinery mechanism of machinery
mechanism of machinery
ย 
Mechanism synthesis, graphical
Mechanism synthesis, graphicalMechanism synthesis, graphical
Mechanism synthesis, graphical
ย 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
ย 
7.velocity analysis
7.velocity analysis7.velocity analysis
7.velocity analysis
ย 
1.4 law of gearing
1.4 law of gearing1.4 law of gearing
1.4 law of gearing
ย 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-I
ย 
Introduction of machines and mechanism
Introduction of machines and mechanismIntroduction of machines and mechanism
Introduction of machines and mechanism
ย 
Ideal Models of Engine Cycles
Ideal Models of Engine CyclesIdeal Models of Engine Cycles
Ideal Models of Engine Cycles
ย 

Similar to Theory of machines notes

Kinematics of machines
Kinematics of machines Kinematics of machines
Kinematics of machines Akash Majeed
ย 
Auto sem3 111301_nol
Auto sem3 111301_nolAuto sem3 111301_nol
Auto sem3 111301_nolmoralwar
ย 
Me8492 kinematics of machinery material
Me8492 kinematics of machinery materialMe8492 kinematics of machinery material
Me8492 kinematics of machinery materialEr.JOE.S 09943145604
ย 
Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...
Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...
Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...R A Shah
ย 
MODULE-1 INTRODUCTION.pptx
MODULE-1 INTRODUCTION.pptxMODULE-1 INTRODUCTION.pptx
MODULE-1 INTRODUCTION.pptxManjunathtv2
ย 
Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2rknatarajan
ย 
Unit1 ap kom
Unit1 ap komUnit1 ap kom
Unit1 ap komkhushnoor2
ย 
Fundamentals of Kinematics and Mechanisms
Fundamentals of Kinematics and MechanismsFundamentals of Kinematics and Mechanisms
Fundamentals of Kinematics and MechanismsKESHAV
ย 
Ae 1253 -_mechanics_of_machines
Ae 1253 -_mechanics_of_machinesAe 1253 -_mechanics_of_machines
Ae 1253 -_mechanics_of_machinesvinayagamp
ย 
theory of machine
theory of machinetheory of machine
theory of machinepawankumar2495
ย 
Kinematics of Machine study material
Kinematics of Machine study material Kinematics of Machine study material
Kinematics of Machine study material R A Shah
ย 
KInematics of mc links pairs.pptx
KInematics of mc links pairs.pptxKInematics of mc links pairs.pptx
KInematics of mc links pairs.pptxAniketPandey85
ย 
module1introductiontokinematics-181227112050.pptx
module1introductiontokinematics-181227112050.pptxmodule1introductiontokinematics-181227112050.pptx
module1introductiontokinematics-181227112050.pptxAjitKhushwah1
ย 
Unit1 ap
Unit1 apUnit1 ap
Unit1 apADITHYA P G
ย 

Similar to Theory of machines notes (20)

Kinematics of machines
Kinematics of machines Kinematics of machines
Kinematics of machines
ย 
Auto sem3 111301_nol
Auto sem3 111301_nolAuto sem3 111301_nol
Auto sem3 111301_nol
ย 
2nd unit
2nd unit2nd unit
2nd unit
ย 
Me8492 kinematics of machinery material
Me8492 kinematics of machinery materialMe8492 kinematics of machinery material
Me8492 kinematics of machinery material
ย 
Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...
Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...
Mechanism and machines, Inversion, Link pair chain, Kinematics of machine, de...
ย 
Notes.docx
Notes.docxNotes.docx
Notes.docx
ย 
Notes.docx
Notes.docxNotes.docx
Notes.docx
ย 
Mechanisms
MechanismsMechanisms
Mechanisms
ย 
MODULE-1 INTRODUCTION.pptx
MODULE-1 INTRODUCTION.pptxMODULE-1 INTRODUCTION.pptx
MODULE-1 INTRODUCTION.pptx
ย 
Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2
ย 
Unit1 ap kom
Unit1 ap komUnit1 ap kom
Unit1 ap kom
ย 
Fundamentals of Kinematics and Mechanisms
Fundamentals of Kinematics and MechanismsFundamentals of Kinematics and Mechanisms
Fundamentals of Kinematics and Mechanisms
ย 
Ae 1253 -_mechanics_of_machines
Ae 1253 -_mechanics_of_machinesAe 1253 -_mechanics_of_machines
Ae 1253 -_mechanics_of_machines
ย 
theory of machine
theory of machinetheory of machine
theory of machine
ย 
Kom unit 1
Kom unit 1Kom unit 1
Kom unit 1
ย 
Kinematics of Machine study material
Kinematics of Machine study material Kinematics of Machine study material
Kinematics of Machine study material
ย 
KInematics of mc links pairs.pptx
KInematics of mc links pairs.pptxKInematics of mc links pairs.pptx
KInematics of mc links pairs.pptx
ย 
module1introductiontokinematics-181227112050.pptx
module1introductiontokinematics-181227112050.pptxmodule1introductiontokinematics-181227112050.pptx
module1introductiontokinematics-181227112050.pptx
ย 
Unit1 ap
Unit1 apUnit1 ap
Unit1 ap
ย 
Unit -1 Mechanisms
Unit -1 MechanismsUnit -1 Mechanisms
Unit -1 Mechanisms
ย 

More from Soumith V

Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notesSoumith V
ย 
Research methodology
Research methodologyResearch methodology
Research methodologySoumith V
ย 
Stoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineStoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineSoumith V
ย 
Stoicism I
Stoicism   IStoicism   I
Stoicism ISoumith V
ย 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC enginesSoumith V
ย 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycleSoumith V
ย 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cyclesSoumith V
ย 
Guidelines for slide preparation
Guidelines for slide preparationGuidelines for slide preparation
Guidelines for slide preparationSoumith V
ย 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamicsSoumith V
ย 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Soumith V
ย 
Power plant
Power plantPower plant
Power plantSoumith V
ย 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sourcesSoumith V
ย 
Radiation
RadiationRadiation
RadiationSoumith V
ย 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gateSoumith V
ย 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateSoumith V
ย 
thermodynamics notes for gate
thermodynamics notes for gatethermodynamics notes for gate
thermodynamics notes for gateSoumith V
ย 
Metrology
MetrologyMetrology
MetrologySoumith V
ย 
Industrial engineering notes for gate
Industrial engineering notes for gateIndustrial engineering notes for gate
Industrial engineering notes for gateSoumith V
ย 
kitting method
kitting methodkitting method
kitting methodSoumith V
ย 

More from Soumith V (19)

Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notes
ย 
Research methodology
Research methodologyResearch methodology
Research methodology
ย 
Stoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineStoicism and How to build Self Discipline
Stoicism and How to build Self Discipline
ย 
Stoicism I
Stoicism   IStoicism   I
Stoicism I
ย 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC engines
ย 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
ย 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
ย 
Guidelines for slide preparation
Guidelines for slide preparationGuidelines for slide preparation
Guidelines for slide preparation
ย 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamics
ย 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe
ย 
Power plant
Power plantPower plant
Power plant
ย 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sources
ย 
Radiation
RadiationRadiation
Radiation
ย 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
ย 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gate
ย 
thermodynamics notes for gate
thermodynamics notes for gatethermodynamics notes for gate
thermodynamics notes for gate
ย 
Metrology
MetrologyMetrology
Metrology
ย 
Industrial engineering notes for gate
Industrial engineering notes for gateIndustrial engineering notes for gate
Industrial engineering notes for gate
ย 
kitting method
kitting methodkitting method
kitting method
ย 

Recently uploaded

UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
ย 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
ย 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
ย 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
ย 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
ย 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
ย 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
ย 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
ย 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
ย 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
ย 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
ย 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
ย 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
ย 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
ย 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
ย 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
ย 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
ย 

Recently uploaded (20)

UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
ย 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
ย 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
ย 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
ย 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
ย 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
ย 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
ย 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
ย 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
ย 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
ย 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
ย 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
ย 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
ย 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
ย 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 

Theory of machines notes

  • 2. 1 CONTENTS INTRODUCTION.............................................................................................................................................................................2 MOTION ANALYSIS.....................................................................................................................................................................16 VELOCITY ANALYSIS OF DOUBLE SLIDER CRANK MECHANISM ..................................................................................22 ACCELERATION ANALYSIS.......................................................................................................................................................23 STATIC FORCE ANLAYSIS..........................................................................................................................................................29 DYNAMIC FORCE ANALYSIS ....................................................................................................................................................31 BALANCING OF ROTATING MASS ..........................................................................................................................................37 BALANCING OF RECIPROCATING MASS...............................................................................................................................40 TURNING MOMENT DIAGRAMS..............................................................................................................................................48 FLYWHEEL....................................................................................................................................................................................50 CAMS ..............................................................................................................................................................................................51 GEARS.............................................................................................................................................................................................57 GEAR TRAINS ...............................................................................................................................................................................71 GOVERNORS .................................................................................................................................................................................75 GYROSCOPE ..................................................................................................................................................................................82 VIBRATIONS .................................................................................................................................................................................86
  • 3. 2 INTRODUCTION Mechanisms and Machines If several bodies are assembled in such a way that the motion of one cause constrained and predictable motion to the other, is called mechanism. A machine is a mechanism or a combination of mechanisms which, apart from imparting definite motions to the parts, also transmits and modifies the available mechanical energy into some kind of desired work. Kinematics deals with the relative motions of different parts of a mechanism without taking into consideration the forces producing the motions. Dynamics involves the calculations of forces impressed upon different parts of a mechanism. Completely constrained motion When the motion between two elements of a pair is in a definite direction irrespective of the direction of the force applied, it is known as completely constrained motion. The constrained motion may be linear or rotary. Incompletely constrained motion When the motion between two elements of a pair is possible in more than one direction of the force applied, it is known as incompletely constrained motion. Successfully constrained motion When the motion between two elements of a pair is possible in more than one direction but is made to have motion in one direction by using some external means, it is successfully constrained motion. Rigid and Resistant bodies A body is said to be rigid if under the action of forces, it does not deform or the distance between the two points on it remains same. Resistant bodies are those which are rigid for the purposes they have to serve. Link A resistant body or a group of resistant bodies with rigid connections preventing their relative motion is known as link. A link can also be defined as a member or a combination of members of a mechanism, connecting other members and having motion relative to them. Links can be classified into binary, ternary and quaternary. Mechanis m Machine
  • 4. 3 Kinematic pair A kinematic pair is a joint of two links having relative motion between them. Kinematic pairs according to Nature of contact: Lower pair and Higher pair. Kinematic pairs according to Nature of Mechanical Constraint: Closed pair and Unclosed pair. Kinematic pairs according to nature of relative motion: a) Sliding pair, b) turning pair, c) rolling pair, d) screw pair, e) spherical pair. Types of Joints Binary joint If two links are joined at same connection, it is called a binary joint. At B. Ternary joint If three links are joined at a connection, it is known as a ternary joint. At T. Quaternary Joint If four links are joined at a connection, it is known as quaternary joint. At Q.
  • 5. 4 Kinematic chain When all the links are connected in such a way that 1st link is connected to the last link in order to get the closed chain and if all the relative motion in these closed chains are constrained then such a chain is known as kinematic chain. Degrees of freedom An unconstrained rigid body moving in space can have translational motion along any three mutually perpendicular axes and rotational motions about these axes. A rigid body possesses six degrees of freedom. Degrees of freedom of a pair can be defined as the number of independent relative motions, both translational and rotational, a pair can have. Degrees of freedom = 6 โ€“ Number of restraints (no. of motion which are not possible) Lower pair โŸถ 1 DOF Higher pair โŸถ 3 DOF Spherical pair โ†’ Degree of freedom โ€“ 3 Pair Restrain Degree of Freedom 3T+2R =5 6-5=1 1T=1 6-5=1 Aim: - To find out Degree of Freedom for 2D plane mechanism ๐น = [3 ยท (๐ฟ โˆ’ 1) โˆ’ 2๐‘— โˆ’ โ„Ž] โŸถ ๐พ๐‘ข๐‘ก๐‘ง๐‘๐‘Ž๐‘๐‘˜ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› L โ†’ no. of Links, j โ†’ no. of binary joint, h โ†’ no. of higher pair 3(๐ฟ โˆ’ 1) โ†’ ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘› 2๐ท ๐‘๐‘™๐‘Ž๐‘›๐‘Ž๐‘Ÿ ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š Note: - ๐น = [3 ยท (๐ฟ โˆ’ 1) โˆ’ 2๐‘— โˆ’ โ„Ž] โˆ’ ๐น๐‘Ÿ
  • 6. 5 Fr โ†’ no. of those motions, which are not the part of mechanism (Dummy motion) Frโ†’ s (NOT A PART OF MECHANISM) Example
  • 7. 6 If F = 0, no relative motion [Frame/structure] If F < 0, No relative motion [Super structure/indeterminate structure] If F = 1, kinematic chain If F > 1, Unconstrained chain Degree of freedom is no. of input required to get the constrained output/input in any chain. An alternate way 1. ๐ผ๐‘“ (๐‘— + โ„Ž 2 ) = ( 3๐‘™ 2 โˆ’ 2) โ†’ ๐พ๐‘–๐‘›๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘–๐‘› 2. ๐ผ๐‘“ (๐‘— + โ„Ž 2 ) > ( 3๐‘™ 2 โˆ’ 2) โ†’ ๐น๐‘Ÿ๐‘Ž๐‘š๐‘’ โงธ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’ โงธ๐‘ ๐‘ข๐‘๐‘’๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐ผ๐‘“ (๐ฟ๐ป๐‘† โ€“ ๐‘…๐ป๐‘†) = 0.5 โ†’ ๐น๐‘Ÿ๐‘Ž๐‘š๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’ (๐ฟ๐ป๐‘† โˆ’ ๐‘…๐ป๐‘†) > 0.5 โ†’ ๐‘†๐‘ข๐‘๐‘’๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘ข๐‘๐‘ก๐‘ข๐‘Ÿ๐‘’ 3. ๐ผ๐‘“ (๐‘— + โ„Ž 2 ) < ( 3๐‘™ 2 โˆ’ 2) โ†’ ๐‘ˆ๐‘›๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘’๐‘‘ ๐‘โ„Ž๐‘Ž๐‘–๐‘›
  • 8. 7 Spring (links of variable length) as a link DOF of an open chain (One binary joint will restrict 2 motions in 2D) Grublerโ€™s equation For those mechanism in which F = 1 & h = 0 Applied Kutzback equation ๐น = 3 ยท (๐‘™ โˆ’ 1) โˆ’ 2๐‘— โˆ’ โ„Ž 1 = 3๐‘™ โˆ’ 3 โˆ’ 2๐‘— 3๐‘™ โˆ’ 2๐‘— โˆ’ 4 = 0 โ†’ ๐บ๐‘Ÿ๐‘ข๐‘๐‘™๐‘’๐‘Ÿโ€ฒ ๐‘  ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› l should be even for satisfying Grublerโ€™s equation and lmin = 4 (for lower pairs) lmin = 4 โ†’ First mechanism in Lower pair โ†’ Simple mechanism (canโ€™t have a chain with 2 links) a) Four bar mechanism b) Single slider crank mechanism c) Double slider crank mechanism
  • 9. 8 Four bar mechanism (Quadric cycle mechanism) 4 links + 4 turning pair Best position โ†’ Fixed (because it governs both input & output) Worst position โ†’ coupler (because it is just a transmitting body Input/output (Having only one option of motion i.e., rotation) โŸถ Complete rotation (360ยฐ) โ†’ crank โŸถ Partial rotation (<360ยฐ) (Oscillation) โ†’ Rocker/lever Inversions Mechanisms which are obtained by fixing one by one different link. โ€ข Double crank mechanism โ€ข Crank โ€“ rocker mechanism โ€ข Double โ€“ rocker mechanism Grashofโ€™s Law For the continuous relative motion between the number of links in four bar mechanism the summation of longer of shortest and greatest should not be greater than summation of length of other two links. For continuous relative motion (๐‘† + ๐ฟ) โ‰ค (๐‘ + ๐‘ž) Best position โ†’ fixed (because it governs both input and output) Best link for complete rotation โ†’ shortest (s) Is S+L < p + q (Law satisfied) 1. S โ†’ fixed โ†’ Double crank 2. S โ†’ Adjacent to fix โ†’ Crank-Rocker 3. S โ†’ couple โ†’ Double Rocker If (S+L) = (p + q) law is satisfied. a) Not having equal pair or equal link 5, 4, 3, 2 Same as previous b) Having equal pair or equal link 2, 2, 5, 5 ๐‘  ๐‘  ๐‘™ ๐‘™ i) Parallelogram linkage (same length of the links) S โ€“ fixed โ†’ Double crank l โ€“ fixed โ†’ double crank ii) Detroit linkage S โ€“ fixed โ†’ Double crank l โ€“ fixed โ†’ double crank If (S+L) > (p + q) law is not satisfied Any link fixed โ†’ double rocker If no. of links = l No. of inversions โ‰ค l (less when for different fixing relative motion is same)
  • 10. 9 Some practical examples of 4 bar mechanisms Beam engine mechanism (James Watt) Coupling Rod of locomotives Transmission angle (ฮผ) An angle between the coupler link and the output link in four bar mechanism is known as transmission angle. ๐ด๐ถ2 = ๐‘Ž2 + ๐‘2 โˆ’ 2๐‘Ž๐‘ ๐‘๐‘œ๐‘  ๐œƒ = ๐‘2 + ๐‘‘2 โˆ’ 2๐‘๐‘‘ ๐‘๐‘œ๐‘  ๐œ‡ Differentiating both sides, (โˆ’2๐‘Ž๐‘) ยท (โˆ’ ๐‘ ๐‘–๐‘› ๐œƒ) ยท ๐‘‘๐œƒ = (โˆ’2๐‘๐‘‘) ยท (โˆ’ ๐‘ ๐‘–๐‘› ๐œ‡) ยท ๐‘‘๐œ‡ ๐‘‘๐œ‡ ๐‘‘๐œƒ = ( ๐‘Ž๐‘ ๐‘๐‘‘ ) ยท ๐‘ ๐‘–๐‘› ๐œƒ ๐‘ ๐‘–๐‘› ๐œ‡ For ฮผ to be max/min, ๐‘‘๐œ‡ ๐‘‘๐œƒ = 0 โ†’ ( ๐‘Ž๐‘ ๐‘๐‘‘ ) ยท ๐‘ ๐‘–๐‘› ๐œƒ ๐‘ ๐‘–๐‘› ๐œ‡ = 0 โ†’ ๐‘ ๐‘–๐‘› ๐œƒ = 0 ๐œฝ = ๐ŸŽยฐ, ๐Ÿ๐Ÿ–๐ŸŽยฐ โ†’ ๐œ‡๐‘š๐‘–๐‘› = 0ยฐ, ๐œ‡๐‘š๐‘Ž๐‘ฅ = 180 James Watt Beam engine couldnโ€™t be used as steam engine, so he converted one of the turning pair into 4 bar to a sliding pair. (Sliding pair Mechanism) Rotation โŸท Oscillation Crank โŸท Rocker Ex: - Sewing Machine 4 turning pairs 4 links Ex: - Steam engine
  • 11. 10 Single Slider crank mechanism (Drag-link Mechanism) Ist inversion (Cylinder fixed) Rotation โŸท Oscillation Crank โŸท Piston Output โŸต Input (Piston to Crank) โŸถ Reciprocating engine Input โŸถ Output (Crank to Piston) โŸถ Reciprocating compressor IInd Inversion (Crank fixed) โ†’ Whitworth quick return motion mechanism โ†’ Rotary IC engine mechanism (Gnome engine) IIIrd Inversion (Connecting Rod fixed) โ†’ Crank and slotted lever quick return mechanism โ†’ Oscillating cylinder engine mechanism IVth Inversion (Slider/Piston Fixed) โ†’ Hand Pump (Pendulum pump, Bull engine)
  • 12. 11 Crank and slotted Lever (Quick Return Motion Mechanism) IIIrd Inversion (Connecting Rod Fixed) Quick Return Ratio (QRR) ๐‘„๐‘…๐‘… = ๐‘‡๐‘–๐‘š๐‘’๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘‡๐‘–๐‘š๐‘’๐‘…๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘› = ๐›ฝ ๐›ผ > 1 (๐’‚๐’๐’˜๐’‚๐’š๐’”) Stroke R1R2 ๐‘…1๐‘…2 = ๐ถ1๐ถ2 = 2 ร— ๐ถ1๐‘€ = 2 ร— ๐ด๐ถ1 ร— ๐‘๐‘œ๐‘  ๐›ผ 2 = 2 ร— ๐ด๐ถ1 ร— ( ๐‘‚๐ต1 ๐‘‚๐ด ) = 2 ร— ๐ด๐ถ ร— ๐‘‚๐ต ๐‘‚๐ด ๐‘†๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ = 2 ร— ๐ด๐ถ ร— ๐‘‚๐ต ๐‘‚๐ด = 2 ร— [๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘ ๐‘™๐‘œ๐‘ก๐‘ก๐‘’๐‘‘ ๐‘๐‘Ž๐‘Ÿ] ร— [๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜] [๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ÿ๐‘œ๐‘‘] As ฮฑ < ฮฒ, return stroke is quicker than Cutting stroke, so it is called Quick return mechanism. QRR can never be less than 1.
  • 13. 12 Whitworth Quick Return Motion Mechanism IInd Inversion (crank fixed) Rotation โŸถ Rotation (Double crank) Stroke โŸน R1R2 โŸน C1C2 โŸน2 (OC) Oscillating Cylinder Mechanism IIIrd Mechanism (Connecting Rod fixed) Rotary IC Engine Mechanism (GNOME Engine) IInd Inversion
  • 14. 13 Hand Pump IVth Inversion (slider fixed) When combustion takes place inside the cylinder Input force comes on piston This force is transmitted to Connecting Rod Connecting Rod and piston both rotate Cylinder block rotates (Propeller is mounted on Cylinder block)
  • 15. 14 Double slider crank chain (4 links + 2 Turning Pairs+ 2 Sliding Pairs) 1. Slotted plate is fixed (Elliptical Trammels) ๐‘๐‘œ๐‘  ๐œƒ = ๐‘ฅ ๐ด๐‘ƒ ๐‘ ๐‘–๐‘› ๐œƒ = ๐‘ฆ ๐ต๐‘ƒ ๐‘ฅ2 ๐ด๐‘ƒ2 + ๐‘ฆ2 ๐ต๐‘ƒ2 = 1 โ†’ ๐ธ๐‘™๐‘™๐‘–๐‘๐‘ ๐‘’ Locus of any point โ€˜Pโ€™ on link AB except midpoint is on ellipse.
  • 16. 15 2. If any of the slider is fixed (Switch yoke mechanism) Rotary to Reciprocatory Practical use โŸถ Power hex 3. If link connecting slider is fixed (old ham coupling) Oldham coupling is used to connect shaft having lateral misalignment. Maximum sliding velocity of this intermediate plate links = rw = (distance between the shaft) ร— (wdriver) Mechanical Advantage (M.A) ๐‘€๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘๐‘Ž๐‘™ ๐ด๐‘‘๐‘ฃ๐‘Ž๐‘›๐‘ก๐‘Ž๐‘”๐‘’ = ๐น๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ๐น๐‘–๐‘›๐‘๐‘ข๐‘ก = ๐‘‡๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ๐‘‡๐‘–๐‘›๐‘๐‘ข๐‘ก ๐œ‚๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š = ๐‘ƒ๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ๐‘ƒ๐‘–๐‘›๐‘๐‘ข๐‘ก = ๐น๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ร— ๐‘‰๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ๐น๐‘–๐‘›๐‘๐‘ข๐‘ก ร— ๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก = ๐‘‡๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ร— ๐‘ค๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ๐‘‡๐‘–๐‘›๐‘๐‘ข๐‘ก ร— ๐‘ค๐‘–๐‘›๐‘๐‘ข๐‘ก ๐‘€. ๐ด = ๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก ๐‘‰๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ร— ๐œ‚๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š = ๐‘ค๐‘–๐‘›๐‘๐‘ข๐‘ก ๐‘ค๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก ร— ๐œ‚๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š
  • 17. 16 MOTION ANALYSIS Motion of a link Let a rigid link OA, of length r, rotate about a fixed-point O with uniform angular velocity ฯ‰ rad/s in the counter-clockwise direction. OA turns through a small angle ฮดฮธ in a small interval of time ฮดt. Then A will travel along the arc AAโ€ฒ as shown. ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘‚ = ๐ด๐‘Ÿ๐‘ ๐ด๐ดโ€ฒ ๐›ฟ๐‘ก โŸน ๐‘ฃ๐‘Ž๐‘œ = ๐‘Ÿ ยท ๐›ฟ๐œƒ ๐›ฟ๐‘ก ๐‘คโ„Ž๐‘’๐‘› ๐›ฟ๐‘ก โ†’ 0, ๐‘ฃ๐‘Ž๐‘œ = ๐‘Ÿ ๐‘‘๐œƒ ๐‘‘๐‘ก = ๐‘Ÿ๐œ” The velocity of A is ฯ‰r and is perpendicular to OA. Itโ€™s represented by a vector oa. Consider a point B on the link OA. ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ต = ๐œ” ร— ๐‘‚๐ต โŠฅ ๐‘ก๐‘œ ๐‘‚๐ต ๐จ๐› ๐จ๐š = ๐œ” ยท ๐‘‚๐ต ๐œ” ยท ๐‘‚๐ด = ๐‘‚๐ต ๐‘‚๐ด Magnitude of instantaneous linear velocity of a point on a rotating body is proportional to its distance from the axis of rotation. Four link Mechanism AB is the driver rotating at an angular speed of ฯ‰ rad/s in the clockwise direction if it is a crank or moving at this angular velocity at this instant if itโ€™s a rocker. It is required to find the absolute velocity of C. ๐‘ฃ๐‘๐‘Ž = ๐‘ฃ๐‘๐‘ + ๐‘ฃ๐‘๐‘Ž Velocity of any point on the fixed link AD is always zero. Therefore, the velocity of C relative to A is the same as velocity of C relative to D. ๐‘ฃ๐‘๐‘‘ = ๐‘ฃ๐‘๐‘Ž + ๐‘ฃ๐‘๐‘ (๐‘œ๐‘Ÿ) ๐๐œ = ๐š๐› + ๐›๐œ ๐’—๐’ƒ๐’‚ ๐‘–๐‘  ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  ๐Ž ยท ๐‘จ๐‘ฉ, ๐‘Ž๐‘›๐‘‘ ๐’—๐’„๐’ƒ & ๐’—๐’…๐’„ ๐‘Ž๐‘Ÿ๐‘’ ๐‘ข๐‘›๐‘˜๐‘›๐‘œ๐‘ค๐‘›.
  • 18. 17 Velocity diagram is constructed as follows, 1. Take the first vector ab, as it is completely known. 2. To add vector bc to ab, raw a line โŠฅ BC through b, of any length. Since the direction-sense of bc is unknown, it can lie in either side of b. A convenient length of the line can be taken on both sides of b. 3. Through d, draw a line โŠฅ DC to locate the vector dc. The intersection of this line with the line of vector bc locates the point c. 4. Mark arrowheads on the vectors bc and dc to give the proper sense. Then dc is the magnitude and represents the direction of the velocity of C relative to A (or D). it is also the absolute velocity of the point C (A & D being fixed points). 5. Remember that the arrowheads on vector bc can be put in any direction because both ends of the link BC are movable. If the arrowhead is put from c to b, then the vector is read as cb. The above equation is modified as โ†’ ๐๐œ = ๐š๐› โˆ’ ๐œ๐› โŸน ๐๐œ + ๐œ๐› = ๐š๐› The velocity of an intermediate point on any of the links can be found easily by dividing the corresponding velocity vector in the same ratio as the point divides the link. For point E in the link BC, ๐›๐ž ๐›๐œ = ๐ต๐ธ ๐ต๐ถ ae represents the absolute velocity of E. Angular velocity of Links ๐‘ฃ๐‘๐‘ = ๐›๐œ ๐‘ฃ๐‘๐‘ = ๐œ๐› ๐‘ฃ๐‘๐‘ = ๐œ”๐‘๐‘ ร— ๐ต๐ถ = ๐œ”๐‘๐‘ ร— ๐ถ๐ต โ†’ ๐œ”๐‘๐‘ = ๐‘ฃ๐‘๐‘ ๐ถ๐ต ๐œ”๐‘๐‘ = ๐‘ฃ๐‘๐‘ ๐ถ๐ต ; The magnitude of ฯ‰cb = ฯ‰bc as vcb = vbc and the direction of rotation is the same. ๐‘ฃ๐‘๐‘‘ = ๐๐œ ๐œ”๐‘๐‘‘ = ๐‘ฃ๐‘๐‘‘ ๐ถ๐ท Slider-crank Mechanism Figure shows OA is the crank moving with uniform angular velocity ฯ‰ rad/s in the clockwise direction. At point B, a slider moves on the fixed guide G. AB is the coupler joining A and B. it is required to find the velocity of the slider at B. ๐‘ฃ๐‘๐‘œ = ๐‘ฃ๐‘๐‘Ž + ๐‘ฃ๐‘Ž๐‘œ (๐‘œ๐‘Ÿ) ๐‘ฃ๐‘๐‘” = ๐‘ฃ๐‘Ž๐‘œ + ๐‘ฃ๐‘๐‘Ž ๐ ๐› = ๐จ๐š + ๐š๐› Take the vector vao which is completely known. Vba is โŠฅAB, draw a line โŠฅAB through a; Through g (or a), draw a line parallel to the motion of B. The intersection of the two lines locates the point b. gb (or ob) indicates the velocity of the slider B relative to the guide G. this is also the absolute velocity of the slider (G is fixed). The slider moves towards the right as indicated by gb. When the crank assumes the position OAโ€ฒ while rotating, it will be found that the vector gb lies on the left of g indicating that B moves towards left. For the given configuration, the coupler AB has angular velocity in the counter-clockwise direction, the magnitude being ๐‘ฃ๐‘๐‘Ž ๐ต๐ด(๐‘œ๐‘Ÿ ๐ด๐ต)
  • 19. 18 Crank and Slotted lever Mechanism A crank and slotted lever mechanism is a form of quick return mechanism used for slotting and shaping machines. OP is the crank rotating at an angular velocity of ฯ‰ rad/s in the clockwise direction about the center O. at the end of the crank, a slider P is pivoted which moves on an oscillating link AR. In such problems, it is convenient if a point Q on the link AR immediately below P is assumed to exist (P & Q are known as coincident points). As the crank rotates, there is relative movement of the points P and Q along AR. ๐‘ฃ๐‘ž๐‘œ = ๐‘ฃ๐‘ž๐‘ + ๐‘ฃ๐‘๐‘œ (๐‘œ๐‘Ÿ) ๐‘ฃ๐‘ž๐‘Ž = ๐‘ฃ๐‘๐‘œ + ๐‘ฃ๐‘ž๐‘ ๐š๐ช = ๐จ๐ฉ + ๐ฉ๐ช Take the vector vpo which is completely known. Vqa is โŠฅAR, draw a line โŠฅAR through a; Vpq is โˆฅ AR, draw a line โˆฅAR through p. The intersection locates the point q. observe that the velocity diagrams obtained in the two cases are the same expect that the direction of vpq is the reverse of that of vqp As the vectors oq and qp are perpendicular to each other, the vector vpo may be assumed to have two components, one perpendicular to AR and the other parallel to AR. The component of velocity along AR, ie., qp indicates the relative velocity between Q & P or the velocity of sliding of the block on link AR. Now, the velocity of R is perpendicular to AR. As the velocity of Q perpendicular to AR is known, the point r will lie on the vector aq produced such that ar/aq = AR/AQ To find the velocity of ram S, write the velocity vector equation, ๐‘ฃ๐‘ ๐‘œ = ๐‘ฃ๐‘ ๐‘Ÿ + ๐‘ฃ๐‘Ÿ๐‘œ (๐‘œ๐‘Ÿ) ๐‘ฃ๐‘ ๐‘” = ๐‘ฃ๐‘Ÿ๐‘œ + ๐‘ฃ๐‘ ๐‘Ÿ ๐ ๐ฌ = ๐จ๐ซ + ๐ซ๐ฌ
  • 20. 19 vro is already there in the diagram. Draw a line through r perpendicular to RS for the vector vsr and a line through g, parallel to the line of motion of the slider S on the guide G, for the vector vsg. In this way the point s is located. The velocity of the ram S = os (or gs) towards right for the given position of the crank. ๐ด๐‘™๐‘ ๐‘œ, ๐œ”๐‘Ÿ๐‘  = ๐‘ฃ๐‘Ÿ๐‘  ๐‘…๐‘† ๐ถ๐‘™๐‘œ๐‘๐‘˜๐‘ค๐‘–๐‘ ๐‘’ Usually, the coupler RS is long and its obliquity is neglected. Then or โ‰ˆ os. ๐‘‡๐‘–๐‘š๐‘’ ๐‘œ๐‘“ ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘‡๐ผ๐‘š๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘› = ๐œƒ ๐›ฝ When the crank assumes the position OPโ€™ during the cutting stroke, the component of velocity along AR (i.e, pq) is zero and oq is maximum (=op) ๐‘Ÿ โ†’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜(๐‘‚๐‘ƒ), ๐‘™ โ†’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘ ๐‘™๐‘œ๐‘ก๐‘ก๐‘’๐‘‘ ๐‘™๐‘’๐‘ฃ๐‘’๐‘Ÿ(๐ด๐‘…), ๐‘ โ†’ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘“๐‘–๐‘ฅ๐‘’๐‘‘ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’๐‘ (๐ด๐‘‚) ๐ท๐‘ข๐‘Ÿ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’, ๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ = ๐œ” ร— ๐‘‚๐‘ƒโ€ฒ ร— ๐ด๐‘… ๐ด๐‘„ = ๐œ”๐‘Ÿ ร— ๐‘™ ๐‘ + ๐‘Ÿ This is by neglecting the obliquity of the link RS, i.e., assuming the velocity of S equal to that of R. Similarly, during the return stroke, ๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ = ๐œ” ร— ๐‘‚๐‘ƒโ€ฒโ€ฒ ร— ๐ด๐‘… ๐ด๐‘„โ€ฒโ€ฒ = ๐œ”๐‘Ÿ ร— ๐‘™ ๐‘ โˆ’ ๐‘Ÿ ๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ (๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘”) ๐‘ฃ๐‘  ๐‘š๐‘Ž๐‘ฅ (๐‘Ÿ๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘›) = ๐œ”๐‘Ÿ ร— ๐‘™ ๐‘ + ๐‘Ÿ ๐œ”๐‘Ÿ ร— ๐‘™ ๐‘ โˆ’ ๐‘Ÿ = ๐‘ โˆ’ ๐‘Ÿ ๐‘ + ๐‘Ÿ
  • 21. 20 Velocity analysis (Instantaneous center method approach) ๐œ”๐ด๐ต = ๐‘ฃ๐ด ๐ด๐ผ = ๐‘ฃ๐ต ๐ต๐ผ = ๐‘ฃ๐ถ ๐ถ๐ผ = ๐‘ฃ๐ท ๐ท๐ผ = ๐‘ฃ๐ธ ๐ธ๐ผ = ๐‘ฃ๐น ๐น๐ผ = โ‹ฏ IโŸถ defined for the relative motion between two links I24 โŸถ Instantaneous center for the relative motion between link 2 and link 4. In general, when the link moves, its relative motion IC keeps on changing. Locus of I-center for the relative motion between the links โŸน centrode. Locus of I-center of rotation for the relative motion between the links โŸน Axode. Motions Centrode Axode General Motion Curve Curved surface Pure Translation Straight line Plane surface Pure rotation Point Straight line In general, the motion of a link in a mechanism is neither pure translation nor pure rotation. It is a combination of translation and rotation which we normally say the link is in general motion. But any link at any instant can be assumed to be in pure rotation with respect to the point in the space known as instantaneous center of rotation. this center is also known as virtual center. ๐‘๐‘œ. ๐‘œ๐‘“ ๐ผ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Ž ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘ ๐‘š = ๐’ ยท (๐’ โˆ’ ๐Ÿ) ๐Ÿ ๐ฟ โŸถ ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘™๐‘–๐‘›๐‘˜๐‘  Sir Arnold, Kennedy In reality, AA1 & BB1 โŸถ 0 (โ‰ˆ0). AA1 and BB1 are very small (negligible). The link AB at this instant is in General motion.
  • 22. 21 Basics of I-center for a mechanism Turning pair Rolling pair Sliding pair ๐น๐‘œ๐‘Ÿ ๐‘™ = 6, ๐‘๐‘œ. ๐‘œ๐‘“ ๐ผ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘  = ๐’ ยท (๐’ โˆ’ ๐Ÿ) ๐Ÿ = 15 I12 I13 I14 I15 I16 I23 I24 I25 I26 I34 I35 I36 I45 I46 I56
  • 23. 22 Kennedyโ€™s theorem For the relative motion between the no. of links in a mechanism any three links, their three IยทC must lie in straight line. Theorem of angular velocities Any I.C Imn can be treated as on link m or its on link n. ๐‘‰๐ผ๐‘š๐‘› = ๐œ”๐‘š๐‘› ยท (๐ผ๐‘š๐‘›๐ผ1๐‘š ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…) = ๐œ”๐‘› ยท (๐ผ๐‘š๐‘›๐ผ1๐‘› ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…) This theorem is applied at Imn. Total I.C in use ๐ผ๐‘š๐‘› ๐ผ1๐‘š ๐ผ1๐‘› } ๐‘™๐‘–๐‘›๐‘˜ 1 ๐‘™๐‘–๐‘›๐‘˜ ๐‘š ๐‘™๐‘–๐‘›๐‘˜ ๐‘› If I1m, I1n lies on same side of Imn โŸถ same direction, otherwise opposite direction. Relative velocity method VELOCITY ANALYSIS OF DOUBLE SLIDER CRANK MECHANISM Links 2 & 4 are relatively translating i.e., there is no orientation change b/w links. ๐‘‰2 = ๐‘‰๐ผ23 = ๐œ”3 โˆ— ๐ผ23 โˆ— ๐ผ13 ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐œ”3 = ๐‘‰2 ๐ผ23 โˆ— ๐ผ13 ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… = ๐‘‰2 ๐ฟ2 ๐‘ ๐‘–๐‘› ๐œƒ ๐‘‰4 = ๐‘‰๐ผ34 = ๐œ”3 โˆ— ๐ผ34 โˆ— ๐ผ13 ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘‰4 = ๐‘‰2 ๐ฟ2 ๐‘ ๐‘–๐‘› ๐œƒ โˆ— ๐ฟ2 ๐‘๐‘œ๐‘  ๐œƒ ๐‘‰4 = ๐‘‰2 ๐‘ก๐‘Ž๐‘› ๐œƒ The velocity of point B w.r.t point A will be in the direction perpendicular to the link AB Intersection of 12, 14 & 23, 34 is at โˆž. So, I24 is at โˆž.
  • 24. 23 ACCELERATION ANALYSIS The rate of change of velocity w.r.t time is known as acceleration and it acts in the direction of change in velocity. Itโ€™s a vector quantity. Let a link OA, of length r, rotate in circular path in the clockwise direction. It has an instantaneous angular velocity ฯ‰ and an angular acceleration ฮฑ in the same direction, i.e., the angular velocity increases in the clockwise direction. ๐‘‡๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด, ๐‘ฃ๐‘Ž = ๐œ”๐‘Ÿ ๐‘ถ๐‘จ ๐‘–๐‘  ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐œน๐œฝ, ๐‘ก๐‘œ ๐‘ถ๐‘จโ€™, ๐‘–๐‘› ๐‘Ž ๐‘ ๐‘๐‘Ž๐‘› ๐‘œ๐‘“ ๐œน๐’•. ๐ด๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘‚๐ดโ€ฒ , ๐œ”๐‘Ž โ€ฒ = ๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก ๐‘‡๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ดโ€ฒ , ๐‘ฃ๐‘Ž โ€ฒ = (๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ The tangential velocity of Aโ€™ (๐’—๐’‚ โ€ฒ ) have two components of velocity, one parallel and other perpendicular to OA. ๐‘จ๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐ด โŠฅ ๐’•๐’ ๐‘‚๐ด = ๐‘ฃ๐‘Ž โ€ฒ ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ ๐‘ฃ๐‘Ž ๐›ฟ๐‘ก = ((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ) โˆ’ (๐œ”๐‘Ÿ) ๐›ฟ๐‘ก ๐ด๐‘  ๐›ฟ๐‘ก โ†’ 0, ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โ†’ 1 โŸน ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘จ โŠฅ ๐‘ก๐‘œ ๐‘ถ๐‘จ = ((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท 1) โˆ’ (๐œ”๐‘Ÿ) ๐›ฟ๐‘ก ๐‘ป๐’‚๐’๐’ˆ๐’†๐’๐’•๐’Š๐’‚๐’ ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ โ†’ ๐’‡๐’‚๐’ ๐’• = ๐œถ ยท ๐’“ = ( ๐‘‘๐œ” ๐‘‘๐‘ก ) ยท ๐‘Ÿ = ๐‘‘๐‘ฃ ๐‘‘๐‘ก ๐‘จ๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐ด โˆฅ ๐’•๐’ ๐‘‚๐ด = ๐‘ฃ๐‘Ž โ€ฒ ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ โˆ’ 0 ๐›ฟ๐‘ก = ((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ) ๐›ฟ๐‘ก ๐ด๐‘  ๐›ฟ๐‘ก โ†’ 0, ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ โ†’ ๐›ฟ๐œƒ โŸน ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘จ โŠฅ ๐‘ก๐‘œ ๐‘ถ๐‘จ = ((๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท ๐‘Ÿ ยท ๐›ฟ๐œƒ) ๐›ฟ๐‘ก = ๐œ” ยท ๐‘Ÿ ยท ๐›ฟ๐œƒ ๐›ฟ๐‘ก = ๐œ”๐‘Ÿ ยท ๐œ” ๐‘น๐’‚๐’…๐’Š๐’‚๐’ ๐’๐’“ ๐‘ช๐’†๐’๐’•๐’“๐’Š๐’‘๐’†๐’•๐’‚๐’ ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ โ†’ ๐’‡๐’‚๐’ ๐’„ = ๐œ”2 ยท ๐‘Ÿ = ๐‘ฃ2 ๐‘Ÿ When ฮฑ=0, Tangential acceleration = 0, only Centripetal acceleration will be present. When ฯ‰ =0, Centripetal acceleration will be zero, A has linear motion. When ฮฑ is negative, tangential acceleration will be in negative direction.
  • 25. 24 Four-link mechanism Acceleration diagram Construction: - a) Select the pole point a1 or d1. b) Take the first vector from the above table, i.e., take a1ba to a convenient scale in the proper direction and sense. c) Add the second vector to the first and then the third vector to the second. d) For the addition of the fourth vector, draw a line perpendicular to BC through the head cb of the third vector. The magnitude of the fourth vector is unknown and cc can lie on either side of cb. e) Take the fifth vector from d1. f) For the addition of sixth vector to the fifth, draw a line perpendicular to DC through the head cd of the fifth vector. The intersection of this line with line drawn in the step (d) locates the point c1. Total acceleration of B=a1b1 Total acceleration of C relative to B = b1c1 Total acceleration of C = d1c1 S. no Vector Magnitude Direction Sense 1 ๐‘“๐‘๐‘Ž ๐‘ ๐‘œ๐‘Ÿ ๐’‚๐Ÿ๐’ƒ๐’‚ (๐’‚๐’ƒ)2 ๐ด๐ต โˆฅ AB โŸถ A 2 ๐‘“๐‘๐‘Ž ๐‘ก ๐‘œ๐‘Ÿ ๐’ƒ๐’‚๐’ƒ๐Ÿ ฮฑ ร— AB โŠฅ AB or a1ba or โˆฅ ab โŸถ b 3 ๐‘“๐‘๐‘ ๐‘ ๐‘œ๐‘Ÿ ๐’ƒ๐Ÿ๐’„๐’ƒ (๐’ƒ๐’„)2 ๐ต๐ถ โˆฅ AB โŸถ B 4 ๐‘“๐‘๐‘ ๐‘ก ๐‘œ๐‘Ÿ ๐’„๐’ƒ๐’„๐Ÿ - โŠฅ BC or b1cb - 5 ๐‘“๐‘๐‘‘ ๐‘ ๐‘œ๐‘Ÿ ๐’…๐Ÿ๐’„๐’… (๐’ƒ๐’„)2 ๐ท๐ถ โˆฅ DC โŸถ D 6 ๐‘“๐‘๐‘‘ ๐‘ก ๐‘œ๐‘Ÿ ๐’„๐’…๐’„๐Ÿ - โŠฅ DC or d1cd - Acceleration of intermediate points on the links can be obtained by dividing the acceleration vectors in the same ratio as the points divide the links. For point E on the link BC, ๐ต๐ธ ๐ต๐ถ = ๐‘1๐‘’1 ๐‘1๐‘1 a1e1 gives the total acceleration of the point E.
  • 26. 25 Slider crank Mechanism Acceleration of B relative to O = Acceleration of B relative to A + Acceleration of A relative to O. ๐‘“๐‘๐‘œ = ๐‘“๐‘๐‘Ž + ๐‘“๐‘Ž๐‘œ ๐‘“๐‘๐‘” = ๐‘“๐‘Ž๐‘œ + ๐‘“๐‘๐‘Ž = ๐‘“๐‘Ž๐‘œ + (๐‘“๐‘๐‘Ž ๐‘ + ๐‘“๐‘๐‘Ž ๐‘ก ) ๐’ˆ๐Ÿ๐’ƒ๐Ÿ = ๐’๐Ÿ๐’‚๐Ÿ + ๐’‚๐Ÿ๐’ƒ๐’‚ + ๐’ƒ๐’‚๐’ƒ๐Ÿ Crank OA rotates at a uniform velocity. So, the acceleration of A relative to O has only the centripetal component. Slider moves in a linear direction and has no centripetal component. S. no Vector Magnitude Direction Sense 1 ๐’‡๐’‚๐’๐’๐’“ ๐’๐Ÿ๐’‚๐Ÿ (๐’๐’‚)2 ๐‘‚๐ด โˆฅ AB โŸถ O 2 ๐’‡๐’ƒ๐’‚ ๐’„ ๐’๐’“ ๐’‚๐Ÿ๐’ƒ๐’‚ (๐’‚๐’ƒ)2 ๐ด๐ต โŠฅ AB or a1ba or โˆฅ ab โŸถ A 3 ๐’‡๐’ƒ๐’‚ ๐’• ๐’๐’“ ๐’ƒ๐’‚ ๐’ƒ๐Ÿ โ”€ โˆฅ AB โ”€ 4 ๐’‡๐’ƒ๐’ˆ ๐’๐’“ ๐’ˆ๐Ÿ ๐’ƒ๐Ÿ โ”€ โŠฅ BC or b1cb โ”€ Construction 1. Take the first vector fao 2. Add the second vector to the first 3. For the third vector, draw a line โŠฅ to AB through the head ba of the second vector 4. For the fourth vector, draw a line through g1 parallel to the line of motion of the slider Acceleration of the slider B = o1b1 (or g1b1) Total acceleration of B relative to A = a1b1 The direction of slider is opposite to that of velocity. Therefore, the acceleration is negative, or the slider decelerates while moving.
  • 27. 26 Coriolis Acceleration Component It is seen that the acceleration of a moving point relative to a fixed body may have two components of acceleration: the centripetal and tangential. However, in some cases, the point may have its motion relative to a moving body system, for example, motion of a slider on a rotating link. Following analysis is made to investigate the acceleration at that point P. Let a link AR rotate about a fixed-point A on it. P is a point on a slider on the link. ฯ‰ = angular velocity of link, ฮฑ = angular acceleration of the link, v = linear velocity of the slider on the link, f = linear acceleration of the slider on the link, r = radial distance of point P on the slider. In a short interval of time ฮดt, let ฮดฮธ be the angular displacement of the link and ฮดr be the radial displacement of the slider in the outward direction. After the short interval of time ฮดt, let ๐œ”โ€ฒ = ๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก๐‘ฃโ€ฒ = ๐‘ฃ + ๐‘“ ยท ๐›ฟ๐‘ก๐‘Ÿโ€ฒ = ๐‘Ÿ + ๐›ฟ๐‘Ÿ Acceleration of P parallel to AR ๐ผ๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = ๐’— = ๐’—๐’‘๐’’ ๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = (๐‘ฃโ€ฒ ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ ๐œ”โ€ฒ ยท ๐‘Ÿโ€ฒ ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ) ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = (๐‘ฃโ€ฒ ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ ๐œ”โ€ฒ ยท ๐‘Ÿโ€ฒ ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ) โˆ’ ๐‘ฃ ๐›ฟ๐‘ก = ((๐‘ฃ + ๐‘“ ยท ๐›ฟ๐‘ก) ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ (๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท (๐‘Ÿ + ๐›ฟ๐‘Ÿ) ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ) โˆ’ ๐‘ฃ ๐›ฟ๐‘ก In the limit, as ฮดt โŸถ 0, cos ฮดฮธ โŸถ 1, sin ฮดฮธ โŸถ 0.๐›ฟ๐œƒ ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘จ๐‘น = ๐‘“ โˆ’ ๐œ”๐‘Ÿ ๐‘‘๐œƒ ๐‘‘๐‘ก = ๐‘“ โˆ’ ๐œ”๐‘Ÿ๐œ” = ๐’‡ โˆ’ ๐Ž๐Ÿ ๐’“ Acceleration of P along AR = (Acceleration of slider) โ”€ (Centripetal acceleration) This is the acceleration of f along AR in the radially outward direction. f will be negative if the slider has deceleration while moving in the outward direction or has acceleration while moving in the outward direction. Acceleration of P perpendicular to AR, ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ƒ โŠฅ ๐ด๐‘… = (๐‘ฃโ€ฒ ยท ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ + ๐œ”โ€ฒ ๐‘Ÿโ€ฒ ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ) โˆ’ ๐‘ฃ ๐›ฟ๐‘ก = ((๐‘ฃ + ๐‘“ ยท ๐›ฟ๐‘ก) ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ โˆ’ (๐œ” + ๐›ผ ยท ๐›ฟ๐‘ก) ยท (๐‘Ÿ + ๐›ฟ๐‘Ÿ) ยท ๐‘๐‘œ๐‘  ๐›ฟ๐œƒ) โˆ’ ๐œ”๐‘Ÿ ๐›ฟ๐‘ก In the limit, as ฮดt โŸถ 0, cos ฮดฮธ โŸถ 1, sin ฮดฮธ โŸถ 0. ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท โŠฅ ๐‘จ๐‘น = ๐‘ฃ ๐‘‘๐œƒ ๐‘‘๐‘ก + ๐œ” ๐‘‘๐‘Ÿ ๐‘‘๐‘ก + ๐›ผ ยท ๐‘Ÿ = ๐‘ฃ ยท ๐œ” + ๐œ” ยท ๐‘ฃ + ๐›ผ ยท ๐‘Ÿ = ๐Ÿ๐Ž๐’— + ๐œถ๐’“ Acceleration of P โŠฅ AR = 2ฯ‰v + Tangential acceleration The component 2ฯ‰v is known as the Coriolis acceleration component. It is positive if both ฯ‰ and v are either positive or negative. The Coriolis component is positive if the link AR rotates clockwise and the slider moves radially outwards or link rotates counter-clockwise and the slider moves radially inwards.
  • 28. 27 The direction of the Coriolis acceleration component is obtained by rotating the radial velocity vector v through 90ยฐ in the direction of rotation of the link. Let Q be a point on the link AR immediately beneath the point P at the instant. Then ๐ด๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท โˆฅ ๐‘ก๐‘œ ๐‘จ๐‘น + ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท โŠฅ ๐‘ก๐‘œ ๐‘จ๐‘น ๐‘“๐‘๐‘Ž = (๐‘“ โˆ’ ๐œ”2 ๐‘Ÿ) + (2๐œ”๐‘ฃ + ๐›ผ๐‘Ÿ) = ๐‘“ + (๐›ผ๐‘Ÿ โˆ’ ๐œ”2 ๐‘Ÿ) + 2๐œ”๐‘ฃ ๐‘“๐‘๐‘Ž = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ท ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘ธ + ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ธ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘จ + ๐‘ช๐’๐’“๐’Š๐’๐’๐’Š๐’” ๐’‚๐’„๐’„๐’†๐’๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’„๐’๐’Ž๐’‘๐’๐’๐’†๐’๐’• ๐’‡๐’‘๐’‚ = ๐‘“๐‘๐‘ž โ€ฒ + ๐‘“๐‘ž๐‘Ž + ๐’‡๐’„๐’“ ๐‘“๐‘๐‘ž โ€ฒ โ†’ ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘ก๐‘–๐‘œ๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘Ž๐‘› ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘’๐‘Ÿ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘’๐‘‘ ๐‘œ๐‘› ๐‘™๐‘–๐‘›๐‘˜ ๐‘จ๐‘น ๐‘ค๐‘œ๐‘ข๐‘™๐‘‘ ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘™๐‘–๐‘‘๐‘’๐‘Ÿ. Remember Coriolis component of acceleration exists only if there are two coincident points which has โ€ข Linear relative velocity of sliding โ€ข Angular motion about fixed finite centres of rotation. ๐’‡๐’‘๐’‚ = ๐‘“๐‘๐‘ž โ€ฒ + ๐‘“๐‘ž๐‘Ž + ๐’‡๐’„๐’“ = (๐‘“๐‘๐‘ž โ€ฒ + ๐’‡๐’„๐’“ ) + ๐‘“๐‘ž๐‘Ž = ๐’‡๐’‘๐’’ + ๐’‡๐’’๐’‚ Crank and Slotted-Lever Mechanism Crank OP rotates at uniform angular velocity of ฯ‰ rad/s clockwise. ๐‘“๐‘๐‘Ž = ๐‘“๐‘๐‘ž + ๐‘“๐‘ž๐‘Ž (๐‘œ๐‘Ÿ) ๐‘“ ๐‘๐‘œ = ๐‘“๐‘ž๐‘Ž + ๐‘“๐‘๐‘ž ๐’๐Ÿ๐’‘๐Ÿ = ๐’‚๐Ÿ๐’’๐’‚ + ๐’’๐’‚๐’’๐Ÿ + ๐’’๐Ÿ๐’‘๐’’ + ๐’‘๐’’๐’‘๐Ÿ
  • 29. 28 Construction of Acceleration diagram: 1. Take the first vector fpo which is completely known. 2. Take the second vector from the point a1 (or o1). This vector is also known. 3. Only the direction of the third vector ๐’‡๐’’๐’‚ ๐’• is known. Draw a line โŠฅ to AQ through the head qa of the second vector. 4. As the head of the third vector is not available, the fourth vector cannot be added to it. Take the last vector ๐’‡๐’‘๐’’ ๐’„๐’“ which is completely known. Place this vector in the proper direction and sense so that p1 becomes the head of the vector. pq canโ€™t lie on the right side of p1 because then the vector would become p1pq and not pqp1. 5. For the fourth vector, draw a line parallel to AR through the point pq of the fifth vector. the intersection of this line with line drawn in the step 3 locates the point q1. 6. Total acceleration of P relative to Q, fpq = q1p1 total acceleration of Q relative to A, fqa = a1q1 the acceleration of R relative to A is given on a1q1 produced such that ๐‘Ž1๐‘Ÿ1 ๐‘Ž1๐‘ž1 = ๐ด๐‘… ๐ด๐‘„ S. no Vector Magnitude Direction Sense 1 ๐’‡๐’‘๐’๐’๐’“ ๐’๐Ÿ๐’‘๐Ÿ ฯ‰ ร— OP โˆฅ OP โŸถ O 2 ๐’‡๐’’๐’‚ ๐’„ ๐’๐’“ ๐’‚๐Ÿ๐’’๐’‚ (๐’‚๐’’)2 ๐ด๐‘„ โˆฅ AQ โŸถ A 3 ๐’‡๐’’๐’‚ ๐’• ๐’๐’“ ๐’’๐’‚ ๐’’๐Ÿ โ”€ โŠฅ AQ or a1qa โ”€ 4 ๐’‡๐’‘๐’’ ๐’” ๐’๐’“ ๐’’๐Ÿ๐’‘๐’’ โ”€ โˆฅ AR โ”€ 5 ๐’‡๐’‘๐’’ ๐’„๐’“ ๐’๐’“ ๐’‘๐’’๐’‘๐Ÿ Coriolis component* โŠฅ AR Refer* ๐‘“๐‘๐‘ž ๐‘๐‘Ÿ = 2๐œ”1๐‘ฃ๐‘๐‘ž (๐œ”1 = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘–๐‘๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด๐‘…) = 2 ( ๐’‚๐’’ ๐ด๐‘„ ) ๐‘ž๐‘
  • 30. 29 STATIC FORCE ANLAYSIS There are 2 types of forces on a mechanism 1. Constraint forces- A pair of action and reaction forces which constrain two bodies to behave in a manner depending upon the nature of connection are known as constraint forces. 2. Applied forces- Forces acting from outside on a system of bodies are called applied forces. A body is in static equilibrium if it remains in its state of rest or motion. โ€ข The vector sum of all forces acting on the body is zero. (โˆ‘ ๐น โƒ— = 0) โ€ข The vector sum of all moments about the arbitrary point is zero. (โˆ‘ ๐‘€ โƒ—โƒ—โƒ— = 0) 2-FORCE SYSTEM 3-FORCE SYSTEM A member under the action of 2 force system will be in equilibrium if โ€ข The forces are of same magnitude โ€ข The forces act along the same line โ€ข The forces are in opposite directions. A member under the action of 3 force system will be in equilibrium if โ€ข The resultant of action of 3 forces is zero. โ€ข The lines of action of the forces intersect at a point. A member under the action of two applied forces and an applied torque will be in equilibrium if โ€ข The forces are in equal in magnitude, parallel in direction and opposite in sense โ€ข The forces form a couple which is equal and opposite to applied torque.
  • 31. 30 Equilibrium of four force members First look for the forces completely known and combine them into a single force using vector addition method, then we can use three force method. FREE BODY DIAGRAM SUPERPOSITION In linear systems, if a number of loads act on a system of forces, the net effect is equal to superposition of the effects of the individual loads taken at a time. PRINCIPLE OF VIRTUAL WORK The work done during a virtual displacement from the equiibrium is equal to zero. According to the principle of virtual work, ๐‘Š = ๐‘‡๐›ฟ๐œƒ + ๐น๐›ฟ๐‘ฅ = 0 An virtual displacement must take place during the same interval ฮดt, ๐‘‡ ๐‘‘๐œƒ ๐‘‘๐‘ก + ๐น ๐‘‘๐‘ฅ ๐‘‘๐‘ก = 0 ๐‘‡๐œ” + ๐น๐‘ฃ = 0 ๐‘‡ = โˆ’ ๐น ๐œ” ๐‘ฃ (ฯ‰โ†’angular velocity, vโ†’linear velocity)
  • 32. 31 DYNAMIC FORCE ANALYSIS Dโ€™ALEMBERTโ€™S PRINCIPLE Inertia forces and couples, and the external forces and torques on a body together give static equilibrium. Inertia is a property of matter by virtue of which a body resists any change in velocity. ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐น๐‘– = โˆ’๐‘š๐‘“๐‘” (๐‘“๐‘” โ†’ ๐‘Ž๐‘Ž๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ) Inertia force acts in opposite direction to that of acceleration. ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘๐‘œ๐‘ข๐‘๐‘™๐‘’ ๐ถ๐‘– = โˆ’๐ผ๐‘”. ๐›ผ (๐ผ๐‘” โ†’ ๐‘š๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘Ž๐‘๐‘œ๐‘ข๐‘ก ๐‘Ž๐‘› ๐‘Ž๐‘ฅ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐บ) According to Dโ€™Alembertโ€™s principle โˆ‘ ๐น + ๐น๐‘– = 0 โˆ‘ ๐‘‡ + ๐ถ๐‘– = 0 EQUIVALENT OFFSET INERTIA FORCE If the body is acted upon by the forces such that resultant force does not pass through the centre of mass, a couple is acting on the system. It is possible to replace inertia force and inertia couple by an equivalent offset force, this is done by displacing the line of action of inertia force from the centre of mass. โ„Ž = ๐ถ๐‘– ๐น๐‘– = ๐‘˜2 ๐›ผ ๐‘“๐‘” (๐ถ๐‘– = ๐น๐‘–. โ„Ž) (๐ถ๐‘– = โˆ’๐ผ๐‘”. ๐›ผ)(๐น๐‘– = โˆ’๐‘š๐‘“๐‘”) DYNAMIC ANALYSIS OF FOUR LINK MECHANISM For dynamic analysis of four-link mechanisms, the following procedure is followed. 1. Draw the velocity and acceleration diagram of the mechanism from the configuration diagram by usual methods. 2. Determine the linear acceleration of the centers of masses of various links, and the angular accelerations of the links 3. Calculate the inertia forces and inertia couples from the relations ๐น๐‘– = โˆ’๐‘š๐‘“๐‘” and ๐ถ๐‘– = โˆ’๐ผ๐‘”. ๐›ผ . 4. Replace Fi with equivalent offset inertia force to consider Fi as well as Ci. 5. Assume equivalent offset inertia forces on the links as static forces and analyze the mechanism by any of the methods.
  • 33. 32 STATIC ANALYSIS OF SLIDER CRANK MECHANISMS Velocity and acceleration of a piston ๐‘ฅ = ๐ต1๐ต = ๐ต๐‘‚ โˆ’ ๐ต1๐‘‚ = ๐ต๐‘‚ โˆ’ (๐ต1๐ด1 + ๐ด1๐‘‚) ๐‘ฅ = (๐‘Ÿ + ๐‘™) โˆ’ (๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘™ ๐‘๐‘œ๐‘  ๐›ฝ) (๐’ = ๐’“๐’) ๐‘ฅ = ๐‘Ÿ[(๐‘› + 1) โˆ’ (๐‘› ๐‘๐‘œ๐‘  ๐›ฝ + ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)] ๐‘๐‘œ๐‘  ๐›ฝ = 1 ๐‘› โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ ๐‘ฅ = ๐‘Ÿ[(๐‘› + 1) โˆ’ (โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ + ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)] ๐‘ฅ = ๐‘Ÿ[(1 โˆ’ ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ) + (๐‘› โˆ’ โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ)] If (l>>>>n) n2 is very large and (n2 -sin2 ๏ฑ ๏€ n2 ) ๐‘ฅ = ๐‘Ÿ(1 โˆ’ ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ) Velocity of the piston ๐‘ฃ = ๐‘‘๐‘ฅ ๐‘‘๐œƒ ร— ๐‘‘๐œƒ ๐‘‘๐‘ก ๐‘ฃ = ๐‘Ÿ๐œ” [๐‘ ๐‘–๐‘› ๐œƒ + ๐‘ ๐‘–๐‘› 2๐œƒ 2โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ ] ๐‘ฃ = ๐‘Ÿ๐œ” [๐‘ ๐‘–๐‘› ๐œƒ + ๐‘ ๐‘–๐‘› 2๐œƒ 2๐‘› ] Acceleration of the piston ๐‘“ = ๐‘‘๐‘ฃ ๐‘‘๐œƒ ร— ๐‘‘๐œƒ ๐‘‘๐‘ก ๐‘“ = ๐‘Ÿ๐œ”2 [๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘  2๐œƒ ๐‘› ] ๐‘“ = ๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ (if n>>>cos 2๏ฑ) Velocity of the piston will be maximum at crank angle ๏ฑ, to find ๏ฑ ๐‘‘๐‘ฃ ๐‘‘๐œƒ = 0 (n2 >> sin2 ๏ฑ)
  • 34. 33 ๐‘‘ ๐‘‘๐œƒ [๐‘ ๐‘–๐‘›๐œƒ + ๐‘ ๐‘–๐‘›2๐œƒ 2๐‘› ] = 0 (๐‘› = 3.5) ๐œƒ = 75.5ยฐ, 284.5ยฐ ๐ด๐‘ก ๏ฑ = 75.5ยฐ, ๐‘› = 3.5 ๐‘ฃ๐‘  = 1.037๐‘Ÿ๐œ”. ๐ด๐‘ก ๏ฑ = 284.5ยฐ, ๐‘› = 3.5 ๐‘ฃ๐‘  = โˆ’1.037๐‘Ÿ๐œ”. Acceleration of the piston will be maximum at crank angle ๏ฑ, to find ๏ฑ ๐‘‘๐‘Ž๐‘  ๐‘‘๐œƒ = 0 ๐‘‘ ๐‘‘๐œƒ [๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘  2๐œƒ ๐‘› ] = 0 (n=3.5) ๏ฑ=151ยฐ, 209ยฐ ๐ด๐‘ก ๏ฑ = 151ยฐ, ๏ฑ = 209ยฐ, ๐‘Ž๐‘  = โˆ’0.723 ยท ๐‘Ÿ ยท ๐œ”2 . ๐ด๐‘ก ๏ฑ = 0ยฐ, ๐‘Ž๐‘  = โˆ’1.3 ยท ๐‘Ÿ ยท ๐œ”. Angular velocity and angular acceleration of connecting rod ๐‘ ๐‘–๐‘› ๐›ฝ = ๐‘ ๐‘–๐‘› ๐œƒ ๐‘› Differentiating with respecting to time, we get ๐ด๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ÿ๐‘œ๐‘‘ = ๐œ”๐‘ = ๐‘‘๐›ฝ ๐‘‘๐‘ก ๐œ”๐‘ = ๐œ” ๐‘๐‘œ๐‘  ๐œƒ โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ (ฯ‰-angular velocity of rod) ๐›ผ๐‘ = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ÿ๐‘œ๐‘‘ = ๐‘‘๐œ” ๐‘‘๐‘ก ๐›ผ๐‘ = โˆ’๐œ”2 ๐‘ ๐‘–๐‘› ๐œƒ [ ๐‘›2 โˆ’ 1 (๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ)3 2 โ„ ]
  • 35. 34 DYNAMIC ANALYSIS OF SLIDER CRANK MECHANISM (neglecting the effect of the weights and the inertia effect of the connecting rod) Piston Effort It is the net or effective force applied on the piston. Force on piston due to gas pressure = Fp ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘“ = ๐‘š๐‘Ÿ๐œ”2 (๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘  2๐œƒ ๐‘› ) F = Fp - Fb - Ff In case of vertical engines, the weight of the piston or reciprocating parts also acts as force and thus, F=Fp + mg - Fb - Ff Force (thrust) along the connecting rod Fc = Force in the connecting rod ๐น๐‘ ร— ๐‘๐‘œ๐‘  ๐›ฝ = ๐น ๐น๐‘ = ๐น ๐‘๐‘œ๐‘  ๐›ฝ Thrust on the sides of cylinder It is the normal reaction on the cylinder walls ๐น๐‘› = ๐น๐‘ ๐‘ ๐‘–๐‘› ๐›ฝ = ๐‘“ ๐‘ก๐‘Ž๐‘› ๐›ฝ Crank Effort Force is exerted on the crankpin because of the force on the piston.
  • 36. 35 Ft = crank effort ๐น๐‘ก ร— ๐‘Ÿ = ๐น๐‘๐‘Ÿ ๐‘ ๐‘–๐‘› ๐›ฝ ๐น๐‘ก = ๐น๐‘ ๐‘ ๐‘–๐‘› ๐›ฝ = ๐น ๐‘๐‘œ๐‘  ๐›ฝ ๐‘ ๐‘–๐‘›(๐œƒ + ๐›ฝ) Thrust on the Bearings ๐น๐‘Ÿ = ๐น๐‘ ๐‘๐‘œ๐‘  ๐›ฝ = ๐น ๐‘๐‘œ๐‘  ๐›ฝ ๐‘๐‘œ๐‘ (๐œƒ + ๐›ฝ) Turning Moment on Crankshaft ๐‘‡ = ๐น๐‘ก ร— ๐‘Ÿ = ๐น ๐‘๐‘œ๐‘  ๐›ฝ ๐‘ ๐‘–๐‘›(๐œƒ + ๐›ฝ) ร— ๐‘Ÿ ๐‘‡ = ๐น๐‘Ÿ (๐‘ ๐‘–๐‘› ๐œƒ + ๐‘ ๐‘–๐‘› 2๐œƒ 2โˆš๐‘›2 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ ) ๐‘‡ = ๐น๐‘ก ร— ๐‘Ÿ = ๐น ร— ๐‘‚๐ท Dynamically equivalent 2-point mass system (connecting rod) ๐ผ๐‘๐‘Ÿ ๐บ = ๐‘š๐‘๐‘Ÿ๐พ๐บ ๐‘๐‘Ÿ ๐พ๐บ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘œ๐‘“ ๐‘”๐‘ฆ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘๐‘œ๐‘ข๐‘ก ๐บ. ๐‘ + ๐‘‘ = ๐ฟ For complete dynamic equivalence b/w actual Connecting Rod & 2-point mass system 1. mb + ms = mcr 2. mb. b = ms. d 3. ๐‘š๐‘๐‘2 + ๐‘š๐‘ ๐‘‘2 = ๐‘š๐‘๐‘Ÿ๐พ๐‘” 2 Solving for 1 & 2 & 3 ๐‘š๐‘ = ๐‘‘ ๐ฟ ๐‘š๐‘๐‘Ÿ ๐‘š๐‘  = ๐‘ ๐ฟ ๐‘š๐‘๐‘Ÿ ๐พ๐บ 2 = ๐‘. ๐‘‘ It is the condition on b & d so that 2-point mass system is completely dynamically equivalent. ๐ผ = ๐‘š๐‘๐‘2 + ๐‘š๐‘ ๐‘‘2 = ๐‘š๐‘๐‘Ÿ. ๐‘. ๐‘‘ Result can be compared with equivalent length of simple pendulum
  • 37. 36 The equivalent length of simple pendulum is Generally, ๐‘ฒ๐‘ฎ ๐Ÿ โ‰ค ๐’ƒ. ๐’… (Inertia couple) actual connecting rod < inertia couple of equivalent system (taken) On the 2-point mass system, a correction couple is applied. ๐‘‡๐‘ = ๐‘š๐‘๐‘Ÿ๐พ๐บ 2 ๐›ผ โˆ’ ๐‘š๐‘๐‘Ÿ๐‘๐‘‘๐›ผ ๐‘‡๐‘ = โˆ’๐‘š๐‘๐‘Ÿ๐›ผ(๐‘๐‘‘โˆ’๐พ๐บ 2) Correction couple must be applied in the direction of angular acceleration ๐น ๐‘ = ๐‘‡๐‘ ๐ฟ
  • 38. 37 BALANCING OF ROTATING MASS Often an unbalance of forces is produced in rotary or reciprocating machinery due to inertia forces (ex- centrifugal force in rotating mass) associated with the moving masses. Balancing is the process of designing or modifying machinery so that unbalance is reduced to an acceptable level and if possible is eliminated entirely. Static Balancing A system of rotating masses is said to be in static balancing if the combined mass center of the system lies on the axis of rotation. ๐น = ๐‘š1๐’“๐Ÿ๐œ”2 + ๐‘š2๐’“๐Ÿ๐œ”2 + ๐‘š3๐’“๐Ÿ‘๐œ”2 ๐‘š1๐’“๐Ÿ๐œ”2 + ๐‘š2๐’“๐Ÿ๐œ”2 + ๐‘š3๐’“๐Ÿ‘๐œ”2 + ๐‘š๐‘๐’“๐’„๐œ”2 = 0 ๐‘š1๐’“๐Ÿ + ๐‘š2๐’“๐Ÿ + ๐‘š3๐’“๐Ÿ‘ + ๐‘š๐‘๐’“๐’„ = 0 โˆ‘ ๐‘š๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘๐‘Ÿ๐‘ ๐‘๐‘œ๐‘  ๐œƒ๐‘ = 0 โˆ‘ ๐‘š๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘๐‘Ÿ๐‘ ๐‘ ๐‘–๐‘› ๐œƒ๐‘ = 0 ๐‘š๐‘๐‘Ÿ๐‘ = โˆš(๐›ด๐‘š๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐›ด๐‘š๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œƒ)2 ๐‘ก๐‘Ž๐‘› ๐œƒ๐‘ = ๐›ด๐‘š๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ ๐›ด๐‘š๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œƒ
  • 39. 38 Dynamic Balancing When several masses rotate in different planes, the centrifugal forces, in addition to being out of balance, also form couples. A system of rotating masses is in dynamic balance when there does not exist any centrifugal force as well as resultant couple. Transferring Force from one plane to another plane- Force of mass m will be replaced by Force F1 and as a result a couple will be acting at O along OA. Balancing of Several Masses in Different Planes For complete balancing of the rotor, the resultant force, and the resultant couple both should be zero. If resultant force and couple are not zero, then mass placed in reference plane may satisfy force equation, but for couple equation to be balanced, two forces in different transverse planes are required. ๐‘š1๐’“1๐œ”2 + ๐‘š2๐’“2๐œ”2 + ๐‘š3๐’“3๐œ”2 + ๐‘š๐‘1๐’“๐‘1๐œ”2 + ๐‘š๐‘2๐’“๐‘2๐œ”2 = 0 ๐‘š1๐’“1 + ๐‘š2๐’“2 + ๐‘š3๐’“3 + ๐‘š๐‘1๐’“๐‘1 + ๐‘š๐‘2๐’“๐‘2 = 0 ๐›ด๐‘š๐’“ + ๐‘š๐‘1๐’“๐‘1 + ๐‘š๐‘2๐’“๐‘2 = 0 Let the counter masses be placed in transverse planes at axial locations at O & Q. Taking moments about O, ๐‘š1๐’“1๐‘™1๐œ”2 + ๐‘š2๐’“2๐‘™2๐œ”2 + ๐‘š3๐’“3๐‘™3๐œ”2 + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2๐œ”2 = 0 ๐‘š1๐’“1๐‘™1 + ๐‘š2๐’“2๐‘™2 + ๐‘š3๐’“3๐‘™3 + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 = 0 ๐›ด๐‘š๐’“๐‘™1 + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 = 0
  • 40. 39 This can be also solved analytically, ๐›ด๐‘š๐’“๐‘™1 ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2 = 0 ๐›ด๐‘š๐’“๐‘™1 ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2 = 0 ๐›ด๐‘š๐’“๐‘™ ๐‘๐‘œ๐‘  ๐œƒ = โˆ’๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2 ๐›ด๐‘š๐’“๐‘™ ๐‘ ๐‘–๐‘› ๐œƒ = โˆ’๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2 ๐‘š๐‘2๐’“๐‘2๐‘™๐‘2 = โˆš(๐›ด๐‘š๐’“๐‘™ ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐›ด๐‘š๐’“๐‘™ ๐‘ ๐‘–๐‘› ๐œƒ)2 ๐‘ก๐‘Ž๐‘› ๐œƒ๐ถ2 = โˆ’๐›ด๐‘š๐’“๐‘™1 ๐‘ ๐‘–๐‘› ๐œƒ โˆ’๐›ด๐‘š๐’“๐‘™1 ๐‘๐‘œ๐‘  ๐œƒ Substituting the value of m2 & ๏ฑC2 in above equations, we get ๐‘š๐‘1๐’“๐‘1 = โˆš(๐›ด๐‘š๐’“ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2)2 + (๐›ด๐‘š๐’“ ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2)2 ๐‘ก๐‘Ž๐‘› ๐œƒ๐ถ1 = โˆ’(๐›ด๐‘š๐’“ ๐‘ ๐‘–๐‘› ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘ ๐‘–๐‘› ๐œƒ๐ถ2) โˆ’(๐›ด๐‘š๐’“ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘2๐’“๐‘2 ๐‘๐‘œ๐‘  ๐œƒ๐ถ2)
  • 41. 40 BALANCING OF RECIPROCATING MASS ๐‘“ = ๐‘Ÿ๐œ”2 (๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘  2๐œƒ ๐‘› ) ๐น๐‘… = ๐‘š๐‘“ = ๐‘š๐‘Ÿ๐œ”2 (๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘  2๐œƒ ๐‘› ) ๐น๐‘… = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2๐œƒ ๐‘› FR=Force required to accelerate the reciprocating parts. FI = Inertia force due to reciprocating parts FN = Force on the sides of the cylinder walls or normal force acting on the crosshead guides FB = Force acting on the crankshaft bearing or main bearing. FI & FR are balanced and FBH is unbalanced and acting along OA (FBH = FU) (FU = unbalanced force = FI=FR) There will be an unbalanced force & unbalanced couple caused by FN & FBV (unbalanced couple = ๐น๐‘ ร— ๐‘ฅ = ๐น๐ต๐‘‰ ร— ๐‘ฅ) Both FU and unbalanced couple vary in magnitude while rotating and causes serious vibration. โ†’ ๐’Ž๐’“๐Ž๐Ÿ ๐’„๐’๐’” ๐œฝ is called primary unbalancing force and ๐’Ž๐’“๐Ž๐Ÿ ๐’„๐’๐’” ๐Ÿ๐œฝ ๐’ is called secondary unbalancing force. Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine The primary unbalanced force (mโ‹…ฯ‰2 โ‹…rcosฮธ) may be considered as the component of the centrifugal force produced by a rotating mass m placed at the crank radius r. B= mass of balancing force b = distance of balancing force We placed of mass of B, at b distance. ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ = ๐ต๐œ”2 ๐‘ ๐‘๐‘œ๐‘  ๐œƒ ๐’Ž๐’“ = ๐‘ฉ๐’ƒ But still vertical force of mass B is not balanced (Bฯ‰2 b sin๏ฑ) and there will be to-fro motion of system. So, there will be only partial balancing of the system (B will be c.m & b=r)
  • 42. 41 Unbalanced force along the line of stroke = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ โˆ’ ๐’„. ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ = (1 โˆ’ ๐’„)๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ Unbalanced force along the perpendicular to the line of stroke=c.mrฯ‰2 sin๏ฑ. Resultant unbalanced force at any instant= โˆš((1 โˆ’ ๐’„)๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐’„. ๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐œƒ . )2 Effect of Partial Balancing of Reciprocating Parts of Two Cylinder Locomotives The effect of an unbalanced primary force along the line of stroke is to produce. 1. Variation in tractive force along the line of stroke 2. Swaying couple. 3. Hammer blow A single or uncoupled locomotive is one, in which the effort is transmitted to one pair of the wheels only; whereas in coupled locomotives, the driving wheels are connected to the leading and trailing wheel by an outside coupling rod. Hammer Blow The effect of an unbalanced primary force perpendicular to the line of stroke is to produce variation in pressure on the rails, which results in hammering action on the rails. The maximum magnitude of the unbalanced force along the perpendicular to the line of stroke is known as a hammer blow. Its value is mrฯ‰2 . Variation of Tractive force The resultant unbalanced force due to the two cylinders, along the line of stroke, is known as tractive force. Since the crank for the second cylinder is at right angle to the first crank, therefore the angle of inclination for the second crank will be (90ยฐ + ฮธ). We know that unbalanced force along cylinder 1 = (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ Unbalanced force along cylinder 2= (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (90 + ๐œƒ) = โˆ’(1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐œƒ ๐น๐‘‡ = ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘›๐‘’ = (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ โˆ’ (1 โˆ’ ๐‘)๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐œƒ = (๐Ÿ โˆ’ ๐’„)๐’Ž๐’“๐Ž๐Ÿ (๐’„๐’๐’” ๏ฑ โˆ’ ๐’”๐’Š๐’ ๐œฝ) ๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘‘ ๐‘€๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ยฑโˆš๐Ÿ(๐Ÿ โˆ’ ๐’„)๐’Ž๐’“๐Ž๐Ÿ
  • 43. 42 Swaying Couple The unbalanced forces along the line of stroke for the two cylinders constitute a couple about the centre YY between the cylinders. This couple has swaying effect about a vertical axis, and tends to sway the engine alternately in clockwise and anticlockwise directions. Hence the couple is known as swaying couple. ๐‘†๐‘ค๐‘Ž๐‘ฆ๐‘–๐‘›๐‘” ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = (1 โˆ’ ๐‘)๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ ร— ๐‘Ž 2 โˆ’ (1 โˆ’ ๐‘)๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘ (90 + ๐œƒ) ร— ๐‘Ž 2 ๐‘†๐‘ค๐‘Ž๐‘ฆ๐‘–๐‘›๐‘” ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = (๐Ÿ โˆ’ ๐’„)๐’Ž๐Ž๐Ÿ ๐’“(๐’„๐’๐’” ๐œฝ + ๐’”๐’Š๐’ ๐œฝ) ร— ๐’‚ ๐Ÿ ๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘‘ ๐‘€๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘†๐‘ค๐‘Ž๐‘ฆ๐‘–๐‘›๐‘” ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ยฑ ๐’‚ โˆš๐Ÿ (๐Ÿ โˆ’ ๐’„)๐’Ž๐Ž๐Ÿ Secondary Balancing ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2๐œƒ ๐‘› ๐ผ๐‘ก ๐‘๐‘Ž๐‘› ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘๐‘’ ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘ก๐‘’๐‘› ๐‘Ž๐‘  = ๐‘š ( ๐‘Ÿ 4๐‘› ) (2๐œ”)2 ๐‘๐‘œ๐‘  2๐œƒ The effect of secondary forces is equivalent to an imaginary crank of length โ€˜r/4nโ€™ rotating at twice the angular speed. It is equal to component of primary force along the length of stroke. Balancing of Inline Engines The following two conditions must be satisfied to give the primary balance of the reciprocating parts of a multi- cylinder engine, 1. The algebraic sum of the primary forces must be equal to zero. In other words, the primary force polygon must close. 2. The algebraic sum of the couples about any point in the plane of the primary forces must be equal to zero. In other words, the primary couple polygon must close. The reciprocating mass is transferred to crank pin to give the primary balance of the reciprocating engine, which is along the line of stroke and treated as revolving masses.
  • 44. 43 ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘๐‘œ๐‘ข๐‘๐‘™๐‘’ = โˆ‘๐‘š๐œ”2 ๐‘Ÿ๐‘™ ๐‘๐‘œ๐‘  ๐œƒ ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š ( ๐‘Ÿ 4๐‘› ) (2๐œ”)2 ๐‘๐‘œ๐‘  2๐œƒ ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = โˆ‘๐‘š ( ๐‘Ÿ 4๐‘› ) (2๐œ”)2 ๐‘™ ๐‘๐‘œ๐‘  2๐œƒ Three-cylinder inline engine with crank offset of 120หš ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ = ๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘  ๐œƒ + ๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘ (120 + ๐œƒ) + ๐‘š๐œ”2 ๐‘Ÿ ๐‘๐‘œ๐‘ (240 + ๐œƒ) = 0 ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ‘๐‘š ( ๐‘Ÿ 4๐‘› ) (2๐œ”)2 ๐‘๐‘œ๐‘  2๐œƒ = ๐‘š ( ๐‘Ÿ 4๐‘› ) (2๐œ”)2 (๐‘๐‘œ๐‘  2๐œƒ + ๐‘๐‘œ๐‘ (240 + 2๏ฑ) + ๐‘๐‘œ๐‘ (480 + 2๐œƒ)) = 0 ๐‘€๐‘ = ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘š๐‘Ÿ๐œ”2 ๐‘™ ๐‘๐‘œ๐‘ (240 + ๐œƒ) โˆ’ ๐‘š๐‘Ÿ๐œ”2 ๐‘™ ๐‘๐‘œ๐‘  ๐œƒ = ๐‘š๐‘Ÿ๐œ”2 ๐‘™(๐‘๐‘œ๐‘ (240 + ๐œƒ) โˆ’ ๐‘๐‘œ๐‘  ๐œƒ) ๐‘€๐‘ ๐’Ž๐’‚๐’™ = ๐‘š๐‘Ÿ๐œ”2 ๐‘™(2๏‚ด ๐‘๐‘œ๐‘  30) = โˆš3๐‘š๐‘Ÿ๐œ”2 ๐‘™ ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘€๐‘  = ๐‘š๐‘Ÿ๐œ”2 ๐‘™ ๐‘› (๐‘๐‘œ๐‘ (480 + 2๐œƒ) โˆ’ ๐‘๐‘œ๐‘  2๐œƒ) ๐‘€๐‘  ๐’Ž๐’‚๐’™ = โˆš3๐‘š๐‘Ÿ๐œ”2 ๐‘™ ๐‘› Inline 2-cylinder engine Cranks are 180โฐ apart and have equal reciprocating masses. ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘Ÿ๐œ”2[๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘ (180ยฐ + ๐œƒ)] = 0 ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘€๐‘ = ๐‘š๐‘Ÿ๐œ”2 [ ๐‘™ 2 ๐‘๐‘œ๐‘  ๐œƒ + (โˆ’ ๐‘™ 2 ) ๐‘๐‘œ๐‘ (1800 + ๐œƒ)] = ๐‘š๐‘Ÿ๐œ”2 ๐‘™ ๐‘๐‘œ๐‘  ๐œƒ ๐‘€๐‘ ๐’Ž๐’‚๐’™ = ๐’Ž๐’“๐Ž๐Ÿ ๐’ ๐‘Ž๐‘ก ๐œƒ = 0ยฐ & 180ยฐ
  • 45. 44 ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘  = ๐‘š๐‘Ÿ๐œ”2 ๐‘› [๐‘๐‘œ๐‘  2๐œƒ + ๐‘๐‘œ๐‘ (360ยฐ + 2๐œƒ)] = 2๐‘š๐‘Ÿ๐œ”2 ๐‘› ๐‘๐‘œ๐‘  2๐œƒ ๐น๐‘  ๐’Ž๐’‚๐’™ = 2๐‘š๐‘Ÿ๐œ”2 ๐‘› ๐‘คโ„Ž๐‘’๐‘› ๐œƒ = 0ยฐ, 90ยฐ, 180ยฐ, 270ยฐ. ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘€๐‘  = ๐‘š๐‘Ÿ๐œ”2 [ ๐‘™ 2 ๐‘๐‘œ๐‘  ๐œƒ + (โˆ’ ๐‘™ 2 ) ๐‘๐‘œ๐‘ (3600 + ๐œƒ)] = 0 Inline four-cylinder Four Stroke Engine ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘š๐‘Ÿ๐œ”2[๐‘๐‘œ๐‘  ๐œƒ + ๐‘๐‘œ๐‘ (180 + ๐œƒ) + ๐‘๐‘œ๐‘ (180 + ๐œƒ) + ๐‘๐‘œ๐‘  ๐œƒ] = 0 ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘š๐‘Ÿ๐œ”2 [ 3๐‘™ 2 ๐‘๐‘œ๐‘  ๐œƒ + ๐‘™ 2 ๐‘๐‘œ๐‘ (180 + ๐œƒ) + (โˆ’ 3๐‘™ 2 ๐‘๐‘œ๐‘  ๐œƒ) + (โˆ’ ๐‘™ 2 ๐‘๐‘œ๐‘ (180 + ๐œƒ))] = 0 ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐น๐‘  = ๐‘š๐‘Ÿ๐œ”2 ๐‘› [๐‘๐‘œ๐‘  2๐œƒ + ๐‘๐‘œ๐‘  2(180 + ๐œƒ) + ๐‘๐‘œ๐‘  2(180 + ๐œƒ) + ๐‘๐‘œ๐‘  2๐œƒ] = 4๐‘š๐‘Ÿ๐œ”2 ๐‘› ๐‘๐‘œ๐‘  2๐œƒ ๐น๐‘  ๐’Ž๐’‚๐’™ = 4๐‘š๐‘Ÿ๐œ”2 ๐‘› ๐‘Ž๐‘ก ๏ฑ = 0หš, 90หš, 180หš, 270หš ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐ถ๐‘œ๐‘ข๐‘๐‘™๐‘’ = ๐‘š๐‘Ÿ๐œ”2 [ 3๐‘™ 2 ๐‘๐‘œ๐‘  ๐œƒ + ๐‘™ 2 ๐‘๐‘œ๐‘  2(180 + ๐œƒ) + (โˆ’ 3๐‘™ 2 ๐‘๐‘œ๐‘  2๐œƒ) + (โˆ’ ๐‘™ 2 ๐‘๐‘œ๐‘  2(180 + ๐œƒ))] = 0
  • 47. 46 Balancing of radial engines The method of direct and reverse cranks is used in balancing of radial or V-engines, in which the connecting rods are connected to a common crank. The indirect or reverse crank OCโ€ฒ is the image of the direct crank OC, when seen through the mirror placed at the line of stroke. When the direct crank revolves in a clockwise direction, the reverse crank will revolve in the anticlockwise direction. Primary forces Now let us suppose that the mass (m) of the reciprocating parts is divided into two parts, each equal to m / 2. ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ท ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜ = ๐‘š 2 ๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ท ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘Ÿ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜ = ๐‘š 2 ๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ท = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐œƒ Component of centrifugal force perpendicular to OP are balanced. Secondary forces ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2๐œƒ ๐‘› = ๐‘š(2๐œ”)2 ๐‘Ÿ 4๐‘› ๐‘๐‘œ๐‘  2๐œƒ Similar to primary balancing, masses are assumed to be m/2 at D and Dโ€™. Secondary direct crank and rotates at 2ฯ‰ rad/s in the clockwise direction, while the crank ODโ€ฒ is the secondary reverse crank and rotates at 2ฯ‰ rad/s in the anticlockwise direction m/2 m/2
  • 48. 47 Balancing of V-type engines ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 1 = ๐น๐‘ƒ1 = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ ๐‘ƒ๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 2 = ๐น๐‘ƒ2 = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟโ€ฒ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ ๐‘ป๐’๐’•๐’‚๐’ ๐‘ท๐’“๐’Š๐’Ž๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐’€ = ๐‘ญ๐‘ท๐‘ฝ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ + ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘๐‘œ๐‘  ๐›ผ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐›ผ (๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) + ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ)) = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐›ผ (2 ร— ๐‘๐‘œ๐‘  ๐›ผ ร— ๐‘๐‘œ๐‘  ๐œƒ) = 2๐‘š๐‘Ÿ๐œ”2 . ๐‘๐‘œ๐‘ 2 ๐›ผ . ๐‘๐‘œ๐‘  ๐œƒ ๐‘ป๐’๐’•๐’‚๐’ ๐‘ท๐’“๐’Š๐’Ž๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐‘ฟ = ๐‘ญ๐‘ท๐‘ฏ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ โˆ’ ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ) ๐‘ ๐‘–๐‘› ๐›ผ = ๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐›ผ (๐‘๐‘œ๐‘ (๐›ผ โˆ’ ๐œƒ) โˆ’ ๐‘๐‘œ๐‘ (๐›ผ + ๐œƒ)) = ๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐›ผ (2 ร— ๐‘ ๐‘–๐‘› ๐›ผ ๐‘ ๐‘–๐‘› ๏ฑ ) = 2. ๐‘š๐‘Ÿ๐œ”2 . ๐‘ ๐‘–๐‘›2 ๐›ผ . ๐‘ ๐‘–๐‘› ๐œƒ ๐‘น๐’†๐’”๐’–๐’๐’•๐’‚๐’๐’• ๐‘ท๐’“๐’Š๐’Ž๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’† = โˆš(๐น๐‘ƒ๐‘‰)2 + (๐น๐‘ƒ๐ป)2 = 2. ๐‘š๐‘Ÿ๐œ”2 โˆš(๐‘๐‘œ๐‘ 2 ๐›ผ . ๐‘๐‘œ๐‘  ๐œƒ)2 + (๐‘ ๐‘–๐‘›2 ๐›ผ . ๐‘ ๐‘–๐‘› ๐œƒ)2 ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 1 = ๐น๐‘†1 = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ) ๐‘› ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘†1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ) ๐‘› ๐‘๐‘œ๐‘  ๐›ผ ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘ƒ1 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ) ๐‘› ๐‘ ๐‘–๐‘› ๐›ผ ๐‘†๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘™๐‘–๐‘›๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘˜๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 2 = ๐น๐‘†2 = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ) ๐‘› ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘†2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐’€ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ) ๐‘› ๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐น๐‘†2 ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ถ๐‘ฟโ€ฒ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ) ๐‘› ๐‘ ๐‘–๐‘› ๐›ผ ๐‘ป๐’๐’•๐’‚๐’ ๐‘บ๐’†๐’„๐’๐’๐’…๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐’€ = ๐‘ญ๐‘บ๐‘ฝ = ๐‘š๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐›ผ ( ๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ) ๐‘› + ๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ) ๐‘› ) = 2๐‘š ๐‘› ๐‘Ÿ๐œ”2 ๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘  2๐›ผ ๐‘๐‘œ๐‘  2๐œƒ ๐‘ป๐’๐’•๐’‚๐’ ๐‘บ๐’†๐’„๐’๐’๐’…๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’†๐’” ๐’‚๐’๐’๐’๐’ˆ ๐‘ถ๐‘ฟ = ๐‘ญ๐‘บ๐‘ฏ = ๐‘š๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐›ผ ( ๐‘๐‘œ๐‘  2(๐›ผ โˆ’ ๐œƒ) ๐‘› โˆ’ ๐‘๐‘œ๐‘  2(๐›ผ + ๐œƒ) ๐‘› ) = 2๐‘š ๐‘› ๐‘Ÿ๐œ”2 ๐‘ ๐‘–๐‘› ๐›ผ ๐‘ ๐‘–๐‘› 2๐›ผ ๐‘ ๐‘–๐‘› 2๐œƒ ๐‘น๐’†๐’”๐’–๐’๐’•๐’‚๐’๐’• ๐‘บ๐’†๐’„๐’๐’๐’…๐’‚๐’“๐’š ๐’‡๐’๐’“๐’„๐’† = โˆš(๐น๐‘†๐‘‰)2 + (๐น๐‘†๐ป)2 = 2๐‘š ๐‘› ๐‘Ÿ๐œ”2 โˆš(๐‘๐‘œ๐‘  ๐›ผ ๐‘๐‘œ๐‘  2๐›ผ ๐‘๐‘œ๐‘  2๐œƒ)2 + (๐‘ ๐‘–๐‘› ๐›ผ ๐‘ ๐‘–๐‘› 2๐›ผ ๐‘ ๐‘–๐‘› 2๐œƒ)2
  • 49. 48 TURNING MOMENT DIAGRAMS During 1 revolution of crank shaft, ๐‘‡ = ๐น๐‘Ÿ (๐‘ ๐‘–๐‘› ๐œƒ + ๐‘ ๐‘–๐‘› 2๐œƒ 2โˆš๐‘›2โˆ’๐‘ ๐‘–๐‘›2 ๐œƒ ) ๐‘‡๐‘ข๐‘Ÿ๐‘›๐‘–๐‘›๐‘” ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก(๐‘‡) = ๐‘“(๐œƒ) = ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘˜ ๐‘Ž๐‘›๐‘”๐‘™๐‘’ F is the net piston effort, r is the crank radius, ๏ฑ is the crank angle. T ๏‚น constant, but we want constant ฯ‰. ๐‘‡ = ๐ผ โˆ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘’๐‘‘ = โˆซ ๐‘‡ 4๐œ‹ 2๐œ‹ โ„ 0 ๐‘‘๐œƒ Average work produced = Tmeanร—4ฯ€(2ฯ€) ๐‘‡๐‘š๐‘’๐‘Ž๐‘› = โˆซ ๐‘‡ 4๐œ‹ 2๐œ‹ โ„ 0 ๐‘‘๐œƒ 4๐œ‹(2๐œ‹) Tmean = mean resisting torque The area of the turning moment diagram represents the work done per revolution. In actual practice, the engine is assumed to work against the mean resisting torque. โžข If (T โ€“Tmean) is positive, the flywheel accelerates and if (T โ€“ Tmean) is negative, then the flywheel retards.
  • 50. 49 Fluctuation of energy The fluctuation of energy may be determined by the turning moment diagram for one complete cycle of operation. The variations of energy above and below the mean resisting torque line are called fluctuations of energy. The areas BbC, CcD, DdE, etc. represent fluctuations of energy. The difference between the maximum and the minimum energies is known as maximum fluctuation of energy. Maximum energy in flywheel = E + a1 Minimum energy in the flywheel = E + a1 โ€“ a2 + a3 โ€“ a4 Maximum fluctuation of energy, ฮ” E = Maximum energy โ€“ Minimum energy = (E + a1) โ€“ (E + a1 โ€“ a2 + a3 โ€“ a4) = a2 โ€“ a3 + a4 Coefficient of Fluctuation of Energy It may be defined as the ratio of the maximum fluctuation of energy to the work done per cycle. ๐ถ๐‘’ = ๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘“๐‘™๐‘ข๐‘๐‘ก๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘๐‘ฆ ๐‘๐‘ฆ๐‘๐‘™๐‘’ Work done per cycle = Tmean ร— ๏ฑ ๐‘‡๐‘š๐‘’๐‘Ž๐‘› = ๐‘ƒ ๐œ” = ๐‘ƒร—60 2๐œ‹๐‘ N = Speed in r.p.m ๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’ ๐‘๐‘’๐‘Ÿ ๐‘๐‘ฆ๐‘๐‘™๐‘’ = ๐‘ƒร—60 ๐‘› n= no. of working strokes per minute
  • 51. 50 FLYWHEEL โžข A flywheel used in machines serves as a reservoir, which stores energy during the period when the supply of energy is more than the requirement and releases it during the period when the requirement of energy is more than the supply. โžข It is used to store the energy when the demand of energy of energy is less and deliver it when the demand of energy is high. โžข The excess energy developed during power stroke is absorbed by the flywheel and releases it to the crankshaft during other strokes in which no energy is developed, thus rotating the crankshaft at a uniform speed. โžข Hence a flywheel does not maintain a constant speed, it simply reduces the fluctuation of speed. In other words, a flywheel controls the speed variations caused by the fluctuation of the engine turning moment during each cycle of operation. I= moment of inertia of flywheel, ฯ‰1= maximum speed, ฯ‰2= minimum speed, ฯ‰= mean speed, E= kinetic energy of the flywheel at mean speed, e= maximum fluctuation of energy, ๐พ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘๐‘ก๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ ๐‘๐‘’๐‘’๐‘‘ = ๐œ”1โˆ’๐œ”2 ๐œ” ๐‘’ = 1 2 ๐ผ๐œ”1 2 โˆ’ 1 2 ๐ผ๐œ”2 2 = 1 2 ๐ผ(๐œ”1 2 โˆ’ ๐œ”2 2) = ๐ผ (๐œ”1 + ๐œ”2) 2 (๐œ”1 โˆ’ ๐œ”2) = ๐ผ๐œ”(๐œ”1 โˆ’ ๐œ”2) = ๐ผ๐œ”2 (๐œ”1 โˆ’ ๐œ”2) ๐œ” = ๐ผ๐œ”2 ๐พ ๐‘’ = ๐ผ๐œ”2 ๐พ โ‡’ ๐พ = ๐‘’ ๐ผ๐œ”2 = ๐‘’ 2 ร— ๐ผ๐œ”2 2 = ๐‘’ 2๐ธ ๐‘’ = 2๐ธ๐พ Dimensions of Flywheel Rims ๐ถ๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘“๐‘ข๐‘”๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘œ๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก / ๐‘ข๐‘›๐‘–๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž = [๐œŒ ยท (๐‘Ÿ. ๐‘‘๏ฑ)๐‘ก]. ๐‘Ÿ๐œ”2 ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’/ ๐‘ข๐‘›๐‘–๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž = 2 ยท ๐œŒ. ๐‘Ÿ2 . ๐‘ก. ๐œ”2 For equilibrium ๐œŽ(2๐‘ก). 1 = 2๐œŒ. ๐‘Ÿ2 . ๐‘ก. ๐œ”2 ๐œŽ = ๐œŒ. ๐‘Ÿ2 . ๐œ”2 = ๐œŒ๐‘ฃ2 ๐‘ฃ = 2๐œ‹๐‘ 60 โ„ ๐‘š = ๐œŒ. ๐œ‹. ๐‘. ๐‘‘. ๐‘ก Punching press Here flywheel is used to reduce the fluctuation of speed, when torque is constant, and load is varying. d - diameter of punch, t โ€“ thickness of hole, r- radius of crank shaft Energy required to punch the plate/unit shear area = E Total energy required for punching 1 hole = E ยท(ฯ€.d.t) Time required for 1 punching cycle = T Avg. time required per second = power of motor(P) = ๐ธ๐œ‹๐‘‘๐‘ก ๐‘‡ ๐‘ƒ = ๐‘‡๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’๐‘š๐‘’๐‘Ž๐‘› ร— ๐œ”๐‘š๐‘’๐‘Ž๐‘› Actual punching time = Tp Energy given by motor during punching= ๐ธ๐œ‹๐‘‘๐‘ก ๐‘‡ ร— ๐‘‡๐‘ ๐›ฅ๐ธ = ๐ธ๐œ‹๐‘‘๐‘ก โˆ’ ๐ธ๐œ‹๐‘‘๐‘ก ๐‘‡ ร— ๐‘‡๐‘ ๐›ฅ๐ธ = ๐ธ๐œ‹๐‘‘๐‘ก [1 โˆ’ ๐‘ก 4๐‘Ÿ ]
  • 52. 51 CAMS A cam is a rotating machine element which gives reciprocating or oscillating motion to another element known as follower. Classification of Cams & Followers Classification of Followers Surface in Contact Motion of the follower Path of motion of follower Knife edge follower Reciprocating or translating follower Radial follower Roller follower Oscillating or rotating follower Offset follower Mushroom follower Spherical faced follower Classification of Cams Shape Follower Movement Manner of Constraint of Follower Wedge and Flat cams Rise โ€“ Return โ€“ Rise Pre โ€“ loaded Spring cam Radial of Disc Cams Dwell โ€“ Rise โ€“ Return โ€“ Dwell Positive โ€“ drive Cam Spiral cams Dwell โ€“ Rise โ€“ Dwell โ€“ Return โ€“ Return Gravity cam Cylindrical Cams Conjugate Cams Globodial Cams Cam Nomenclature โ€ข By giving offset to line of follower w.r.t cam center, pressure angle can be reduced there by reducing side thrust. โ€ข When base circle size increases, pressure angle reduces. โ€ข When dwell period increases, pressure angle reduces. (dwell periodโ€“ follower remains at rest)
  • 53. 52 Follower motion programming ๐‘† = ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘Ž๐‘›๐‘’๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘“(๏ฑ) (๏ฑ -> cam rotation angle) ๐‘ฃ = ๐‘‘๐‘  ๐‘‘๐‘ก = ๐‘‘๐‘  ๐‘‘๏ฑ ร— ๐‘‘๏ฑ ๐‘‘๐‘ก ๐‘‘๐‘  ๐‘‘๐‘ก = ๐‘โ„Ž๐‘ฆ๐‘ ๐‘–๐‘๐‘Ž๐‘™ ๐‘ก๐‘–๐‘š๐‘’ ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘‘๐‘  ๐‘‘๏ฑ = ๐‘˜๐‘–๐‘›๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘ ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘‘๏ฑ ๐‘‘๐‘ก = ๐œ” = ๐‘Ž๐‘›๐‘”. ๐‘ฃ๐‘’๐‘™. ๐‘œ๐‘“ ๐‘๐‘Ž๐‘š ๐‘Ž = ๐‘‘๐‘ฃ ๐‘‘๐‘ก = ๐‘‘๐‘ฃ ๐‘‘๏ฑ ร— ๐‘‘๏ฑ ๐‘‘๐‘ก = ๐‘‘2 ๐‘  ๐‘‘๐œƒ2 ( ๐‘‘๐œƒ ๐‘‘๐‘ก ) 2 ๐‘—๐‘’๐‘Ÿ๐‘˜ (๐’‹) = ๐œ”3 ๐‘‘3 ๐‘  ๐‘‘๐œƒ3 = ๐‘‘๐‘Ž ๐‘‘๐‘ก Follower motion There is Rise, Return, Dwell, Fall of Follower. Since the follower moves with uniform velocity during its rise and return stroke, therefore the slope of the displacement curves must be constant. ๐‘† = ๐‘ฃ๐œƒ ๐œ” ๏ฑ = ๐œ”๐‘ก ๐‘  = ๐‘ฃ. ๐‘ก โ„Ž = ๐‘ฃ ๐œ” ๏ฆ๐‘Ž ๐‘ฃ๐‘Ž = โ„Ž๐œ” ๏ฆ๐‘Ž a=0 j=0 ๐‘ฃ๐‘‘ = โ„Ž๐œ” ๏ฆ๐‘‘ In order to have the acceleration and retardation within the finite limits. This may be done by rounding off the sharp corners of the displacement diagram at the beginning and at the end of each stroke.
  • 54. 53 Simple Harmonic motion of Follower Construction s= follower displacement, h= maximum follower displacement, v= velocity of the follower, f= acceleration of the follower, ๏ฑ = cam rotation angle, ๏ฆ =cam rotation angle for maximum follower displacement, ฮฒ= angle on the harmonic circle ๐ด๐‘ก ๐‘Ž๐‘›๐‘ฆ ๐‘–๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐’” = โ„Ž 2 โˆ’ โ„Ž 2 ๐‘๐‘œ๐‘  ๐›ฝ ๐›ฝ = ๐œ‹ ๐œƒ ๐œ‘ ๐’” = โ„Ž 2 โˆ’ โ„Ž 2 ๐‘๐‘œ๐‘  ๐œ‹ ๐œƒ ๐œ‘ = โ„Ž 2 (1 โˆ’ ๐‘๐‘œ๐‘  ๐œ‹ ๐œƒ ๐œ‘ ) = โ„Ž 2 (1 โˆ’ ๐‘๐‘œ๐‘  ๐œ‹๐œ”๐‘ก ๐œ‘ ) ๐’— = ๐‘‘๐‘  ๐‘‘๐‘ก = โ„Ž 2 ๐œ‹๐œ” ๐œ‘ ๐‘ ๐‘–๐‘› ๐œ‹๐œ”๐‘ก ๐œ‘ = โ„Ž 2 ๐œ‹๐œ” ๐œ‘ ๐‘ ๐‘–๐‘› ๐œ‹๏ฑ ๐œ‘ ๐’—๐‘š๐‘Ž๐‘ฅ = โ„Ž 2 ๐œ‹๐œ” ๐œ‘ ๐‘Ž๐‘ก ๏ฑ = ๐œ‘ 2 ๐’‡ = ๐‘‘๐’— ๐‘‘๐’• = โ„Ž 2 ( ๐œ‹๐œ” ๐œ‘ ) 2 ๐‘๐‘œ๐‘  ๐œ‹๏ฑ ๐œ‘ ๐’‡๐‘š๐‘Ž๐‘ฅ = โ„Ž 2 ( ๐œ‹๐œ” ๐œ‘ ) 2 ๐‘Ž๐‘ก ๏ฑ = 0หš ๏ฑo = angle of ascent, ๏ฑR = angle of descent Here acceleration is abruptly increasing from zero to maximum, which results in infinite jerk, vibration and noise.
  • 55. 54 Constant acceleration and deceleration (Parabolic) Here, there is acceleration in the first half and deceleration in the second half and the displacement curve is parabolic. ๐’” = ๐‘ฃ๐‘œ๐‘ก + 1 2 ๐‘“๐‘ก2 ๐’” = 1 2 ๐‘“๐‘ก2 ๐‘Ž๐‘  ๐‘ฃ๐‘œ = 0 ๐‘“ = 2๐‘  ๐‘ก2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐’” = โ„Ž 2 & ๐œ”๐‘ก = ๐œ‘ 2 , ๐‘ก = ๐œ‘ 2๐œ” ๐’‡ = 4โ„Ž๐œ”2 ๐œ‘2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐’— = ๐‘“๐‘ก = 4โ„Ž๐œ”2 ๐œ‘2 ร— ๐œƒ ๐œ” = 4โ„Ž๐œ” ๐œ‘2 ๐œƒ ๐’—๐’Ž๐’‚๐’™ = 4โ„Ž๐œ” ๐œ‘2 ร— ๐œ‘ 2 = 2โ„Ž๐œ” ๐œ‘ Here acceleration is abruptly increasing from maximum to minimum, which results in infinite jerk, vibration and noise.
  • 56. 55 Constant Velocity Constant velocity of follower implies the displacement of follower is proportional to cam rotation. ๐‘ฃ = 0 โ†’ ๐‘‘๐’” ๐‘‘๐’• = 0 โ†’ ๐‘  โˆ ๐œƒ ๐‘  = โ„Ž ๐œƒ ๐œ‘ = โ„Ž ๐œ”๐‘ก ๐œ‘ ๐‘ฃ = ๐‘‘๐’” ๐‘‘๐’• = โ„Ž๐œ” ๐œ‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“ = ๐‘‘๐’— ๐‘‘๐’• = 0 There is an abrupt increase and decrease in velocity which results in infinite inertia forces and not suitable for practical use. Modified constant velocity program
  • 57. 56 Cycloid A cycloid is locus of point on a circle rotating on a straight line. ๐‘  = โ„Ž ๐œ‹ ( ๐œ‹๐œƒ ๐œ‘ โˆ’ 1 2 ๐‘ ๐‘–๐‘› 2๐œ‹๐œƒ ๐œ‘ ) ๐‘ฃ = ๐‘‘๐’” ๐‘‘๐’• = ๐‘‘๐’” ๐‘‘๐œฝ ร— ๐‘‘๐œฝ ๐‘‘๐’• = [ โ„Ž ๐œ‘ โˆ’ โ„Ž ๐œ‘ ๐‘๐‘œ๐‘  2๐œ‹๏ฑ ๐œ‘ ] ๐œ” ๐‘ฃ = [ โ„Ž๐œ” ๐œ‘ โˆ’ โ„Ž๐œ” ๐œ‘ ๐‘๐‘œ๐‘  2๐œ‹๏ฑ ๐œ‘ ] = โ„Ž๐œ” ๐œ‘ (1 โˆ’ ๐‘๐‘œ๐‘  2๐œ‹๏ฑ ๐œ‘ ) ๐‘ฃ๐‘š๐‘Ž๐‘ฅ = โ„Ž๐œ” ๐œ‘ ๐‘Ž๐‘ก ๐œƒ = ๐œ‘ 2 ๐‘“ = ๐‘‘๐’— ๐‘‘๐’• = ๐‘‘๐’— ๐‘‘๐œฝ ร— ๐‘‘๐œฝ ๐‘‘๐’• = [ 2โ„Ž๐œ‹๐œ”2 ๐œ‘2 ๐‘ ๐‘–๐‘› 2๐œ‹๏ฑ ๐œ‘ ] ๐‘“๐‘š๐‘Ž๐‘ฅ = 2โ„Ž๐œ‹๐œ”2 ๐œ‘2 ๐‘Ž๐‘ก ๐œƒ = ๐œ‹ 4 There are no abrupt changes in velocity and acceleration. So, this is the most ideal one to use.
  • 58. 57 GEARS Concept of friction wheels Toothed wheel Motion and power transfer was primarily achieved by using friction discs/wheels in contact. Due to friction force between the wheel, motion and power are transferred from one axis to another axis. There is a limitation for maximum value for maximum value of power transfer due to limiting static friction force. Hence beyond certain input torque there will be slip between discs. To overcome this problem, toothed wheels (GEARS) are used in place of friction wheels to create a positive drive, improving torque transmission capability ๐‘ฃ๐‘ = ๐œ”1๐‘Ÿ1 = ๐œ”2๐‘Ÿ2 ๐‘ฃ๐‘ = 2๐œ‹๐‘1๐‘Ÿ1 = 2๐œ‹๐‘2๐‘Ÿ2 ๐œ”1 ๐œ”2 = ๐‘1 ๐‘2 = ๐‘Ÿ1 ๐‘Ÿ2 ๐œ”1 ๐œ”2 = ๐ผ12๐ผ23 ๐ผ13๐ผ23 To ensure constant angular velocity in case of toothed wheels in mesh, the Instantaneous centre of wheels shall be static as, meshing progresses. Classification of Gears Parallel shafts Depending upon the teeth of equivalent cylinders i.e., straight or helical, following are the main types of gears to join parallel shafts. Spur Gears They have straight teeth parallel to the axes. They have a line contact, which results in the high impact stresses and excessive noise at high speeds. Spur Rack and Pinion Spur rack is a special case of a spur gear where it is made of infinite diameter so that pitch surface is a plane. It converts rotary motion into translatory motion. Helical spur gears In helical gears, the teeth are curved, each being helical in shape. At the beginning of engagement, contact occurs only at the point of leading edge of curved teeth, as gear rotates, the contact extends along a diagonal line across the teeth. Load application is gradual which results in low impact stresses and reduction in noise.
  • 59. 58 Double-Helical and Herringbone gears It is equivalent to a pair of helical gears secured together, one having right-hand helix and other having left- hand helix. Axial thrust which occurs in case of single-helical gears is eliminated in double-helical gears. It can run at high speed with less noise and vibrations. Intersecting shafts The motion between 2 intersecting shafts is equivalent to the rolling if 2 cones, assuming no slipping. The gears, in general are known as bevel gears. When the teeth formed on cones are straight, the gears are known as straight bevel and when inclined, they are known as helical bevel gears. Straight bevel gear The teeth are straight, radial to the point of intersection of the shaft axes and vary in cross section throughout their length. Shafts are connected at right angles and gears are of the same size. Spiral bevel gear Teeth of bevel gear are inclined at an angle to the face of bevel. They are smother and quieter in action than straight bevel gears because of low impact stresses and gradual application of load. Zero bevel gear Spiral bevel gear with curved teeth but with a zero-angle spiral angle. They are quieter in action than the spiral bevel gear.
  • 60. 59 Skew Shafts The two non-intersecting and non-parallel i.e. non-coplanar shaft connected by gears. This type of gearing also has a line contact, the rotation of which about the axes generates the two pitch surfaces known as hyperboloids. Crossed Helical Gear By using a suitable choice of helix angle for the mating gears, two shafts can be set at any angle. Worm gear Worm gear is a special case of spiral gear in which the larger wheel, usually has a hollow shape (gear spacing for rotating) such that other gearโ€™s teeth is fitted partially. The smaller wheel is called worm and has large spiral angle. Non-throated -The contact between the teeth is concentrated at a point. Single-throated- Gear teeth are curved to envelop the worm. There is a line contact between the teeth. Double-throated- There is an area contact between the teeth.
  • 61. 60 Gear Nomenclature Pitch circle- It is an imaginary circle which by pure rolling action, would give the same motion as the actual gear. Pitch diameter- Diameter of a pitch circle. Pitch point- Point of contact of two pitch circles is known as the pitch point. Line of centers- A line through the centres of rotation of the mating gears Pinion- It is the smaller gear and usually driving gear. Rack- It is a part of a gear wheel of infinite diameter. Circular pitch- It is the distance measured along the circumference of a pitch circle from a point on one tooth to the corresponding point on the adjacent tooth. ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘–๐‘ก๐‘โ„Ž (๐’‘) = ๐œ‹๐‘‘ ๐‘‡ = ๐œ‹ ร— (๐‘๐‘–๐‘ก๐‘โ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ) ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž Diametral pitch- The number of teeth per unit length of pitch circle diameter in inches. ๐ท๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘™ ๐‘ƒ๐‘–๐‘ก๐‘โ„Ž(๐‘ท) = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘๐‘–๐‘ก๐‘โ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ = ๐‘‡ ๐‘‘ Module- It is the ratio of pitch diameter (in mm) to the number of teeth. ๐‘€๐‘œ๐‘‘๐‘ข๐‘™๐‘’(๐’Ž) = ๐‘๐‘–๐‘ก๐‘โ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž = ๐‘‘ ๐‘‡ ๐’‘ = ๐…๐’Ž Gear Ratio- It is the number of teeth on the gear to that of the pinion. ๐บ๐‘’๐‘Ž๐‘Ÿ ๐‘…๐‘Ž๐‘ก๐‘–๐‘œ(๐‘ฎ) = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘œ๐‘› ๐บ๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘œ๐‘› ๐‘๐‘–๐‘›๐‘–๐‘œ๐‘› = ๐‘‡ ๐‘ก
  • 62. 61 Velocity Ratio- The ratio of angular velocity of the follower to angular velocity of driving gear. ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ (๐‘ฝ๐‘น) = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘œ๐‘™๐‘™๐‘œ๐‘ค๐‘’๐‘Ÿ(๐Ÿ) ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘‘๐‘Ÿ๐‘–๐‘ฃ๐‘’๐‘Ÿ (๐Ÿ) = ๐œ”2 ๐œ”1 = ๐‘2 ๐‘1 = ๐‘‘1 ๐‘‘2 = ๐‘‡1 ๐‘‡2 Addendum circle- It is a circle passing through the tips of teeth. Addendum- It is the radial height of a tooth above the pitch circle. Dedendum or root circle- It is the circle passing through the roots of the teeth. Dedendum- it is the radial depth of a tooth below the pitch circle. Clearance- Radial difference between the addendum and dedendum of a tooth. ๐ถ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘’๐‘›๐‘๐‘’ = ๐ด๐‘‘๐‘’๐‘›๐‘‘๐‘ข๐‘š โˆ’ ๐ท๐‘’๐‘‘๐‘’๐‘›๐‘‘๐‘ข๐‘š = (๐‘‘ + 2๐‘š) โˆ’ (๐‘‘ โˆ’ 2๐œ‹๐‘š) = .157๐‘š Backlash- Space Width โ€• Tooth thickness Line of action- The force, the driving force exerts on the driven tooth, is along a line from the pitch point to the point of contact of the two teeth. The line is also common at the point of contact of the mating gears. Pressure angle- The angle between the pressure line and the common tangent to the pitch circles is known as the pressure angle. Path of contact- It is the path traced by the point of contact of two teeth from the beginning to the end of engagement. CPโ†’ Path of approach PDโ†’ Path of recess Arc of contact- It is the path traced by a point on the pitch circle from the beginning to the end of engagement of a given pair of teeth. The arc of contact consists of two parts. Arc of approach (AP/EP) - It is the portion of the path of contact from the beginning of the engagement to the pitch point. Arc of recess(PB/PF) -It is the portion of the path of contact from the pitch point to the end of the engagement of a pair of teeth. Angle of Action (ฮด) โ€“ It is the angle turned by a gear from the beginning of engagement to end of engagement of a pair of teeth. Angle of approach (ฮด) = angle of approach (ฮฑ) + angle of recess(ฮฒ) Contact Ratio- It is angle of action divided by pitch angle. ๐ถ๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ = ๐›ผ + ๐›ฝ ๐›พ ๐ถ๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ = ๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘–๐‘ก๐‘โ„Ž Law of Gearing It states the condition which must be satisfied by the gear tooth profiles to maintain a constant angular velocity ratio between 2 gears. (ฯ€d1N1=ฯ€d2N2)
  • 63. 62 Point C on gear 1 is in contact with point D on gear 2, they have a common normal n-n. If the curved surfaces are to remain in contact, one surface may slide relative to other along the common tangent t-t. The relative motion between the surfaces along the n-n must be zero to avoid the separation. vc = velocity of C (on 1) perpendicular to AC = ฯ‰1.AC vd = velocity of D (on 2) perpendicular to BD = ฯ‰1.BD ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ถ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘› โˆ’ ๐‘› = ๐‘ฃ๐ถ ร— ๐‘๐‘œ๐‘  ๐›ผ ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘› โˆ’ ๐‘› = ๐‘ฃ๐ท ร— ๐‘๐‘œ๐‘  ๐›ฝ ๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘› โˆ’ ๐‘› = ๐‘ฃ๐ถ ร— ๐‘๐‘œ๐‘  ๐›ผ โˆ’ ๐‘ฃ๐ท ร— ๐‘๐‘œ๐‘  ๐›ฝ = 0 ๐œ”1 ร— ๐ด๐ถ ร— ๐‘๐‘œ๐‘  ๐›ผ = ๐œ”2 ร— ๐ต๐ท ร— ๐‘๐‘œ๐‘  ๐›ฝ ๐œ”1 ร— ๐ด๐ถ ร— ๐ด๐ธ ๐ด๐ถ = ๐œ”2 ร— ๐ต๐ท ร— ๐ต๐น ๐ต๐ท ๐œ”1 ๐œ”2 = ๐ด๐ธ ๐ต๐น = ๐ต๐‘ƒ ๐ด๐‘ƒ For constant angular velocity ratio two gears, the common normal at the point of contact of two mating teeth must pass through the pitch point. We see that the angular velocity ratio is inversely proportional to the ratio of the distances of the point P from the centres A & B. ๐œ”1 ๐œ”2 = ๐น๐‘ƒ ๐ธ๐‘ƒ Velocity of Sliding The velocity of sliding is the velocity of one tooth relative to its mating tooth along the common tangent at the point of contact. If the curved surfaces of the two teeth of the gears 1 & 2 are to remain in contact, one can have sliding motion relative to other along the common tangent t-t. ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ถ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก โˆ’ ๐‘ก = ๐‘ฃ๐ถ ร— ๐‘ ๐‘–๐‘› ๐›ผ ๐ถ๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐ท ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก โˆ’ ๐‘ก = ๐‘ฃ๐ท ร— ๐‘ ๐‘–๐‘› ๐›ฝ ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘™๐‘–๐‘‘๐‘–๐‘›๐‘” = ๐‘ฃ๐ถ ร— ๐‘ ๐‘–๐‘› ๐›ผ โˆ’ ๐‘ฃ๐ท ร— ๐‘ ๐‘–๐‘› ๐›ฝ = (๐œ”1 + ๐œ”2)๐‘ท๐‘ช Velocity of Sliding = Sum of angular velocities ร— distance between the pitch point and the point of contact. Forms of teeth Common forms of teeth that can satisfy the law of gearing 1. Cycloidal profile teeth 2. Involute profile teeth Cycloidal profile teeth In this type, the faces are epicycloids and flanks are hypocycloids. Hypocycloid- Curve traced by a point on the circumference of a circle which is rolling on the interior of another circle. P is the point dividing AB by n-n.
  • 64. 63 Epicycloid- Curve traced by a point on the circumference of a circle rolling on the exterior of another circle. Here the circle H rotates inside, along the circumference of pitch circle upto Point P which forms flank (only small portion of curve is taken) and similarly circle E rotates outside till P forming face of flank. Cycloid is always perpendicular(normal) to the line(CD) joining point of contact(D) and point on cycloid(C). Law of gearing is satisfied as common normal at any point on cycloid always passes through the pitch point. Involute Profile An involute is the locus of a point on straight line which rolls without slipping on the circumference of a circle. It is also the path traced by the end of cord(wire) being unwound from the circumference of the circle. As the line rolls on circle, the path traced by A is involute (AFBC) A short length EF of the involute drawn can be utilized to make the profile of an involute tooth. Common tangent to base circle passes through pitch point. Common tangent to base circles is generatrix line for involute profile. Any point on common tangent traces involute profiles when generatrix line rolls without slipping on base circles. The tangent CE is normal to involute GC or tangent t-t and CF to DC or t-t. As both CE & CF both are normal to t-t and have a common point, EPF is a straight line. As wheel 1 rotates, GC pushes DH along the common tangent of base circles, hence the path of contact is along the common tangent of base circles. This common tangent (ECH) is also common normal to involutes which passes through the pitch point. Hypocycloid Epicycloid
  • 65. 64 Pressure angles in this case remain constant throughout the engagement of teeth. โˆ ๐ด๐ธ๐‘ƒ = โˆ ๐ต๐น๐‘ƒ = ๐œ‘ ๐ด๐ธ = ๐ด๐‘ƒ ๐‘๐‘œ๐‘  ๐œ‘ ๐ต๐น = ๐ต๐‘ƒ ๐‘๐‘œ๐‘  ๐œ‘ ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ ๐‘œ๐‘“ ๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘  = ๐‘ฃ1 ๐‘ฃ2 = ๐ต๐‘ƒ ๐ด๐‘ƒ = ๐ต๐น ๐ด๐ธ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก For a pair of involute gears velocity ratio of gears in inversely proportional to pitch circle diameters as well as base circle diameter. Effect of Altering the Centre Distance on the Velocity Ratio for Involute Teeth Gears Any shift in centres of gears will change the centre distance. If the involutes are still in contact, the common normal of two involutes at the point of contact will be common tangent for both base circles and its intersection with the line of centres will be new pitch point. Shifting of centres will not alter velocity ratio, but the pressure angle increases (from ฯ† to ฯ†โ€ฒ) with the increase in the centre distance. Comparison Between Involute and Cycloidal Gears Cycloidal profile Advantages Disadvantages 1 Cycloidal gears are stronger than the involute gears, for the same pitch 1 Pressure angle is not constant 2 Results in less wear in cycloidal gears as compared to involute gears 2 Manufacturing is difficult and costly 3 The interference does not occur at all 3 Centre distance cannot be maintained accurately 4 Due to wear and tear, it may not satisfy Law of Gearing. Involute profile Advantages Disadvantages 1 The centre distance for a pair of involute gears can be varied within limits without changing the velocity ratio 1 Not suitable for lesser numbers of teeth. 2 The pressure angle, from the start of the engagement of teeth to the end of the engagement, remains constant 2 Undercut or interference between the teeth may occur for this gear in case addendum modifications are not performed properly 3 The involute teeth are easy to manufacture than cycloidal teeth.
  • 66. 65 Systems of Gear Teeth The following four systems of gear teeth are commonly used in practice 1. 14.5 ยฐ Composite system โ€“ it is used for general purpose 2. 14.5 ยฐ Full depth involute system โ€“ it was developed for use with gear hobs for spur and helical gears. 3. 20ยฐ Full depth involute system - The increase of the pressure angle from 14.5 ยฐ to 20ยฐ results in a stronger tooth 4. 20ยฐ Stub involute system โ€“ it has a strong tooth to take heavy loads S.no Particulars 14.5 ยฐ Composite system or Full depth involute system 20ยฐ Full depth involute system 20ยฐ Stub involute system. 1 Addendum 1 m 1 m 0.8 m 2 Dedendum 1.25 m 1.25 m 1 m 3 Working depth 2 m 2 m 1.60 m 4 Minimum total depth 2.25 m 2.25 m 1.80 m 5 Tooth thickness 1.5708 m 1.5708 m 1.5708 m 6 Minimum clearance 0.25 m 0.25 m 0.2 m 7 Fillet radius at root 0.4 m 0.4 m 0.4 m Path of Contact Gear 1 is the driver and wheel 2 is driven counter-clockwise. Contact of two teeth is made where the addendum circle of wheel meets the line of action EF at C, it is broken where addendum circle of gear meets line of action EF at D. Path of contact = Path of access + Path of recess CD = CP + PD CD = (CF-PF) + (PF-DF) ๐ถ๐ท = [โˆš๐‘…๐‘Ž 2 โˆ’ ๐‘…๐‘Ž 2 ๐‘๐‘œ๐‘ 2 ๐œ‘ โˆ’ ๐‘…๐‘Ž ๐‘ ๐‘–๐‘› ๐œ‘] + [โˆš๐‘Ÿ๐‘Ž 2 โˆ’ ๐‘Ÿ๐‘Ž 2 ๐‘๐‘œ๐‘ 2 ๐œ‘ โˆ’ ๐‘Ÿ๐‘Ž ๐‘ ๐‘–๐‘› ๐œ‘] = โˆš๐‘…๐‘Ž 2 โˆ’ ๐‘…๐‘Ž 2 ๐‘๐‘œ๐‘ 2 ๐œ‘ + โˆš๐‘Ÿ๐‘Ž 2 โˆ’ ๐‘Ÿ๐‘Ž 2 ๐‘๐‘œ๐‘ 2 ๐œ‘ โˆ’ (๐‘… + ๐‘Ÿ) ๐‘ ๐‘–๐‘› ๐œ‘ Arc of Contact Arc of contact is the path traced by a point on the pitch circle from the beginning to the end of engagement of a given pair of teeth. Pโ€™ Pโ€™โ€™ is the arc of contact, Pโ€™P is arc of approach and PPโ€™โ€™ is arc of recess. Let the time to transverse the arc of approach is ta. Then arc of approach = Pโ€™P =Tangential velocity of Pโ€™ ร— time of approach ๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž = ๐œ”๐‘Ž๐‘Ÿ ร— ๐‘ก๐‘Ž = ๐œ”๐‘Ž(๐‘Ÿ ๐‘๐‘œ๐‘  ๐œ‘) ๐‘ก๐‘Ž ๐‘๐‘œ๐‘  ๐œ‘ = (๐‘ก๐‘Ž๐‘›๐‘”. ๐‘ฃ๐‘’๐‘™. ๐‘œ๐‘“ ๐ป)๐‘ก๐‘Ž ร— 1 ๐‘๐‘œ๐‘  ๐œ‘ = ๐ด๐‘Ÿ๐‘ ๐‘ฏ๐‘ฒ ๐‘๐‘œ๐‘  ๐œ‘ = ๐ด๐‘Ÿ๐‘ ๐‘ญ๐‘ฒ โˆ’ ๐ด๐‘Ÿ๐‘ ๐‘ญ๐‘ฏ ๐‘๐‘œ๐‘  ๐œ‘ = ๐‘ญ๐‘ท โˆ’ ๐‘ญ๐‘ทโ€ฒ ๐‘๐‘œ๐‘  ๐œ‘ = ๐‘ช๐‘ท ๐‘๐‘œ๐‘  ๐œ‘ Similarly, arc of recess is PPโ€™โ€™ = tang. vel. of P ร— time of recess
  • 67. 66 ๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘๐‘’๐‘ ๐‘  = ๐‘ท๐‘ซ ๐‘๐‘œ๐‘  ๐œ‘ ๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก = ๐‘ช๐‘ท ๐‘๐‘œ๐‘  ๐œ‘ + ๐‘ท๐‘ซ ๐‘๐‘œ๐‘  ๐œ‘ = ๐‘ช๐‘ซ ๐‘๐‘œ๐‘  ๐œ‘ ๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก = ๐‘ƒ๐‘Ž๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘๐‘œ๐‘  ๐œ‘ Number of pairs of teeth in contact (Contact ratio) All the teeth lying in between the arc of contact will be meshing with the teeth on the other wheel. ๐‘‡โ„Ž๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘–๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก (๐’) = ๐ด๐‘Ÿ๐‘ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘–๐‘ก๐‘โ„Ž = ๐ถ๐ท ๐‘๐‘œ๐‘  ๐œ‘ 1 ๐‘ For continuous transmission of motion, at least one tooth of one wheel must be in contact with another tooth of the second wheel. Therefore, n must be greater than unity. Interference in Involute gears At any instant, the portions of tooth profiles which are in action must be involutes, so that line of action does not deviate. If any of the two surfaces is not an involute, the two surfaces would not touch each other tangentially and the transmission of the power would not be proper. Mating of two non-involute teeth is known as Interference. Owing to non-involute profile, the contacting teeth have different velocities which can lock the gears. If pinion is the driver, the line of action will be along EF which is the common tangent to base circles of two gears. The teeth on pinion wheel are engaged at C and disengaged at D. Now if the addendum circle radius is increased, D will shift towards F on PF and D coincides with F if add. radius of pinion is AF. Any further increase in this value of radius will result in shifting the point of contact inside the base circle of the wheel. Since an involute can exist only outside the base circle, therefore, any profile of teeth inside the base circle will be of involute type. The profiles in such a case cannot be tangent to each other and tip of the pinion will try to dig out the flank of the tooth of the wheel. Therefore, interference occurs in the mating of two gears. If the addendum radius of wheel is greater than BE, the tip of the wheel tooth be in contact with a portion of the non-involute profile of the teeth for some time of engagement. This causes interference. To have no interference, addendum circles of the wheel and the pinion must intersect the line of action between E & F. The points E & F are called interference points.
  • 68. 67 Minimum Number of Teeth We saw previously that maximum addendum radius of wheel to prevent interference is BE. ๐ต๐ธ2 = ๐ต๐น2 + ๐น๐ธ2 = ๐ต๐น2 + (๐น๐‘ƒ + ๐‘ƒ๐ธ)2 ๐ต๐ธ2 = (๐‘… ๐‘๐‘œ๐‘  ๐œ‘)2 + (๐‘… ๐‘ ๐‘–๐‘› ๐œ‘ + ๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œ‘)2 ๐ต๐ธ = ๐‘…โˆš1 + ๐‘Ÿ ๐‘… ( ๐‘Ÿ ๐‘… + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ Therefore, maximum value of addendum of the wheel is aw max = BE โ€“ pitch radius ๐‘Ž๐‘ค ๐‘š๐‘Ž๐‘ฅ = ๐‘…โˆš1 + ๐‘Ÿ ๐‘… ( ๐‘Ÿ ๐‘… + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ ๐‘… = ๐‘… [โˆš1 + ๐‘Ÿ ๐‘… ( ๐‘Ÿ ๐‘… + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1] ๐‘… = ๐‘š๐‘‡ 2 , ๐‘Ÿ = ๐‘š๐‘ก 2 & ๐บ๐‘’๐‘Ž๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ (๐‘ฎ) = ๐‘‡ ๐‘ก = ๐‘… ๐‘Ÿ ๐‘Ž๐‘ค ๐‘š๐‘Ž๐‘ฅ = ๐‘š๐‘‡ 2 [โˆš1 + 1 ๐บ ( 1 ๐บ + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1] Let the adopted value of addendum in some cases be aw ร— m. ๐‘†๐‘œ, ๐‘Ž๐‘ค ร— ๐‘š โ‰ค ๐‘š๐‘‡ 2 [โˆš1 + 1 ๐บ ( 1 ๐บ + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1] ๐‘‡ โ‰ฅ 2๐‘Ž๐‘ค [โˆš1 + 1 ๐บ ( 1 ๐บ + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1] ๐‘‡ = 2๐‘Ž๐‘ค [โˆš1 + 1 ๐บ ( 1 ๐บ + 2) ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 1] This gives the minimum number of teeth on the wheel for the given value of gear ratio, pressure angle and the addendum coefficient aw. The minimum no. of teeth on pinion is ๐‘ก = ๐‘‡ ๐บ
  • 69. 68 Undercutting If interference canโ€™t be avoided by the design, it can be minimized by removing interfering portion of teeth. This is termed Undercutting. A form tool of same geometry as that of meshing gear teeth is used to remove material at interfering portion. Due to undercutting, the strength of teeth is reduced. Effect of wear & tear Due to wear and tear, teeth size gets reduced but involute profile remains same as offset of involute profile is involute. It satisfies Law of Gearing. Due to wear, back lash increases Interference between Rack and Pinion Here to avoid interference, the maximum value of addendum should be such that C coincides with E. It means that maximum addendum value of rack is GE. Let the adopted value of addendum of the rack be arร—m where ar is the addendum coefficient. ๐บ๐ธ = ๐‘ƒ๐ธ ร— ๐‘ ๐‘–๐‘› ๐œ‘ = ๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œ‘ ร— ๐‘ ๐‘–๐‘› ๐œ‘ = ๐‘Ÿ ๐‘ ๐‘–๐‘›2 ๐œ‘ = ๐‘š๐‘ก 2 ร— ๐‘ ๐‘–๐‘›2 ๐œ‘ To avoid interference, ๐บ๐ธ โ‰ฅ ๐‘Ž๐‘Ÿ ร— ๐‘š (๐‘œ๐‘Ÿ) ๐‘š๐‘ก 2 ร— ๐‘ ๐‘–๐‘›2 ๐œ‘ โ‰ฅ ๐‘Ž๐‘Ÿ ร— ๐‘š (๐‘œ๐‘Ÿ)๐‘ก โ‰ฅ 2 ๐‘ ๐‘–๐‘›2 ๐œ‘ ๐‘š ๐‘ƒ๐‘Ž๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก = ๐ถ๐‘ƒ + ๐‘ƒ๐ท = ๐ด๐‘‘๐‘‘๐‘’๐‘š๐‘‘๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ÿ๐‘Ž๐‘๐‘˜ ๐‘๐‘œ๐‘  ๐œ‘ + โˆš๐‘Ÿ๐‘Ž 2 โˆ’ (๐‘Ÿ ๐‘๐‘œ๐‘  ๐œ‘)2 โˆ’ ๐‘Ÿ ๐‘ ๐‘–๐‘› ๐œ‘ ๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘๐‘Ž๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘๐‘ก ๐‘ก๐‘œ ๐‘Ž๐‘ฃ๐‘œ๐‘–๐‘‘ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ = ๐ท๐ธ = โˆš๐‘Ÿ๐‘Ž 2 โˆ’ (๐‘Ÿ ๐‘๐‘œ๐‘  ๐œ‘)2
  • 70. 69 Helical Gears In helical gears teeth are inclined to the axis of the gear, they can be right-handed or left-handed in which the helix slopes away from the viewer when a gear is viewed parallel to the axis of the gear. Here, the helix angle of gear 2 is reduced by a few degrees so that the helix angle of gear 1 is ฯˆ1 and that of gear 2 is ฯˆ2. Let the angle turned by it be ๏ฑ which is the angle between the axes of two gears. ๏ฑ = ฯˆ1- ฯˆ2 when ฯˆ2 = 0 i.e., the helix angle of gear 2 is zero or gear 2 is a Straight spur gear. ๏ฑ = ฯˆ1. if ฯˆ2 ๏€ผ 0 i.e., helix angle of gear 2 is negative. ๏ฑ = ฯˆ1โ€• (โ€•ฯˆ2) = ฯˆ1 + ฯˆ2 From above, we can conclude that angle between shafts is equal to ๏ฑ= ฯˆ1โ€• ฯˆ2, in case of gears of opposite hands (ex- one left and one right hand) ๏ฑ= ฯˆ1+ ฯˆ2, in case of gears of same hand (ex- both left hand or both right hand) In case of helical gears for parallel shafts, there will be line contact whereas for skew shafts (non-parallel) there will be point of contact. Helical gears with line of contact are stronger than spur gears and can transmit heavy loads. Pitch line velocities of gear 1 & 2 (for ฯˆ2 ๏€ผ 0) The magnitude and direction of v12 represents the sliding velocity of gear 1 with respect to gear 2 parallel to t-t. Side view Top view Here the helix angle is same ฯˆ1=ฯˆ2. When ฯˆ1=ฯˆ2, the helix angle is the same as before. Then ๏ฑ= ฯˆ1- ฯˆ2 = 0. Itโ€™s a case of helical gears joining parallel shafts.