SlideShare a Scribd company logo
1 of 9
Download to read offline
Oracle Reorder Point and Min-max Planning: Based on Outdated Concepts?
                                    Dr. Volker Thormählen

0 Summary
The Inventory module of Oracle Applications Release 10.7 supports only 2 planning methods
for independent demand: Reorder Point and Min-max planning. In the following both
methods are evaluated from the viewpoint of a non-manufacturing (importer, wholesaler,
distributor, retailer, etc.) environment. The functional limitations of such traditional
approaches will be explained and compared with more progressive or trendy concepts such
as Distribution Requirements Planning and Just-In-Time delivery. Kanban replenishment, a
new functionality in Release 11, is not covered, because it is mainly a means of supporting
pull-based inventory replenishment in manufacturing systems.

1 Reorder Point Planning
Reorder Point planning and its derivatives have been around since 1934, see [4], p. 40. A
continuous review of inventories is always assumed. A fixed order quantity is usually
suggested by the system whenever the inventory position drops to the reorder point or lower.
Note that the inventory position includes on-hand and on-order stock (= planned receipts).

The Reorder Point (also known as reorder level) is equal to the safety stock plus the
expected average sales (or usage) quantity within the replenishment lead time. From a
physical standpoint, these two types of inventory levels are not separated. Safety stock, also
referred to as buffer stock, is used to protect against the random fluctuations in demand
and/or supply. It makes up inventory held to protect against forecast errors, changes in
customer's orders, quality defects, or late shipments from the supplier of an inventory item. A
graphical illustration (the traditional saw-tooth diagram) and a mathematical treatment of the
system and its derivatives are provided in [7].

Reorder Point planning is equivalent to a common visual review system called two-bin
system. This method uses two physical storage locations with stock of the same item. When
one bin becomes empty, a replenishment order is placed to refill it while demand is filled from
the second bin.

Reorder Point planning regards replenishment quantity as the main cost driver. But
frequently the number of purchase order lines during the planning horizon is considered to be
a more appropriate measure for cost behaviour, see [8], p. 87. Other weak points are related
to rather strict assumptions needed to derive the basic mathematical model(s) for Reorder
Point planning. The standard assumptions for Reorder Point planning are listed in the
following:
• Inventory items are treated entirely independent of others, that is, possible benefits from
     joint reorder planning (as described in section 3, see below) are ignored or do not exist
• Planning horizon is rather long, usually 1 year
• Total sales (or usage) during the planning horizon is constant
• Demand rate is deterministic with constant mean and stable variability, that is, the item is
     in the mature stage of its life cycle
• Total demand can be fully covered, that is, no shortages are allowed
• Replenishment lead time is constant, that is, of zero or nonzero duration
• Inventory carrying costs per unit per year do not depend on the replenishment quantity,
     that is, semi-variable or semi-fixed (= stepped) costs do not occur by definition
• Acquisition cost per unit does not depend on order quantity, that is, quantity discounts for
     larger orders on unit purchase price and/or unit transportation cost are neglected
• Withdrawals from inventory take place in rather small quantities, that is, crossing of the
     Reorder Point can be recognised in time
• Purchase orders for inventory replenishment can be issued at any time, that is, no time
     and no quantity restrictions exist with respect to the reorder quantity

                                          page 1 of 9
•   The (suggested) purchase order quantity need not be an integer number of units, that is,
    there are no upper or lower limits as well as rounding rules on its size
•   The entire purchase order quantity is delivered at the same time, that is, no partial
    shipments are allowed
•   Permanent monitoring of the Reorder Point is mandatory , that is, a continuous stock-
    taking sub-system is required in practice for a continuous review system with or without
    manual override capability with respect to reorder quantity

Most of the standard assumptions listed above are also relevant for Oracle Reorder Point
planning, but are not explicitly and completely mentioned in corresponding Inventory
Reference Manual, see [5]. Knowing them precisely makes the assessment of applicability
much easier for special categories of inventory items, for example:
• perishable, exquisite, style, and fashion items
• items with rapidly changing demand rate
• items subject to volume discounts and freight restrictions
• new and discontinued items
• extremely seasonal items
• high-value items
• damaged, obsolete, used and otherwise deteriorated items
• rare items which are difficult to replace
• heavy and bulky items (where drop-shipment is frequently more cost-effective than
    stocking; besides, drop-shipment of sales orders is a new function in Release 11.)

Oracle Reorder Point planning is intentionally not a completely automated system which
allows no human intervention. It is generating replenishment proposals referred to as
purchase requisitions using the so-called Economic Order Quantity (usually abbreviated as
EOQ) and the safety stock as central inventory control parameters. Oracle offers only 3
options for calculation of safety stock for each item, see [5], p. 9-282:
• Manually entered safety stock quantities and the date for which each quantity is effective
• Percentage of forecasted demand for the item
• Service level and MAD. Service level represents the probability that a customer order can
    be filled from available inventory. MAD represents the mean absolute deviation of
    forecast errors. Safety stock quantity is calculated using an equation based on described
    input parameters.

Decision on safety stock is important, because in large measure, safety stock determines
customer service level and total inventory investment. The more difficult an item is to predict,
the more safety stock is allocated through Reorder Point logic. Since most forecast errors
occur in slow-moving items, an inventory policy that bases safety stock on forecast error is
wrong, see [8], p. 75. Allocating a fixed total safety stock investment among all items of an
assortment to minimise
• either expected total stockout occasions per year
• or expected total value of shortages per year
are much smarter strategies, see [7], p. 246. Such aggregate considerations in fact devalue
the concept of the Reorder Point planning with safety stock calculated for individual items.

Oracle Reorder Point planning uses inventory forecasting information to calculate average
demand. Two naive forecasting methods are available based on historical item usage:
Statistical forecasting and Focus forecasting, see [5], p. 9-297, also [8] and [9].

Oracle Reorder Point planning creates purchase requisitions for all items that meet the
reorder condition optionally constrained by minimum and maximum order quantities as well
as a fixed lot size multiplier, see [5], p. 9-285.



                                           page 2 of 9
Oracle Reorder Point planning calculates the Reorder Point (comprising safety stock)
independent of EOQ, although efficient algorithms have been published for simultaneous
calculation of both decision variables, for example see [6], p. 728 and [10], p. 291.
Simultaneous calculation usually results in lower total cost in a pre-specified planning
horizon.

Oracle Reorder Point planning does not consider possible price breaks and volume freight
discounts when calculating the EOQ.

Oracle Reorder Point planning is based on the assumption that replenishment lead time is
constant. More advanced models treat replenishment lead time as a probabilistic variable
following a normal, gamma, uniform, or other distribution. Generally a more realistic Reorder
Point quantity will be achieved.

When Oracle Reorder Point planning is used to calculate purchase requisitions, open
customer orders are ignored. You could run corresponding planning report and miss items of
which you have insufficient quantity to cover an open customer order. If the inventory
position is not below Reorder Point, the item will not appear on the planning report at all. You
can also have an item with an inventory position below the order point, and a large open
sales order, but the suggested fixed order quantity is only sufficient to cover the independent
demand forecast. If you convert these suggested quantities directly into purchase
requisitions you will again be short, see [1], p. 2.

Another problem inherent in Oracle Reorder Point planning is related to visibility and
comprehensibility. There are no Reorder Point or order quantity levels visible in the system
anywhere. You must run the corresponding planning report to see these levels. At the same
time, suggested order quantities are not exactly reproducible, see [1], p 2.

2 Min-max Planning
Besides Reorder Point planning Oracle Inventory covers Min-max planning. This approach
again assumes continuous review of inventory levels. It is a planning method where the
minimum is the reorder point and the maximum is the level the inventory is not to exceed.
Order quantity is variable and is calculated by subtracting the inventory position (= on-hand
quantity plus on-order quantity) from the maximum inventory level. When the result falls
below the minimum quantity a reorder quantity up to maximum stock is suggested. The
corresponding lot-sizing method is usually called replenishment to maximum stock.

The Min-max system is commonly used for low volume items (so-called "C" parts of an ABC
inventory analysis). The main advantage of this system is its simplicity. A possible
disadvantage is the variable order quantity. A graphical illustration and a mathematical
treatment of the Min-max system and its derivatives are provided in [7].

In case of unit-sized withdrawals from stock, Reorder Point and Min-max planning are
equivalent, that is, resulting in the same reorder quantity. Most of the standard assumptions
for continuous review inventory systems therefore also apply to Min-Max planning, see
section 1.

Oracle Min-Max planning does not take into account forecast demand during replenishment
lead time when calculating the replenishment quantity, see [5], p. 9-280.

Oracle Min-Max replenishment quantity recommendations take order modifiers into account.
This may change the initial order size calculated by the system , see [5], p. 9-280.

The major problem with present Oracle Min-max planning is that the minimum and maximum
levels must be maintained manually by the users, see [1], p 1. This is very labour intensive
when planning comprises many independent demand items and the system cannot react
                                          page 3 of 9
effectively to changing conditions. To counteract this, inventory managers may tend to
maintain high minimum quantities to cover random usage fluctuations. Errors in the levels
are often not discovered until the inventory is dangerously low or until a physical count (or
cycle count) reveals inventory in excess. This type of manually maintained system is not at
all acceptable from both, a manufacturing and non-manufacturing point of view.

3 Periodic Review System
In a periodic review system derivative usually called Topping-up system every T units of time
a replenishment order is placed to raise the inventory position to the order-up-to-level S. The
value of T is usually pre-specified and often dictated by external factors, such as frequency
of full truckload shipment opportunities. The order-up-to-level S must be sufficient to cover
demand through a disposition period of duration T + L. Figure 1 shows essential details of
the Topping-up system.


   fixed reorder cycle: T1 = T2 = T3 = T4
   variable order quantity: R1 # R2 # R3 # R4
   quantity

                                                                   S = maximum quantity
           R1             R2            R3              R4
                                                                 variable order quantity
                                             L
                L              L                                 remaining quantity

      T1             T2            T3              T4              time
            review        review        review          review

      T = constant review interval
      L = constant replenishment lead time
      order quantity = maximum quantity - remaining quantity
           Figure 1: Periodic Review System: Illustration of the Topping-up System

The amount of safety stock carried for an inventory item in a periodic review system depends
on the variability of demand (forecast error) and the desired level of one-time shipments.

The Topping-up system is used rather frequently in trading businesses where relatively short
delivery times can be achieved by means of co-ordinated replenishment from a central
distribution warehouse. The main disadvantage of the Topping-up system is that the
inventory carrying costs are higher than in comparable continuous review systems.

Presently Oracle Inventory does not support any periodic review system (also called fixed
reorder cycle system) and corresponding derivatives such as the briefly described Topping-
up system.

4 Joint Reorder Planning
Joint replenishment usually happens when items kept in the same inventory are ordered from
one supplier. A joint purchase order comprises several inventory items to obtain volume

                                                 page 4 of 9
and/or transportation discounts. Some of the benefits achieved from joint replenishment of
purchased inventory items in these situations are listed in below:

•   Transportation economies (for example, full truck load shipments)
•   Reduced costs for sending purchase orders to suppliers
•   Trade discounts based on order value and/or order quantity
•   Accounts payables efficiencies achieved through reduction in paperwork

For manufactured items analogous benefits can be achieved.

A prerequisite for joint reorder planning is a periodic review system, see previous section.
Corresponding inventory approach places purchase orders on a predetermined time
schedule (daily, weekly, monthly, etc.). The actual purchase order quantity will vary from
order to order based on how many units have been issued.

At present Oracle Inventory does not support replenishment planning methods based on
periodic review of inventory levels, although joint reorder planning is an attractive approach
for some trading businesses.

5 Combination of continuous and periodic review system
Combining the logic of Reorder Point planning with the logic of a periodic review system is
possible in theory and practice. In addition to cyclic reordering, such a system will
automatically generate a replenishment proposal as soon as the inventory position falls
below the Reorder Point level. If this happens the system calculates the interval that starts
from the point in time that the inventory position falls below the Reorder Point up to the
availability date of the next regular planning run. This is used for the net requirements
calculation. Suggested purchase order quantity must cover this time span. At the following
regular planning date corresponding item is planned as usual.

It has been shown that, under fairly general assumptions concerning demand pattern and
cost factors involved, the described system produces lower total costs than any other.
However, the computational effort to obtain the best values of the three inventory control
parameters,
• minimum stock level,
• maximum stock level, and
• review time
is more intense, see [7], p. 241. The system is therefore most suitable for so-called "A" items
of an ABC inventory analysis.

Oracle Inventory does not support a combination of continuous and periodic replenishment
planning for independent demand. Some competitive business software packages have this
capability, for example SAP R/3.

6 Time-Phased Order Point Planning
This approach has been derived from well-known Material Requirements Planning (MRP)
logic as a means to determine when inventory replenishment orders must be placed to
ensure a continuous supply of goods.

Scheduled customer orders, demand forecasts or a combination of both are used to
determine gross requirements at regular intervals for an item. Gross requirements represent
the total demand for an item prior to accounting for corresponding quantity on hand and
quantity on order (= scheduled to be received). The period split (day, week, month, etc.) for
schedules and/or forecasts and the number of periods included in the schedules and/or
forecasts is usually specified individually for each item, in other words, periods to be
considered during requirements planning are determined by the user. The gross


                                          page 5 of 9
requirements quantities are used in the planning process to calculate net requirements for
every period as follows:

•     Gross requirements
•     minus projected available on hand inventory (= quantity physically in stock)
•     plus scheduled receipts (= orders released to supply sources in a prior planning period)
•     equals net requirement

When there is a net requirement, then an order proposal is generated. The quantity stated in
the order recommendation is calculated by the system according to a predetermined lot-
sizing method. Depending on the method selected several net requirements quantities are
pooled into one order quantity.

The replenishment lead-time offset is established by determining when an item is needed to
satisfy a net requirement. This allows the system to schedule a planned order receipt in one
time period and the planned order release in a prior time period. The time span between
these two dates is the required lead time. Therefore, a planned order release includes a
release date and a due date. The planned order release results in one or more purchase
orders which are transmitted to suppliers. Of course, a supplier can only ship the ordered
quantity punctually if he gets corresponding purchase order on time. Planned replenishment
orders exist only within the system and can be modified or cancelled during subsequent
planning runs if conditions change.

A simple numerical example for time-phased order point planning is shown below using the
constants and variables listed in table 1.

     Symbol                   Meaning                      Dimension              Value
                                               Variables
    t actual       actual coverage date              business calendar date to be calculated
    t planned      planned coverage date             business calendar date to be calculated
    t arrival      requested arrival date            business calendar date to be calculated
                                              Constants
    t calendar     present planning date             business calendar date                100
    T period       length of planning period         workdays                               10
    T delivery     delivery lead time                workdays                               25
    T inspection   incoming goods inspection time workdays                                  10
    T safety       safety stock time                 workdays                                5

     Table 1: Meaning of symbols, variables, and given parameters for coverage calculation

10 workdays per planning period are assumed, see table 1. Available stock covers 4,5
periods, see table 2. Consequently 45 workdays are covered. Present date of the business
calendar equals 100. Accordingly actual range of coverage date equals 100 + 45, that is,
tactual = 145.

                                 planning period P1   P2   P3   P4  P5
                    projected available          1500 1200 1000 700 200
                    - forecast demand             300 200 300 500 400
                    = net requirements           1200 1000 700 200 -200

                      Table 2: Relevant quantities subdivided by planning periods

Expected total replenishment lead time equals 50 workdays, see table 1. Accordingly
planned range of coverage date equals 100 + 50, that is, tplanned = 150, see table 3.


                                              page 6 of 9
t calendar   + T period     + T delivery    + T inspection + T safety = t planned
              100          + 10           + 25            + 10           +5         = 150

                             Table 3: Formula for calculation of t planned

If tactual < tplanned a purchase order must be issued. This reorder condition is met because 145
< 150. Requested arrival date tarrival for the purchase order is calculated as follows:

                            t actual    - T inspection   - T safety    = t arrival
                            145         - 10             -5            = 130

                             Table 4: Formula for calculation of t arrival

Hence time-phased order point planning is a method that schedules each independent
demand item to arrive at the proper point in time (that is, Just-In-Time) at the warehouse.

Order size is determined by making use of an appropriate lot-sizing method, for example
periods of supply. This method establishes, primarily through experience, an order quantity
that will cover a pre-specified period of time. Thus EOQ calculation can be replaced by
shipments totalling multiple periods of actual and/or forecasted demand.

Presently Oracle Inventory does not support time-phased order point planning. This in turn
means, that time-phased inventory planning can not be combined with dynamic lot-sizing
methods such as the following:
• periods of supply
• period order quantity
• lot-for-lot
• part period balancing
• least unit cost
• least total cost

Lot-sizing methods for individual items with time-varying demand are further detailed in [7], p.
198.

7 Distribution Requirements Planning
Time-phased order point planning is closely related to Distribution Requirements Planning
(DRP). In the mid seventies this planning method appeared on the scene to assist with
problems related to physical distribution, see [4], p. 41. DRP involves meeting customer
requirements and receiving and storing goods at the lowest cost possible for a pre-specified
planning horizon.

Distribution Resource Planning is a scheduling system that extends DRP into the planning of
key resources contained in a distribution system such as warehouse space, warehouse
workforce, investment into inventory, and transportation capacity.

Distribution systems are usually classified as being either a push or a pull system. A push
system moves the inventory from a central source of supply out to the field warehouses.
Thus replenishment decisions are made centrally, based on forecasted and/or actual
demand. This is in contrast to a pull system where replenishment decisions are made at the
field warehouses. DRP is most frequently used in conjunction with a push system of
distribution inventory planning and control where all levels of the distribution system are
owned by the same company.

A significant number of trading companies who serve customers through a distribution
network have substituted Reorder Point respectively Min-max planning in favour of DRP
where emphasis is on order timing and quantity methods.
                                                  page 7 of 9
Oracle Inventory is suitable for representation of a company's inventory sites and business
units as well as corresponding physical and logical units. In other words, definition of
distribution structures can be defined without considerable restrictions. This is also true for
inter-inventory transfer transactions within a distribution network.
• DRP (as needed for a push distribution system) is presently not completely available
    within the functional scope of the Oracle Inventory module.
• Oracle Reorder Point or Min-max inventory planning can be utilised for the purpose of a
    pull distribution system. But small customisations may be necessary for particular
    distribution networks, see practical case study outlined in [1].

8 Conclusions
From the perspective of trading businesses continuous review systems such as Oracle
Reorder Point and Min-max planning are not old-fashioned. But their successful application
heavily depends on the goodness of fit between the inventory planning model (and its
underlying assumptions) on the one side and business reality on the other. For particular
inventory item categories and non-linear cost behaviour (due to price breaks, freight
restrictions, and the like) derivatives of the basic planning models are desirable.

Oracle Inventory does not support a wide choice of inventory planning models for
independent demand. The ones available deserve some enhancements. The choice of lot-
sizing methods is limited to EOQ and replenishment up to maximum stock level. But as more
models and methods can be selected the approximation to business reality will improve.

More progressive or trendy concepts suitable for distribution inventory planning and
distribution channel integration (frequently referred to as inter-corporate logistics, quick
response, continuous replenishment, supply chain management, partnership in merchandise
flow, just-in-time distribution, and stockless materials management) are not an integral part of
Oracle Inventory Release 10.7.

9 Remark
No claim concerning the completeness and correctness of the statements in this article can
be made. They represent purely the author’s own understanding of Oracle Inventory
Release 10.7.

Several people contributed to this article in various ways. These include Russel Hougthon,
Stephan Seltmann, and Ian D. Spencer. To them all go my heartfelt thanks.

10 Bibliography
[1] Fink, John, Planning - MinMax or Reorder Point. Is there another option?, Presentation
     and Abstract, OAUG fall conference, Sept. 26-30, 1999, Orlando, Florida, 198 slides, 10
     pages
[2] Graham, Gordon, Distribution Inventory Management, Inventory Management Press,
     Richardson, Texas, 1988, 336 pages, ISBN: 0-31-701548-6
[3] Harmon, Roy L., Reinventing the Warehouse: World Class Distribution Logistics, The
     Free Press, New York, etc. 1993, 364 pages, ISBN 0-02-913863-9
[4] Martin, Andre J., DRP: Distribution Resource Planning, The Gateway to True Quick
     Response and Continuous Replenishment, John Wiley & Sons, Inc. New York, etc.,
     revised ed., 1995, 329 pages, ISBN 0-471-13222-5
[5] Oracle Corporation, Oracle Inventory Reference Manual, Volume 3, Part No. A12991-2,
     March 1994
[6] Vollman, Thomas E., Berry, William L., Whybark, D. Clay, Manufacturing Planning and
     Control Systems, 3rd ed., Richard D. Irwin Inc., Homewood, Boston, 1992, ISBN 0-256-
     08808-X



                                           page 8 of 9
[7] Silver, Edward Allen, Pyke, David F., Peterson, Rein, Inventory Management and
     Production Planning and Scheduling, 3rd ed., John Wiley & Sons, Inc., New York, etc.,
     1998, 754 pages, ISBN 0-471-11947-4
[8] Smith, Bernard T., Focus Forecasting: Computer Techniques for Inventory Control, CBI
     Publishing Company, Inc., Boston 1978, 258 pages, ISBN 0-8436-0761-0
[9 Smith, Bernard T., Focus Forecasting and DRP: Logistics Tools for the Twenty-first
     Century, 1st ed., Vantage Press, New York, 1991, 227 pages, ISBN 0-9876-5432-1
[10] Thormählen, Volker, Inventory Valuation according to German Commercial and Tax
     Legislation, Version 2.1, Cologne / Germany, March 20, 1996, 24 pages, 5 tables, 27
     diagrams, 7 literature sources
[11] Tyworth, John E., Guo, Yuanming, Ganeshan, Ram, Inventory Control under Gamma
     Demand and Random Lead Time, in: Journal of Business Logistics, Vol. 17 (1996), No.
     1, p. 291 - 304 (Numerical methods to find optimum joint (s, Q) solutions)

11 Contact address
Dr. Volker Thormählen
Bull GmbH
Theodor-Heuss-Str. 60 - 66
51149 Köln-Porz
Germany
Tel.: + 49 (0) 2203 305-1719
Fax: + 49 (0) 2203 305-1699
Email: volker.thormaehlen@bull.de
        volker.thormaehlen@doag.org
        dr.volker@thormahlen.de




                                        page 9 of 9

More Related Content

What's hot

Standard Cost Accounting in Oracle ERP
Standard Cost Accounting in Oracle ERPStandard Cost Accounting in Oracle ERP
Standard Cost Accounting in Oracle ERPLarry Sherrod
 
Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...
Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...
Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...Boopathy CS
 
Oracle R12.1.3 Costing Overview
Oracle R12.1.3 Costing OverviewOracle R12.1.3 Costing Overview
Oracle R12.1.3 Costing OverviewPritesh Mogane
 
Accounting entries for procure to pay
Accounting entries for procure to payAccounting entries for procure to pay
Accounting entries for procure to payAntony Samuel
 
R12 inventory features
R12 inventory featuresR12 inventory features
R12 inventory featuresSuresh Mishra
 
EBS-OPM Costing.docx
EBS-OPM Costing.docxEBS-OPM Costing.docx
EBS-OPM Costing.docxMina Lotfy
 
Presentation on resource related billing
Presentation on resource related billingPresentation on resource related billing
Presentation on resource related billingAmlan Sarkar
 
Oracle Inventory – Types of Move Orders
Oracle Inventory – Types of Move OrdersOracle Inventory – Types of Move Orders
Oracle Inventory – Types of Move OrdersBoopathy CS
 
SAP STO config
SAP STO configSAP STO config
SAP STO configsamitchak
 
Oracle min-max-planning
Oracle min-max-planningOracle min-max-planning
Oracle min-max-planningmgarg82
 
Account Assignment Category
Account Assignment CategoryAccount Assignment Category
Account Assignment CategoryRameswara Vedula
 
White Paper Oracle Subledger Accounting
White Paper Oracle Subledger AccountingWhite Paper Oracle Subledger Accounting
White Paper Oracle Subledger AccountingSandeep Vantmuriswami
 
Blanket purchase agreement and blanket release in oracle r12
Blanket purchase agreement and blanket release in oracle r12Blanket purchase agreement and blanket release in oracle r12
Blanket purchase agreement and blanket release in oracle r12G Madhusudhan
 
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part II
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part IIOracle SCM Functional Interview Questions & Answers - Inventory Module - Part II
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part IIBoopathy CS
 
Oracle Quality setup
Oracle Quality setupOracle Quality setup
Oracle Quality setupMina Lotfy
 

What's hot (20)

Standard Cost Accounting in Oracle ERP
Standard Cost Accounting in Oracle ERPStandard Cost Accounting in Oracle ERP
Standard Cost Accounting in Oracle ERP
 
Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...
Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...
Oracle R12 Apps – SCM Functional Interview Questions & Answers – Purchasing M...
 
Oracle R12.1.3 Costing Overview
Oracle R12.1.3 Costing OverviewOracle R12.1.3 Costing Overview
Oracle R12.1.3 Costing Overview
 
Accounting entries for procure to pay
Accounting entries for procure to payAccounting entries for procure to pay
Accounting entries for procure to pay
 
R12 inventory features
R12 inventory featuresR12 inventory features
R12 inventory features
 
EBS-OPM Costing.docx
EBS-OPM Costing.docxEBS-OPM Costing.docx
EBS-OPM Costing.docx
 
Presentation on resource related billing
Presentation on resource related billingPresentation on resource related billing
Presentation on resource related billing
 
Bom in sap
Bom in sapBom in sap
Bom in sap
 
Oracle Inventory – Types of Move Orders
Oracle Inventory – Types of Move OrdersOracle Inventory – Types of Move Orders
Oracle Inventory – Types of Move Orders
 
SAP STO config
SAP STO configSAP STO config
SAP STO config
 
Oracle min-max-planning
Oracle min-max-planningOracle min-max-planning
Oracle min-max-planning
 
Advanced procurement v1.2
Advanced procurement v1.2Advanced procurement v1.2
Advanced procurement v1.2
 
Account Assignment Category
Account Assignment CategoryAccount Assignment Category
Account Assignment Category
 
White Paper Oracle Subledger Accounting
White Paper Oracle Subledger AccountingWhite Paper Oracle Subledger Accounting
White Paper Oracle Subledger Accounting
 
Order Line Sets in Oracle Order Management
Order Line Sets in Oracle Order ManagementOrder Line Sets in Oracle Order Management
Order Line Sets in Oracle Order Management
 
Consignment inventory
Consignment inventoryConsignment inventory
Consignment inventory
 
Accounting in Oracle Inventory
Accounting in Oracle InventoryAccounting in Oracle Inventory
Accounting in Oracle Inventory
 
Blanket purchase agreement and blanket release in oracle r12
Blanket purchase agreement and blanket release in oracle r12Blanket purchase agreement and blanket release in oracle r12
Blanket purchase agreement and blanket release in oracle r12
 
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part II
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part IIOracle SCM Functional Interview Questions & Answers - Inventory Module - Part II
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part II
 
Oracle Quality setup
Oracle Quality setupOracle Quality setup
Oracle Quality setup
 

Viewers also liked

Kanban in Oracle Applications
Kanban in Oracle ApplicationsKanban in Oracle Applications
Kanban in Oracle Applicationsmgarg82
 
Kanban Basics
Kanban BasicsKanban Basics
Kanban Basicsjprokop1
 
Kanban - Back to Basics
Kanban - Back to BasicsKanban - Back to Basics
Kanban - Back to BasicsHelen Meek
 
Inventory managementppt@ doms
Inventory managementppt@ doms Inventory managementppt@ doms
Inventory managementppt@ doms Babasab Patil
 
Oracle Inventory Complete Implementation Setups.
Oracle Inventory Complete Implementation Setups.Oracle Inventory Complete Implementation Setups.
Oracle Inventory Complete Implementation Setups.Muhammad Mansoor Ali
 
A New Framework for Safety Stock Management
A New Framework for Safety Stock ManagementA New Framework for Safety Stock Management
A New Framework for Safety Stock ManagementCognizant
 
Oracle Inventory – Inventory Controls
Oracle Inventory – Inventory ControlsOracle Inventory – Inventory Controls
Oracle Inventory – Inventory ControlsBoopathy CS
 
Dropship across ou
Dropship across ouDropship across ou
Dropship across ouPavan Dayma
 
How to Close Period in Oracle Apps Inventory
How to Close Period in Oracle Apps Inventory How to Close Period in Oracle Apps Inventory
How to Close Period in Oracle Apps Inventory Bizinsight Consulting Inc
 
Setup of budget in oracle
Setup of budget in oracleSetup of budget in oracle
Setup of budget in oraclemalikbnu2008
 
Oracle R12 Apps - Purchasing Module Setup Steps
Oracle R12 Apps - Purchasing Module Setup Steps Oracle R12 Apps - Purchasing Module Setup Steps
Oracle R12 Apps - Purchasing Module Setup Steps Boopathy CS
 
Oracle Sourcing Setup
Oracle Sourcing SetupOracle Sourcing Setup
Oracle Sourcing SetupAjay Singh
 
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...Boopathy CS
 
iSupplier Portal- Manage supplier/vendor challenges
iSupplier Portal- Manage supplier/vendor challengesiSupplier Portal- Manage supplier/vendor challenges
iSupplier Portal- Manage supplier/vendor challengessupriyo12
 
Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...
Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...
Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...KPIT
 
Oracle R12 SCM Functional Interview Questions - Order Management,
Oracle R12 SCM Functional Interview Questions - Order Management, Oracle R12 SCM Functional Interview Questions - Order Management,
Oracle R12 SCM Functional Interview Questions - Order Management, Boopathy CS
 

Viewers also liked (20)

Kanban in Oracle Applications
Kanban in Oracle ApplicationsKanban in Oracle Applications
Kanban in Oracle Applications
 
Kanban Basics
Kanban BasicsKanban Basics
Kanban Basics
 
Kanban - Back to Basics
Kanban - Back to BasicsKanban - Back to Basics
Kanban - Back to Basics
 
Inventory managementppt@ doms
Inventory managementppt@ doms Inventory managementppt@ doms
Inventory managementppt@ doms
 
Oracle Inventory Complete Implementation Setups.
Oracle Inventory Complete Implementation Setups.Oracle Inventory Complete Implementation Setups.
Oracle Inventory Complete Implementation Setups.
 
A New Framework for Safety Stock Management
A New Framework for Safety Stock ManagementA New Framework for Safety Stock Management
A New Framework for Safety Stock Management
 
Oracle Inventory – Inventory Controls
Oracle Inventory – Inventory ControlsOracle Inventory – Inventory Controls
Oracle Inventory – Inventory Controls
 
Dropship across ou
Dropship across ouDropship across ou
Dropship across ou
 
How to Close Period in Oracle Apps Inventory
How to Close Period in Oracle Apps Inventory How to Close Period in Oracle Apps Inventory
How to Close Period in Oracle Apps Inventory
 
Setup of budget in oracle
Setup of budget in oracleSetup of budget in oracle
Setup of budget in oracle
 
Oracle R12 Apps - Purchasing Module Setup Steps
Oracle R12 Apps - Purchasing Module Setup Steps Oracle R12 Apps - Purchasing Module Setup Steps
Oracle R12 Apps - Purchasing Module Setup Steps
 
Oracle Sourcing Setup
Oracle Sourcing SetupOracle Sourcing Setup
Oracle Sourcing Setup
 
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...
Oracle SCM Functional Interview Questions & Answers - Inventory Module - Part...
 
iSupplier Portal- Manage supplier/vendor challenges
iSupplier Portal- Manage supplier/vendor challengesiSupplier Portal- Manage supplier/vendor challenges
iSupplier Portal- Manage supplier/vendor challenges
 
Inventry..
Inventry..Inventry..
Inventry..
 
Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...
Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...
Easing Reconciling Oracle Inventory and General Ledger with Simplified Proced...
 
Procurement of Services using Oracle EBS
Procurement of Services using Oracle EBSProcurement of Services using Oracle EBS
Procurement of Services using Oracle EBS
 
Mrp
MrpMrp
Mrp
 
Oracle R12 SCM Functional Interview Questions - Order Management,
Oracle R12 SCM Functional Interview Questions - Order Management, Oracle R12 SCM Functional Interview Questions - Order Management,
Oracle R12 SCM Functional Interview Questions - Order Management,
 
Webcast: BUDGETING - R12.1.3 ORACLE GENERAL LEDGER
Webcast: BUDGETING - R12.1.3 ORACLE GENERAL LEDGERWebcast: BUDGETING - R12.1.3 ORACLE GENERAL LEDGER
Webcast: BUDGETING - R12.1.3 ORACLE GENERAL LEDGER
 

Similar to Minimax vs reorder point

0562 financial management
0562 financial management0562 financial management
0562 financial managementhusnaink
 
234620953 lean-inventory
234620953 lean-inventory234620953 lean-inventory
234620953 lean-inventoryhomeworkping3
 
Lecture 3 Time varying demand inventory models.pdf
Lecture 3 Time varying demand inventory models.pdfLecture 3 Time varying demand inventory models.pdf
Lecture 3 Time varying demand inventory models.pdfChristina272851
 
Inventory Management
Inventory ManagementInventory Management
Inventory ManagementMOHD ARISH
 
21-Inventory Management-2.pdf
21-Inventory Management-2.pdf21-Inventory Management-2.pdf
21-Inventory Management-2.pdfMunaza21
 
Inventory management and budgetary control system.
Inventory management and budgetary control system.Inventory management and budgetary control system.
Inventory management and budgetary control system.Rajath Kunder
 
Inventory management
Inventory managementInventory management
Inventory managementkahogan62
 
Bba 3274 qm week 7 inventory models
Bba 3274 qm week 7 inventory modelsBba 3274 qm week 7 inventory models
Bba 3274 qm week 7 inventory modelsStephen Ong
 
Just in Time Cost
Just in Time CostJust in Time Cost
Just in Time Costacctg2012
 
Inventry Management
Inventry ManagementInventry Management
Inventry ManagementTribi
 
Chapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docx
Chapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docxChapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docx
Chapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docxcravennichole326
 
Inventory Control and Replacement Analysis
Inventory Control and Replacement Analysis Inventory Control and Replacement Analysis
Inventory Control and Replacement Analysis Priyanshu
 
Additional Inventory Lecture.pptx
Additional Inventory Lecture.pptxAdditional Inventory Lecture.pptx
Additional Inventory Lecture.pptxSheldon Byron
 
Inventory management for remote healthcare
Inventory management for remote healthcareInventory management for remote healthcare
Inventory management for remote healthcareyaserhussain7860
 
Inventory , Forecasting, Quality Management
Inventory , Forecasting, Quality ManagementInventory , Forecasting, Quality Management
Inventory , Forecasting, Quality ManagementSantoshiSilla
 
ESCMPRESENTATION.pptx
ESCMPRESENTATION.pptxESCMPRESENTATION.pptx
ESCMPRESENTATION.pptxPondiLanka
 

Similar to Minimax vs reorder point (20)

Reordering point
Reordering pointReordering point
Reordering point
 
0562 financial management
0562 financial management0562 financial management
0562 financial management
 
234620953 lean-inventory
234620953 lean-inventory234620953 lean-inventory
234620953 lean-inventory
 
Lecture 3 Time varying demand inventory models.pdf
Lecture 3 Time varying demand inventory models.pdfLecture 3 Time varying demand inventory models.pdf
Lecture 3 Time varying demand inventory models.pdf
 
Inventory Management
Inventory ManagementInventory Management
Inventory Management
 
21-Inventory Management-2.pdf
21-Inventory Management-2.pdf21-Inventory Management-2.pdf
21-Inventory Management-2.pdf
 
Inventory management and budgetary control system.
Inventory management and budgetary control system.Inventory management and budgetary control system.
Inventory management and budgetary control system.
 
Inventory management
Inventory managementInventory management
Inventory management
 
Bba 3274 qm week 7 inventory models
Bba 3274 qm week 7 inventory modelsBba 3274 qm week 7 inventory models
Bba 3274 qm week 7 inventory models
 
Just in Time Cost
Just in Time CostJust in Time Cost
Just in Time Cost
 
Ch161 inv1
Ch161 inv1Ch161 inv1
Ch161 inv1
 
Inventry Management
Inventry ManagementInventry Management
Inventry Management
 
Ch161 inv1
Ch161 inv1Ch161 inv1
Ch161 inv1
 
Chapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docx
Chapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docxChapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docx
Chapter 12 - Inventory ManagementChapter 13 - Inventory Manage.docx
 
Safety stock
Safety stockSafety stock
Safety stock
 
Inventory Control and Replacement Analysis
Inventory Control and Replacement Analysis Inventory Control and Replacement Analysis
Inventory Control and Replacement Analysis
 
Additional Inventory Lecture.pptx
Additional Inventory Lecture.pptxAdditional Inventory Lecture.pptx
Additional Inventory Lecture.pptx
 
Inventory management for remote healthcare
Inventory management for remote healthcareInventory management for remote healthcare
Inventory management for remote healthcare
 
Inventory , Forecasting, Quality Management
Inventory , Forecasting, Quality ManagementInventory , Forecasting, Quality Management
Inventory , Forecasting, Quality Management
 
ESCMPRESENTATION.pptx
ESCMPRESENTATION.pptxESCMPRESENTATION.pptx
ESCMPRESENTATION.pptx
 

Recently uploaded

Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkPixlogix Infotech
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 

Recently uploaded (20)

Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App Framework
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 

Minimax vs reorder point

  • 1. Oracle Reorder Point and Min-max Planning: Based on Outdated Concepts? Dr. Volker Thormählen 0 Summary The Inventory module of Oracle Applications Release 10.7 supports only 2 planning methods for independent demand: Reorder Point and Min-max planning. In the following both methods are evaluated from the viewpoint of a non-manufacturing (importer, wholesaler, distributor, retailer, etc.) environment. The functional limitations of such traditional approaches will be explained and compared with more progressive or trendy concepts such as Distribution Requirements Planning and Just-In-Time delivery. Kanban replenishment, a new functionality in Release 11, is not covered, because it is mainly a means of supporting pull-based inventory replenishment in manufacturing systems. 1 Reorder Point Planning Reorder Point planning and its derivatives have been around since 1934, see [4], p. 40. A continuous review of inventories is always assumed. A fixed order quantity is usually suggested by the system whenever the inventory position drops to the reorder point or lower. Note that the inventory position includes on-hand and on-order stock (= planned receipts). The Reorder Point (also known as reorder level) is equal to the safety stock plus the expected average sales (or usage) quantity within the replenishment lead time. From a physical standpoint, these two types of inventory levels are not separated. Safety stock, also referred to as buffer stock, is used to protect against the random fluctuations in demand and/or supply. It makes up inventory held to protect against forecast errors, changes in customer's orders, quality defects, or late shipments from the supplier of an inventory item. A graphical illustration (the traditional saw-tooth diagram) and a mathematical treatment of the system and its derivatives are provided in [7]. Reorder Point planning is equivalent to a common visual review system called two-bin system. This method uses two physical storage locations with stock of the same item. When one bin becomes empty, a replenishment order is placed to refill it while demand is filled from the second bin. Reorder Point planning regards replenishment quantity as the main cost driver. But frequently the number of purchase order lines during the planning horizon is considered to be a more appropriate measure for cost behaviour, see [8], p. 87. Other weak points are related to rather strict assumptions needed to derive the basic mathematical model(s) for Reorder Point planning. The standard assumptions for Reorder Point planning are listed in the following: • Inventory items are treated entirely independent of others, that is, possible benefits from joint reorder planning (as described in section 3, see below) are ignored or do not exist • Planning horizon is rather long, usually 1 year • Total sales (or usage) during the planning horizon is constant • Demand rate is deterministic with constant mean and stable variability, that is, the item is in the mature stage of its life cycle • Total demand can be fully covered, that is, no shortages are allowed • Replenishment lead time is constant, that is, of zero or nonzero duration • Inventory carrying costs per unit per year do not depend on the replenishment quantity, that is, semi-variable or semi-fixed (= stepped) costs do not occur by definition • Acquisition cost per unit does not depend on order quantity, that is, quantity discounts for larger orders on unit purchase price and/or unit transportation cost are neglected • Withdrawals from inventory take place in rather small quantities, that is, crossing of the Reorder Point can be recognised in time • Purchase orders for inventory replenishment can be issued at any time, that is, no time and no quantity restrictions exist with respect to the reorder quantity page 1 of 9
  • 2. The (suggested) purchase order quantity need not be an integer number of units, that is, there are no upper or lower limits as well as rounding rules on its size • The entire purchase order quantity is delivered at the same time, that is, no partial shipments are allowed • Permanent monitoring of the Reorder Point is mandatory , that is, a continuous stock- taking sub-system is required in practice for a continuous review system with or without manual override capability with respect to reorder quantity Most of the standard assumptions listed above are also relevant for Oracle Reorder Point planning, but are not explicitly and completely mentioned in corresponding Inventory Reference Manual, see [5]. Knowing them precisely makes the assessment of applicability much easier for special categories of inventory items, for example: • perishable, exquisite, style, and fashion items • items with rapidly changing demand rate • items subject to volume discounts and freight restrictions • new and discontinued items • extremely seasonal items • high-value items • damaged, obsolete, used and otherwise deteriorated items • rare items which are difficult to replace • heavy and bulky items (where drop-shipment is frequently more cost-effective than stocking; besides, drop-shipment of sales orders is a new function in Release 11.) Oracle Reorder Point planning is intentionally not a completely automated system which allows no human intervention. It is generating replenishment proposals referred to as purchase requisitions using the so-called Economic Order Quantity (usually abbreviated as EOQ) and the safety stock as central inventory control parameters. Oracle offers only 3 options for calculation of safety stock for each item, see [5], p. 9-282: • Manually entered safety stock quantities and the date for which each quantity is effective • Percentage of forecasted demand for the item • Service level and MAD. Service level represents the probability that a customer order can be filled from available inventory. MAD represents the mean absolute deviation of forecast errors. Safety stock quantity is calculated using an equation based on described input parameters. Decision on safety stock is important, because in large measure, safety stock determines customer service level and total inventory investment. The more difficult an item is to predict, the more safety stock is allocated through Reorder Point logic. Since most forecast errors occur in slow-moving items, an inventory policy that bases safety stock on forecast error is wrong, see [8], p. 75. Allocating a fixed total safety stock investment among all items of an assortment to minimise • either expected total stockout occasions per year • or expected total value of shortages per year are much smarter strategies, see [7], p. 246. Such aggregate considerations in fact devalue the concept of the Reorder Point planning with safety stock calculated for individual items. Oracle Reorder Point planning uses inventory forecasting information to calculate average demand. Two naive forecasting methods are available based on historical item usage: Statistical forecasting and Focus forecasting, see [5], p. 9-297, also [8] and [9]. Oracle Reorder Point planning creates purchase requisitions for all items that meet the reorder condition optionally constrained by minimum and maximum order quantities as well as a fixed lot size multiplier, see [5], p. 9-285. page 2 of 9
  • 3. Oracle Reorder Point planning calculates the Reorder Point (comprising safety stock) independent of EOQ, although efficient algorithms have been published for simultaneous calculation of both decision variables, for example see [6], p. 728 and [10], p. 291. Simultaneous calculation usually results in lower total cost in a pre-specified planning horizon. Oracle Reorder Point planning does not consider possible price breaks and volume freight discounts when calculating the EOQ. Oracle Reorder Point planning is based on the assumption that replenishment lead time is constant. More advanced models treat replenishment lead time as a probabilistic variable following a normal, gamma, uniform, or other distribution. Generally a more realistic Reorder Point quantity will be achieved. When Oracle Reorder Point planning is used to calculate purchase requisitions, open customer orders are ignored. You could run corresponding planning report and miss items of which you have insufficient quantity to cover an open customer order. If the inventory position is not below Reorder Point, the item will not appear on the planning report at all. You can also have an item with an inventory position below the order point, and a large open sales order, but the suggested fixed order quantity is only sufficient to cover the independent demand forecast. If you convert these suggested quantities directly into purchase requisitions you will again be short, see [1], p. 2. Another problem inherent in Oracle Reorder Point planning is related to visibility and comprehensibility. There are no Reorder Point or order quantity levels visible in the system anywhere. You must run the corresponding planning report to see these levels. At the same time, suggested order quantities are not exactly reproducible, see [1], p 2. 2 Min-max Planning Besides Reorder Point planning Oracle Inventory covers Min-max planning. This approach again assumes continuous review of inventory levels. It is a planning method where the minimum is the reorder point and the maximum is the level the inventory is not to exceed. Order quantity is variable and is calculated by subtracting the inventory position (= on-hand quantity plus on-order quantity) from the maximum inventory level. When the result falls below the minimum quantity a reorder quantity up to maximum stock is suggested. The corresponding lot-sizing method is usually called replenishment to maximum stock. The Min-max system is commonly used for low volume items (so-called "C" parts of an ABC inventory analysis). The main advantage of this system is its simplicity. A possible disadvantage is the variable order quantity. A graphical illustration and a mathematical treatment of the Min-max system and its derivatives are provided in [7]. In case of unit-sized withdrawals from stock, Reorder Point and Min-max planning are equivalent, that is, resulting in the same reorder quantity. Most of the standard assumptions for continuous review inventory systems therefore also apply to Min-Max planning, see section 1. Oracle Min-Max planning does not take into account forecast demand during replenishment lead time when calculating the replenishment quantity, see [5], p. 9-280. Oracle Min-Max replenishment quantity recommendations take order modifiers into account. This may change the initial order size calculated by the system , see [5], p. 9-280. The major problem with present Oracle Min-max planning is that the minimum and maximum levels must be maintained manually by the users, see [1], p 1. This is very labour intensive when planning comprises many independent demand items and the system cannot react page 3 of 9
  • 4. effectively to changing conditions. To counteract this, inventory managers may tend to maintain high minimum quantities to cover random usage fluctuations. Errors in the levels are often not discovered until the inventory is dangerously low or until a physical count (or cycle count) reveals inventory in excess. This type of manually maintained system is not at all acceptable from both, a manufacturing and non-manufacturing point of view. 3 Periodic Review System In a periodic review system derivative usually called Topping-up system every T units of time a replenishment order is placed to raise the inventory position to the order-up-to-level S. The value of T is usually pre-specified and often dictated by external factors, such as frequency of full truckload shipment opportunities. The order-up-to-level S must be sufficient to cover demand through a disposition period of duration T + L. Figure 1 shows essential details of the Topping-up system. fixed reorder cycle: T1 = T2 = T3 = T4 variable order quantity: R1 # R2 # R3 # R4 quantity S = maximum quantity R1 R2 R3 R4 variable order quantity L L L remaining quantity T1 T2 T3 T4 time review review review review T = constant review interval L = constant replenishment lead time order quantity = maximum quantity - remaining quantity Figure 1: Periodic Review System: Illustration of the Topping-up System The amount of safety stock carried for an inventory item in a periodic review system depends on the variability of demand (forecast error) and the desired level of one-time shipments. The Topping-up system is used rather frequently in trading businesses where relatively short delivery times can be achieved by means of co-ordinated replenishment from a central distribution warehouse. The main disadvantage of the Topping-up system is that the inventory carrying costs are higher than in comparable continuous review systems. Presently Oracle Inventory does not support any periodic review system (also called fixed reorder cycle system) and corresponding derivatives such as the briefly described Topping- up system. 4 Joint Reorder Planning Joint replenishment usually happens when items kept in the same inventory are ordered from one supplier. A joint purchase order comprises several inventory items to obtain volume page 4 of 9
  • 5. and/or transportation discounts. Some of the benefits achieved from joint replenishment of purchased inventory items in these situations are listed in below: • Transportation economies (for example, full truck load shipments) • Reduced costs for sending purchase orders to suppliers • Trade discounts based on order value and/or order quantity • Accounts payables efficiencies achieved through reduction in paperwork For manufactured items analogous benefits can be achieved. A prerequisite for joint reorder planning is a periodic review system, see previous section. Corresponding inventory approach places purchase orders on a predetermined time schedule (daily, weekly, monthly, etc.). The actual purchase order quantity will vary from order to order based on how many units have been issued. At present Oracle Inventory does not support replenishment planning methods based on periodic review of inventory levels, although joint reorder planning is an attractive approach for some trading businesses. 5 Combination of continuous and periodic review system Combining the logic of Reorder Point planning with the logic of a periodic review system is possible in theory and practice. In addition to cyclic reordering, such a system will automatically generate a replenishment proposal as soon as the inventory position falls below the Reorder Point level. If this happens the system calculates the interval that starts from the point in time that the inventory position falls below the Reorder Point up to the availability date of the next regular planning run. This is used for the net requirements calculation. Suggested purchase order quantity must cover this time span. At the following regular planning date corresponding item is planned as usual. It has been shown that, under fairly general assumptions concerning demand pattern and cost factors involved, the described system produces lower total costs than any other. However, the computational effort to obtain the best values of the three inventory control parameters, • minimum stock level, • maximum stock level, and • review time is more intense, see [7], p. 241. The system is therefore most suitable for so-called "A" items of an ABC inventory analysis. Oracle Inventory does not support a combination of continuous and periodic replenishment planning for independent demand. Some competitive business software packages have this capability, for example SAP R/3. 6 Time-Phased Order Point Planning This approach has been derived from well-known Material Requirements Planning (MRP) logic as a means to determine when inventory replenishment orders must be placed to ensure a continuous supply of goods. Scheduled customer orders, demand forecasts or a combination of both are used to determine gross requirements at regular intervals for an item. Gross requirements represent the total demand for an item prior to accounting for corresponding quantity on hand and quantity on order (= scheduled to be received). The period split (day, week, month, etc.) for schedules and/or forecasts and the number of periods included in the schedules and/or forecasts is usually specified individually for each item, in other words, periods to be considered during requirements planning are determined by the user. The gross page 5 of 9
  • 6. requirements quantities are used in the planning process to calculate net requirements for every period as follows: • Gross requirements • minus projected available on hand inventory (= quantity physically in stock) • plus scheduled receipts (= orders released to supply sources in a prior planning period) • equals net requirement When there is a net requirement, then an order proposal is generated. The quantity stated in the order recommendation is calculated by the system according to a predetermined lot- sizing method. Depending on the method selected several net requirements quantities are pooled into one order quantity. The replenishment lead-time offset is established by determining when an item is needed to satisfy a net requirement. This allows the system to schedule a planned order receipt in one time period and the planned order release in a prior time period. The time span between these two dates is the required lead time. Therefore, a planned order release includes a release date and a due date. The planned order release results in one or more purchase orders which are transmitted to suppliers. Of course, a supplier can only ship the ordered quantity punctually if he gets corresponding purchase order on time. Planned replenishment orders exist only within the system and can be modified or cancelled during subsequent planning runs if conditions change. A simple numerical example for time-phased order point planning is shown below using the constants and variables listed in table 1. Symbol Meaning Dimension Value Variables t actual actual coverage date business calendar date to be calculated t planned planned coverage date business calendar date to be calculated t arrival requested arrival date business calendar date to be calculated Constants t calendar present planning date business calendar date 100 T period length of planning period workdays 10 T delivery delivery lead time workdays 25 T inspection incoming goods inspection time workdays 10 T safety safety stock time workdays 5 Table 1: Meaning of symbols, variables, and given parameters for coverage calculation 10 workdays per planning period are assumed, see table 1. Available stock covers 4,5 periods, see table 2. Consequently 45 workdays are covered. Present date of the business calendar equals 100. Accordingly actual range of coverage date equals 100 + 45, that is, tactual = 145. planning period P1 P2 P3 P4 P5 projected available 1500 1200 1000 700 200 - forecast demand 300 200 300 500 400 = net requirements 1200 1000 700 200 -200 Table 2: Relevant quantities subdivided by planning periods Expected total replenishment lead time equals 50 workdays, see table 1. Accordingly planned range of coverage date equals 100 + 50, that is, tplanned = 150, see table 3. page 6 of 9
  • 7. t calendar + T period + T delivery + T inspection + T safety = t planned 100 + 10 + 25 + 10 +5 = 150 Table 3: Formula for calculation of t planned If tactual < tplanned a purchase order must be issued. This reorder condition is met because 145 < 150. Requested arrival date tarrival for the purchase order is calculated as follows: t actual - T inspection - T safety = t arrival 145 - 10 -5 = 130 Table 4: Formula for calculation of t arrival Hence time-phased order point planning is a method that schedules each independent demand item to arrive at the proper point in time (that is, Just-In-Time) at the warehouse. Order size is determined by making use of an appropriate lot-sizing method, for example periods of supply. This method establishes, primarily through experience, an order quantity that will cover a pre-specified period of time. Thus EOQ calculation can be replaced by shipments totalling multiple periods of actual and/or forecasted demand. Presently Oracle Inventory does not support time-phased order point planning. This in turn means, that time-phased inventory planning can not be combined with dynamic lot-sizing methods such as the following: • periods of supply • period order quantity • lot-for-lot • part period balancing • least unit cost • least total cost Lot-sizing methods for individual items with time-varying demand are further detailed in [7], p. 198. 7 Distribution Requirements Planning Time-phased order point planning is closely related to Distribution Requirements Planning (DRP). In the mid seventies this planning method appeared on the scene to assist with problems related to physical distribution, see [4], p. 41. DRP involves meeting customer requirements and receiving and storing goods at the lowest cost possible for a pre-specified planning horizon. Distribution Resource Planning is a scheduling system that extends DRP into the planning of key resources contained in a distribution system such as warehouse space, warehouse workforce, investment into inventory, and transportation capacity. Distribution systems are usually classified as being either a push or a pull system. A push system moves the inventory from a central source of supply out to the field warehouses. Thus replenishment decisions are made centrally, based on forecasted and/or actual demand. This is in contrast to a pull system where replenishment decisions are made at the field warehouses. DRP is most frequently used in conjunction with a push system of distribution inventory planning and control where all levels of the distribution system are owned by the same company. A significant number of trading companies who serve customers through a distribution network have substituted Reorder Point respectively Min-max planning in favour of DRP where emphasis is on order timing and quantity methods. page 7 of 9
  • 8. Oracle Inventory is suitable for representation of a company's inventory sites and business units as well as corresponding physical and logical units. In other words, definition of distribution structures can be defined without considerable restrictions. This is also true for inter-inventory transfer transactions within a distribution network. • DRP (as needed for a push distribution system) is presently not completely available within the functional scope of the Oracle Inventory module. • Oracle Reorder Point or Min-max inventory planning can be utilised for the purpose of a pull distribution system. But small customisations may be necessary for particular distribution networks, see practical case study outlined in [1]. 8 Conclusions From the perspective of trading businesses continuous review systems such as Oracle Reorder Point and Min-max planning are not old-fashioned. But their successful application heavily depends on the goodness of fit between the inventory planning model (and its underlying assumptions) on the one side and business reality on the other. For particular inventory item categories and non-linear cost behaviour (due to price breaks, freight restrictions, and the like) derivatives of the basic planning models are desirable. Oracle Inventory does not support a wide choice of inventory planning models for independent demand. The ones available deserve some enhancements. The choice of lot- sizing methods is limited to EOQ and replenishment up to maximum stock level. But as more models and methods can be selected the approximation to business reality will improve. More progressive or trendy concepts suitable for distribution inventory planning and distribution channel integration (frequently referred to as inter-corporate logistics, quick response, continuous replenishment, supply chain management, partnership in merchandise flow, just-in-time distribution, and stockless materials management) are not an integral part of Oracle Inventory Release 10.7. 9 Remark No claim concerning the completeness and correctness of the statements in this article can be made. They represent purely the author’s own understanding of Oracle Inventory Release 10.7. Several people contributed to this article in various ways. These include Russel Hougthon, Stephan Seltmann, and Ian D. Spencer. To them all go my heartfelt thanks. 10 Bibliography [1] Fink, John, Planning - MinMax or Reorder Point. Is there another option?, Presentation and Abstract, OAUG fall conference, Sept. 26-30, 1999, Orlando, Florida, 198 slides, 10 pages [2] Graham, Gordon, Distribution Inventory Management, Inventory Management Press, Richardson, Texas, 1988, 336 pages, ISBN: 0-31-701548-6 [3] Harmon, Roy L., Reinventing the Warehouse: World Class Distribution Logistics, The Free Press, New York, etc. 1993, 364 pages, ISBN 0-02-913863-9 [4] Martin, Andre J., DRP: Distribution Resource Planning, The Gateway to True Quick Response and Continuous Replenishment, John Wiley & Sons, Inc. New York, etc., revised ed., 1995, 329 pages, ISBN 0-471-13222-5 [5] Oracle Corporation, Oracle Inventory Reference Manual, Volume 3, Part No. A12991-2, March 1994 [6] Vollman, Thomas E., Berry, William L., Whybark, D. Clay, Manufacturing Planning and Control Systems, 3rd ed., Richard D. Irwin Inc., Homewood, Boston, 1992, ISBN 0-256- 08808-X page 8 of 9
  • 9. [7] Silver, Edward Allen, Pyke, David F., Peterson, Rein, Inventory Management and Production Planning and Scheduling, 3rd ed., John Wiley & Sons, Inc., New York, etc., 1998, 754 pages, ISBN 0-471-11947-4 [8] Smith, Bernard T., Focus Forecasting: Computer Techniques for Inventory Control, CBI Publishing Company, Inc., Boston 1978, 258 pages, ISBN 0-8436-0761-0 [9 Smith, Bernard T., Focus Forecasting and DRP: Logistics Tools for the Twenty-first Century, 1st ed., Vantage Press, New York, 1991, 227 pages, ISBN 0-9876-5432-1 [10] Thormählen, Volker, Inventory Valuation according to German Commercial and Tax Legislation, Version 2.1, Cologne / Germany, March 20, 1996, 24 pages, 5 tables, 27 diagrams, 7 literature sources [11] Tyworth, John E., Guo, Yuanming, Ganeshan, Ram, Inventory Control under Gamma Demand and Random Lead Time, in: Journal of Business Logistics, Vol. 17 (1996), No. 1, p. 291 - 304 (Numerical methods to find optimum joint (s, Q) solutions) 11 Contact address Dr. Volker Thormählen Bull GmbH Theodor-Heuss-Str. 60 - 66 51149 Köln-Porz Germany Tel.: + 49 (0) 2203 305-1719 Fax: + 49 (0) 2203 305-1699 Email: volker.thormaehlen@bull.de volker.thormaehlen@doag.org dr.volker@thormahlen.de page 9 of 9