SlideShare a Scribd company logo
1 of 190
Download to read offline
Luc_Faucheux_2021
THE RATES WORLD โ€“ Part IV_a
Starting to look at modeling rates, a taxonomy of
modelsโ€ฆappendix on IRMA, and mostly 2 factors
short rate models, plus my squid teacher
1
Luc_Faucheux_2021
Couple of notes on those slides
ยจ This is expanding a little the section on the IRMA function
ยจ More generally we are looking at multi factor short rate models
ยจ Trip down memory lane about some short rate models that were common in the โ€˜80s and
โ€˜90s
ยจ Actually most of those came from Salomon Brothers, those guys had a 3 factor model up
and running in the late โ€˜70s, and with people moving to other firms it gradually became the
standard for a while
ยจ These days I do not think that anyone still use it, as most the of the industry moved to LMM,
BGM and FMM models based on the forwards, not the short rate, as computing became
cheaper and faster (still rates is the requirements are โ€œinordinately demandingโ€ as Peter
Carr would say)
2
Luc_Faucheux_2021
IRMA
ยจ If you get bored with one-factor short rate models, you can using multi-factors short rate
models.
ยจ If you are a genius like Craig Fithian and worked at Salomon in 1972, you write (am using the
SIE form to be more compact) what got to be known worldwide as the 2+ IRMA model
ยจ !
๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด[๐‘ง ๐‘ก + ๐œ‡ ๐‘ก ]
ยจ Where ๐ผ๐‘…๐‘€๐ด(z) is the IRMA function (Interest Rate Mapping I think) which created an
incredible stable skew, they had historical data on skew going back to the 1960
ยจ IRMA was not named after the hurricane from 2017
3
Luc_Faucheux_2021
IRMA - II
ยจ The Salomon IRMA function was NOT named after hurricane IRMA (2017)
4
Luc_Faucheux_2021
IRMA - III
ยจ I recalled the day when working there I got my hands on the original code (which I think was
in FORTRAN) from 1972.
ยจ Thinks about it, when Black Sholes came out, Salomon Brothers was running its swap and
option desk with a 3-factor short rate model with IRMA skew !!
ยจ The trick was the calibration of the IRMA mapping.
ยจ It was defined with 3 variables originally (we then extended to 4 to account for negative
rates, and yours truly tried to replace IRMA with SQUID, more to come on this), but the
original three variables were:
ยจ <
Intercept ๐ผ
Slope ๐‘†
Regime Change ๐‘…
5
Luc_Faucheux_2021
IRMA - IV
ยจ The IRMA function ๐ผ๐‘…๐‘€๐ด ๐‘ง was actually defined by parametrizing the function:
ยจ ๐‘” ๐‘Ÿ =
$%&'( #
$#
=
$%&'(
$#
๐ผ๐‘…๐‘€๐ด)* ๐‘Ÿ = ๐ผ๐‘…๐‘€๐ดโ€ฒ(๐ผ๐‘…๐‘€๐ด)* ๐‘Ÿ )
6
๐‘Ÿ
๐‘”(๐‘Ÿ)
Regime Change ๐‘…
Intercept ๐ผ
Slope ๐‘†
Luc_Faucheux_2021
IRMA - V
ยจ Above the Regime Change ๐‘…, the function IRMA is a straight line of slope ๐‘†
ยจ If that straight line was continued below the regime change ๐‘… it would intercept the y-axis at
the Intercept ๐ผ
ยจ Below the Regime Change ๐‘…, the function IRMA is a quadratic function that connect with
the straight line at the point (๐‘…, ๐ผ + ๐‘†. ๐‘…) and goes through the origin (0,0)
ยจ Note, when I got there in 2002, that function was still used throughout the firm and
matched the observed skew in a very stable and remarkable manner. We dabbled into
tweaking it for negative rates by essentially adding a parameter similar to the shifted
lognormal model, so that the above sentence got changed to:
ยจ Below the Regime Change ๐‘…, the function IRMA is a quadratic function that connect with
the straight line at the point (๐‘…, ๐ผ + ๐‘†. ๐‘…) and goes through a point (โˆ’๐‘, 0) left of the origin
7
Luc_Faucheux_2021
IRMA - VI
ยจ You can see the beauty of this: ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด[๐‘ง ๐‘ก + ๐œ‡ ๐‘ก ]
ยจ IF (๐‘† = 0, ๐‘… = 0, ๐ผ = ๐‘๐‘ก๐‘’) then we have: ๐‘” ๐‘Ÿ = ๐ผ and so
$%&'( #
$#
= ๐ผ
ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง = ๐ผ. ๐‘ง + ๐ถ is a linear function of the Gaussian variable ๐‘ง ๐‘ก , the model will
produce a NORMAL skew
ยจ IF (๐‘† = ๐‘๐‘ก๐‘’, ๐‘… = 0, ๐ผ = 0) then we have: ๐‘” ๐‘Ÿ = ๐‘†. ๐‘Ÿ and so
$%&'( #
$#
= ๐‘†. ๐ผ๐‘…๐‘€๐ด(๐‘ง)
ยจ We then get: ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง = exp ๐‘†. ๐‘ง + ๐ถ
ยจ ๐‘Ÿ ๐‘ก is an exponential function of the Gaussian variable ๐‘ง ๐‘ก , the model will produce a
LOGNORMAL skew
ยจ The quadratic part under the Regime Change ๐‘… when non-zero will fold the distribution of
๐‘ง ๐‘ก back on positive rates, so the model avoids negative rates (which for a while was
deemed to be a good thing, unless things changed)
ยจ We will go back to all the beautiful ways we can parametrize IRMA to recover the market
skew and smile
8
Luc_Faucheux_2021
IRMA - VII
ยจ The 3 parameters had been calibrated to historical data for the skew covering like 40 years
of historical market moves or so, which was in itself amazing (the fact that Salomon had a
clean database that you could use that was going back so far)
ยจ The 3 parameters were surprisingly stable, and essentially produced something that was
getting Lognormal at low rates below the Regime Change ๐‘…, and closer to Normal above the
Regime Change ๐‘…
ยจ Ask anyone who worked on the options desk there and worked with 2+IRMA, and they
might still remember by heart those parameters
ยจ <
Intercept ๐ผ = 0.06
Slope ๐‘†=0.2
Regime Change ๐‘… = 0.01
ยจ Yours truly worked on implemented SQUID in order to recover the market skew and smile at
high strike (SQUID=Skew of Quadratic Interest rate Distribution)
9
Luc_Faucheux_2021
IRMA - VIII
ยจ The SQUID function ๐‘”(๐‘Ÿ) in order to recover skew and smile. Long live baby squid Cthulhu !!
10
๐‘Ÿ
๐‘”(๐‘Ÿ)
Intercept ๐ผ
Slope ๐‘†
Regime Change ๐‘…! Quadratic Switch ๐‘…"
Luc_Faucheux_2021
2+ IRMA in the literature
11
Luc_Faucheux_2021
IRMA - VIII
ยจ The model became quite widely known and adopted in the literature and in the financial
industry.
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น(๐‘ง)
ยจ It is referred to as a 3 factors OU (Ornstein-Uhlenbeck) process
ยจ Remember Ornstein-Uhlenbeck is only a fancy way to say โ€œLangevinโ€
12
Luc_Faucheux_2021
IRMA - IX
ยจ At Citi, it was known as 2+
ยจ The reason it was known as 2+ is actually quite funny. A two factor version had been
implemented previously and had been approved internally by Risk, modeling,โ€ฆ
ยจ A three factor version would have been too much work to go through all the documentation
and approval processes (remember at the time things were a little more flexible), so it was
easier to pass the new 3-factor model as a modification (a +) on the existing 2-factor model
and call it 2+
ยจ Every time an option trader drives on the highway and sees the sign for the HOV (High
Occupancy Lanes) with usually an indication of โ€œ2+โ€, meaning that you can be on the HOV if
you have 2 passengers or more in your car, he or she think with sweet longing about the 2+
IRMA model, at least I know I do
13
Luc_Faucheux_2021
Piterbarg 2 factor Gaussian model
14
Luc_Faucheux_2021
IRMA - Piterbarg - I
ยจ In the literature, it is sometimes referred to (with some tweaks) as the Gaussian model.
ยจ In Piterbarg (p. 494), you see the original formulation of the โ€2 Factor Gaussian modelโ€
ยจ Piterbarg actually writes the equations as:
ยจ ๐‘‘๐œ€ = โˆ’๐‘˜+. ๐œ€. ๐‘‘๐‘ก + ๐œŽ+. ([). ๐‘‘๐‘Š
+
ยจ ๐‘‘๐‘Ÿ = ๐‘˜,. {๐œ— ๐‘ก + ๐œ€ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ,. ([). ๐‘‘๐‘Š
,
ยจ With: < ๐‘‘๐‘Š
+. ๐‘‘๐‘Š
, >= ๐œŒ. ๐‘‘๐‘ก
15
Luc_Faucheux_2021
IRMA - Piterbarg - II
ยจ But you can break those down as:
ยจ Step 1: replace ๐œ€ ๐‘ก by ๐‘ฅ ๐‘ก (that is an easy oneโ€ฆ)
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘Ÿ = ๐‘˜,. {๐œ— ๐‘ก + ๐‘ฅ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ,. ([). ๐‘‘๐‘Š
,
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
, >= ๐œŒ. ๐‘‘๐‘ก
16
Luc_Faucheux_2021
IRMA - Piterbarg - III
ยจ Step 2: forget about the second equation because this is a 2-factor model, not a 3-factor one
ยจ So forget about ๐‘ฆ being stochastic variable, it is a deterministic variable
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘ฆ(๐‘ก) = ๐œ— ๐‘ก
ยจ ๐‘‘๐‘ง = ๐‘˜#. {๐‘ฆ ๐‘ก + ๐‘ฅ ๐‘ก โˆ’ ๐‘ง ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
# >= ๐œŒ. ๐‘‘๐‘ก
ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง
ยจ That is as simple an IRMA function as we can get, and is called Gaussian because it does not
perturb the initial Gaussian distribution of the Langevin equations. I will add the slides from
the Langevin deck to remind us that the probability distribution is a Gaussian indeed
ยจ Also the linear transformation ๐น ๐‘ง = ๐‘ง keeps the Gaussian untouched
17
Luc_Faucheux_2021
IRMA - Piterbarg - IV
ยจ In that formulation:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘ฆ(๐‘ก) = ๐œ— ๐‘ก
ยจ ๐‘‘๐‘ง = ๐‘˜#. {๐‘ฆ ๐‘ก + ๐‘ฅ ๐‘ก โˆ’ ๐‘ง ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
# >= ๐œŒ. ๐‘‘๐‘ก
ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง
ยจ It is usually customary to think of the variable ๐‘ฅ(๐‘ก) as the โ€œshort-term rateโ€ or more exactly
shocks in the front end of the curve
ยจ The variable ๐‘ฆ(๐‘ก) = ๐œ— ๐‘ก is then the slope of the yield curve
ยจ Bear in mind though that this is still a short rate model and not a term structure model
18
Luc_Faucheux_2021
IRMA - Piterbarg - V
ยจ Alternatively, to make it even closer to 2+IRMA, we can write it as:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง + ๐œ— ๐‘ก
ยจ With:
ยจ ๐œŽ" = 0
ยจ ๐‘˜" = 0
ยจ ๐‘ฆ ๐‘ก = ๐‘ฆ 0 = 0
19
Luc_Faucheux_2021
Mercurio G2++ model
20
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - I
ยจ In the Mercurio book it is referred to as the G2++ model, which is quite close to the original
โ€œ2+โ€ terminology at Salomon Brothers (p.132)
21
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - II
ยจ Mercurio writes down the model as (p.133)
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘Ž. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘. ๐‘ฆ. ๐‘‘๐‘ก + ๐œ‚. ([). ๐‘‘๐‘Š
"
ยจ ๐‘Ÿ ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ ๐‘ก + ๐œ‘(๐‘ก)
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
ยจ We can see again that we can recast those in the 2+IRMA format with:
ยจ ๐‘˜! = ๐‘Ž
ยจ ๐‘˜" = ๐‘
ยจ ๐œŽ! = ๐œŽ
ยจ ๐œŽ! = ๐œ‚
22
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - III
23
ยจ We then get:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ ๐‘Ÿ ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ ๐‘ก + ๐œ‘(๐‘ก)
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
ยจ Again because it is a 2 factor model, the third variable in this case is deterministic and set to:
ยจ ๐‘ง ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ ๐‘ก
ยจ Which itself is the limit of the original:
ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With ๐œŽ# = 0 and ๐‘˜# โ†’ โˆž
ยจ And then ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘(๐‘ก)
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - IV
ยจ So the G2++ model from Mercurio is also the 2+IRMA with the following:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น(๐‘ง)
ยจ ๐œŽ# = 0
ยจ ๐‘˜# โ†’ โˆž so ๐‘ฅ + ๐‘ฆ โˆ’ ๐‘ง โ†’ 0 so ๐‘ง ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ(๐‘ก)
ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘(๐‘ก)
ยจ So again the fact that the IRMA function ๐น ๐‘ง is affine enforces the Gaussian distribution
24
Luc_Faucheux_2021
Why do we call those models โ€œGaussianโ€ ?
25
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - V
ยจ Why is called Gaussian by the way ? Looks pretty complicated, how do we know that
distribution is a Gaussian ?
ยจ First of all, letโ€™s look at the equations for ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก)
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ They BOTH individually fit the Langevin equation (or if you are in Finance you call that OU
process, again just ask Ranjit Bhattacharjee, the king of OU models)
ยจ Time for a little refresher on the results of the Langevin deck, using some of those slides
verbatim
26
Luc_Faucheux_2021
PDF for the Langevin equation - XVI
ยจ Langevin equation is usually for the particle velocity:
ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜. ๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š
ยจ With the usual Diffusion coefficient ๐ท =
-!
.
ยจ ๐‘/ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 =
0
.12.(*)567 ).08 )
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜
(:);" < .567 )08 )!
.2.(*)567 ).08 )
)
ยจ Remember ๐‘‰ ๐‘ก is the stochastic process
ยจ ๐‘ฃ is a regular variable
ยจ ๐‘ƒ/ ๐‘ฃ, ๐‘ก = ๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘Ž๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐‘‰ โ‰ค ๐‘ฃ, ๐‘ก = โˆซ
"=)>
"=:
๐‘/ ๐‘ฆ, ๐‘ก . ๐‘‘๐‘ฆ
ยจ ๐‘/(๐‘ฃ, ๐‘ก) =
?
?:
๐‘ƒ/ ๐‘ฃ, ๐‘ก sometimes just noted ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0
27
Luc_Faucheux_2021
PDF for the Langevin equation - XVIII
ยจ After much calculation, this is the celebrated Langevin PDF:
ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 =
0
.12.(*)567 ).08 )
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜
(:);" < .567 )08 )!
.2.(*)567 ).08 )
)
ยจ SMALL TIME LIMIT
ยจ IF ๐‘ก โ†’ 0
0
2.(*)567 ).08 )
=
*
.28
+ ๐•† ๐‘ก.
ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 โ†’
*
@128
. ๐‘’๐‘ฅ๐‘(โˆ’
(:);" < )!
@28
)
ยจ At short time scales (underdamped regime), the Langevin diffuses as a regular diffusion
process
ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š โ†’ ๐œŽ. ๐‘‘๐‘Š
28
Luc_Faucheux_2021
PDF for the Langevin equation - XIX
ยจ SMALL ๐‘˜ limit
ยจ IF ๐‘˜ โ†’ 0
0
2.(*)567 ).08 )
=
*
.28
+ ๐•† ๐‘˜.
ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 โ†’
*
@128
. ๐‘’๐‘ฅ๐‘(โˆ’
(:);" < )!
@28
)
ยจ This is expected since when ๐‘˜ โ†’ 0 we should recover the usual diffusion:
ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š โ†’ ๐œŽ. ๐‘‘๐‘Š
29
Luc_Faucheux_2021
PDF for the Langevin equation - XX
ยจ STEADY STATE LIMIT
ยจ IF ๐‘ก โ†’ โˆž
0
2.(*)567 ).08 )
=
0
2
+ ๐•† ๐‘ก)*
ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 =
0
.12.(*)567 ).08 )
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜
(:);" < .567 )08 )!
.2.(*)567 ).08 )
)
ยจ ๐‘ ๐‘ฃ, ๐‘ก โ†’ โˆž|๐‘š* 0 , ๐‘ก = 0 =
0
.12
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜
:!
.2
)
ยจ This is referred to as the โ€œinvariant Gaussian distributionโ€
30
Luc_Faucheux_2021
PDF for the Langevin equation - XXI
ยจ In the case where ๐‘˜ โ†’ 0, the SDE becomes :
ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š = ๐œŽ. ๐‘‘๐‘Š
ยจ And we should recover the usual Brownian diffusion
ยจ ๐‘š* ๐‘ก = ๐‘š* 0 . exp โˆ’๐‘˜๐‘ก โ†’ ๐‘š* 0
ยจ ๐‘š. ๐‘ก = ๐‘š. โˆž + exp โˆ’2๐‘˜๐‘ก . ๐‘š. 0 โˆ’ ๐‘š. โˆž โ†’ ๐‘š. 0
ยจ ๐‘ ๐‘ฃ, ๐‘ก = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰< = ๐‘š* 0 , ๐‘ก = 0 =
*
.1;! 8
. ๐‘’๐‘ฅ๐‘(โˆ’
(:);" 8 )!
.;! 8
)
ยจ ๐‘ ๐‘ฃ, ๐‘ก = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰< = ๐‘š* 0 , ๐‘ก = 0 =
*
.1;! <
. ๐‘’๐‘ฅ๐‘(โˆ’
(:);" < )!
.;! <
)
31
Luc_Faucheux_2021
PDF for the Langevin equation - XXII
ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ ๐‘กA , ๐‘กA =
0
.12.(*)B#!$(&#&'))
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜
(:);" 8' .B#$(&#&'))!
.2(*)B#!$(&#&'))
)
ยจ The Langevin process is Gaussian (the PDF can be expressed as a Gaussian function)
ยจ The Langevin process is Markov (the PDF only depends on ๐‘‰ ๐‘กA , ๐‘กA and not on the entire
history before)
ยจ ๐‘ ๐‘ฃ, ๐‘ก|{๐‘‰ ๐‘  , ๐‘  โ‰ค ๐‘กA} = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ ๐‘กA , ๐‘กA
ยจ The Langevin process is stationary (only depends on (๐‘ก โˆ’ ๐‘กA))
ยจ ๐‘ ๐‘ฃ, ๐‘ก + โ„Ž|๐‘‰ ๐‘กA + โ„Ž = ๐‘‰
A, ๐‘กA + โ„Ž = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰
A, ๐‘กA
ยจ The increments of the Langevin process are NOT independents. Indeed the increments are
not even uncorrelated (as opposed to a Wiener process)
ยจ The correlation function decays as an exponential. In some textbooks they base the
definition of the process on the knowledge of the auto-correlation function, as an
equivalent starting point
32
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - VI
ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜. ๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š
ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ ๐‘กA = ๐‘ฃA, ๐‘กA =
0
.12.(*)B#!$(&#&'))
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜
(:):'.B#$(&#&'))!
.2(*)B#!$(&#&'))
)
ยจ ๐‘‘๐‘‹ = โˆ’๐‘˜!. ๐‘‹. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
! with ๐ท! =
-)
!
.
ยจ ๐‘C ๐‘ฅ, ๐‘ก|๐‘‹ ๐‘กA = ๐‘ฅA, ๐‘กA =
0)
.12). *)B#!$). &#&'
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜!.
(!)!'.B#$).(&#&'))!
.2).(*)B#!$).(&#&'))
)
ยจ ๐‘‘๐‘Œ = โˆ’๐‘˜". ๐‘Œ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
" with ๐ท" =
-+
!
.
ยจ ๐‘D ๐‘ฆ, ๐‘ก|๐‘Œ ๐‘กA = ๐‘ฆA, ๐‘กA =
0+
.12+. *)B#!$+. &#&'
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜".
(")"'.B#$+.(&#&')
)!
.2+.(*)B#!$+.(&#&')
)
)
33
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - VII
ยจ So both ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are normally distributed (the Probability distribution function is a
Gaussian).
ยจ Letโ€™s pick one
ยจ ๐‘C ๐‘ฅ, ๐‘ก|๐‘‹ ๐‘กA = ๐‘ฅA, ๐‘กA =
0)
.12). *)B#!$). &#&'
. ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜!.
(!)!'.B#$).(&#&'))!
.2).(*)B#!$).(&#&'))
)
ยจ This has a mean (average, expected value) given by:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8
E)
{๐‘‹ ๐‘ก ๐”‰ ๐‘กA = ๐‘ฅA. ๐‘’)0). 8)8' = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). = ๐”ผ8
E)
{(๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). ๐”‰ ๐‘กA
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
34
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - VIII
ยจ Another way to see that is to start from the SDE:
ยจ ๐‘‘๐‘‹ = โˆ’๐‘˜!. ๐‘‹. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
! with ๐ท! =
-)
!
.
ยจ We write the SIE using the ITO integral:
ยจ Letโ€™s define j
๐‘‹ ๐‘ก = exp ๐‘˜!. ๐‘ก . ๐‘‹(๐‘ก) and use the ITO lemma
ยจ ๐‘‘ j
๐‘‹ =
? F
C
?C
. [ . ๐‘‘๐‘‹ +
*
.
.
?! F
C
?C! . ๐‘‘๐‘‹. +
? F
C
?8
. [ . ๐‘‘๐‘ก
ยจ
? F
C
?8
= ๐‘˜!. ๐‘ก. ๐‘‹ ๐‘ก
ยจ
? F
C
?C
= exp(๐‘˜!. ๐‘ก)
ยจ
?! F
C
?C! = 0
35
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - IX
ยจ Again, remember that we used the notation for ITO lemma for sake of ease, what you really
have is a regular function
ยจ j
๐‘‹ = ๐‘“ ๐‘‹ Stochastic Variable
ยจ l
๐‘ฅ = ๐‘“ ๐‘ฅ Regular โ€œNewtonianโ€ variable with well defined partial derivatives
ยจ ๐›ฟ๐‘“ =
?G
?!
. ๐›ฟ๐‘‹ +
*
.
.
?!G
?!! . (๐›ฟ๐‘‹). +
?G
?8
. ๐‘‘๐‘ก
ยจ
?G
?!
=
?G
?!
|!=C 8 ,8
ยจ
?!G
?!! =
?!G
?!! |!=C 8 ,8
ยจ
?G
?8
=
?G
?8
|!=C 8 ,8
36
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - X
ยจ We then get:
ยจ ๐‘‘ j
๐‘‹ = exp ๐‘˜!. ๐‘ก . ([). ๐‘‘๐‘‹ + ๐‘˜!. ๐‘ก. ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘ก
ยจ ๐‘‘ j
๐‘‹ = exp ๐‘˜!. ๐‘ก . ([). (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!) + ๐‘˜!. ๐‘ก. ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘ก = exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘ j
๐‘‹ = exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ Which we should really write as an SIE anyways:
ยจ j
๐‘‹ ๐‘กI โˆ’ j
๐‘‹ ๐‘กA = โˆซ
8=8A
8=8I
๐‘‘ j
๐‘‹ ๐‘ก = โˆซ
8=8A
8=8I
exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ exp ๐‘˜!. ๐‘กI . ๐‘‹ ๐‘กI โˆ’ exp ๐‘˜!. ๐‘กA . ๐‘‹ ๐‘กA = โˆซ
8=8A
8=8I
exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‹ ๐‘กI = exp โˆ’๐‘˜!. ๐‘กI . {exp ๐‘˜!. ๐‘กA . ๐‘‹ ๐‘กA + โˆซ
8=8A
8=8I
exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)}
37
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XI
ยจ ๐‘‹ ๐‘กI = exp โˆ’๐‘˜!. ๐‘กI . {exp ๐‘˜!. ๐‘กA . ๐‘‹ ๐‘กA + โˆซ
8=8'
8=8,
exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)}
ยจ ๐‘‹ ๐‘กI = ๐‘‹ ๐‘กA . exp โˆ’๐‘˜!. (๐‘กI โˆ’ ๐‘กA) + exp โˆ’๐‘˜!. ๐‘กI . โˆซ
8=8'
8=8,
exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‹ ๐‘กI = ๐‘‹ ๐‘กA . exp โˆ’๐‘˜!. (๐‘กI โˆ’ ๐‘กA) + โˆซ
8=8'
8=8,
exp โˆ’๐‘˜!. ๐‘กI โˆ’ ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ก
ยจ ๐‘‹ ๐‘กI = ๐‘‹ ๐‘กA . ๐‘’)0).(8,)8') + โˆซ
8=8'
8=8,
๐‘’)0). 8,)8 . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ก
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
ยจ From there on, we know that the ITO integral is a martingale:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8
E)
{๐‘‹ ๐‘ก ๐”‰ ๐‘กA
38
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XII
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8
E)
{๐‘‹ ๐‘ก ๐”‰ ๐‘กA
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ8
E)
{๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข ๐”‰ ๐‘กA
ยจ ๐”ผ8
E)
{๐‘‹ ๐‘กA . ๐‘’)0). 8)8' ๐”‰ ๐‘กA = ๐‘‹ ๐‘กA . ๐‘’)0). 8)8'
ยจ ๐”ผ8
E)
{โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข ๐”‰ ๐‘กA = 0 since the ITO integral is a martingale.
ยจ This is at times a supe useful trick, to take the expected value of something that simplifies if
it contains an ITO integral
ยจ Calin book page 195 has a couple of nifty applications of this trick.
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0). 8)8'
39
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XIII
ยจ The variance is a little more complicated but also relies on a nifty little property of the ITO
integral, the isometry property.
ยจ So as a rule:
ยจ Average โ€“ Mean โ€“ Expected Value: use the fact that ITO integrals are martingale
ยจ Second moment โ€“ variance โ€“ standard deviation : use the fact that the ITO integral exhibits
the Isometry property
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). = ๐”ผ8
E)
{(๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). ๐”‰ ๐‘กA
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0). 8)8'
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
40
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XIV
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). = ๐”ผ8
E)
{(๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). ๐”‰ ๐‘กA
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ8
E)
{(โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข ). ๐”‰ ๐‘กA
ยจ This is where the isometry property comes handy.
ยจ Let us remind us first what it is:
ยจ ๐”ผ{ โˆซ
K=<
K=8
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘ 
.
} = โˆซ
K=<
K=8
๐‘“ ๐‘  .. ๐‘‘๐‘ 
ยจ ๐”ผ{ โˆซ
K=<
K=8
๐‘“ ๐‘Š ๐‘  , ๐‘  . ๐‘‘๐‘Š ๐‘ 
.
} = โˆซ
K=<
K=8
๐‘“ ๐‘Š ๐‘  , ๐‘  .. ๐‘‘๐‘ 
41
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XV
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ8
E)
{(โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข ). ๐”‰ ๐‘กA
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ8
E)
{โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!
.
. ๐‘‘๐‘ข ๐”‰ ๐‘กA
ยจ ๐‘‰ ๐‘‹ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!
.
. ๐‘‘๐‘ข
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐œŽ!
.. โˆซ
J=8'
J=8
๐‘’)..0). 8)J . ๐‘‘๐‘ข
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐œŽ!
.. [
*
..0)
. ๐‘’)..0). 8)J ]J=8'
J=8
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
..0)
. [1 โˆ’ ๐‘’..0). 8)8' ]
42
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XVI
ยจ So we do recover:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
43
Luc_Faucheux_2021
A sum of independent normally distributed
variables is also normally distributed
44
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XVII
ยจ OK, so we know that both ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are NORMALLY distributed (the Probability
Distribution function) is a Gaussian with mean and variance for ๐‘‹ ๐‘ก (and respectively same
for ๐‘Œ ๐‘ก by changing the notation)
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
ยจ So that could be an indication that defining:
ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘ ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ(๐‘ก) + ๐œ‘ ๐‘ก
ยจ Could lead to a Gaussian distribution for ๐‘Ÿ ๐‘ก
ยจ Really to stick to a somewhat consistent notation, we should have used capital letters for the
stochastic processes:
ยจ ๐‘… ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ = ๐‘ ๐‘ก + ๐œ‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) + ๐œ‘ ๐‘ก
ยจ Remember that ๐œ‘ ๐‘ก is a deterministic function and not a stochastic process
45
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XVIII
ยจ NOW, we also know by now that the sum of a bunch of independent variables that are
normally distributed is also normally distributed
ยจ The mean of the sum is the sum of the means
ยจ The variance of the sum is the sum of the variances
ยจ Suppose that ๐‘‹L are a number of independent random variables normally distributed with
respective means ๐‘šL and variances ๐‘ฃL
ยจ Yeah I know I have been using capital letter ๐‘€L and ๐‘‰L for those
ยจ Promised, once I get the book deal and rewrite it I will hire a couple of interns to ensure the
consistency of the notation throughout those decks
ยจ Then the sum ๐‘‹ = โˆ‘ ๐‘‹L has:
ยจ Mean: ๐‘€ = โˆ‘ ๐‘€L
ยจ Variance: ๐‘‰ = ๐œŽ. = โˆ‘ ๐‘‰L = โˆ‘ ๐œŽL
.
46
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XIX
ยจ Another way that we knew that was in the deck on the diffusion (Stochastic calculus II if I am
not mistaken), when looking at solution of the SDE:
ยจ dX(t)=	a(t).dt+b(t).dW
ยจ Letโ€™s refresh our memory with a couple of slides from this deck
47
Luc_Faucheux_2021
Sixth simple example โ€“ VIII dX= a(t).dt+b(t).dW
ยจ So we have the mapping:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก . ๐‘‘๐‘ก + ๐‘(๐‘ก). ([). ๐‘‘๐‘Š
ยจ
?
?8
. ๐‘ ๐‘ฅ, ๐‘ก = โˆ’
?
?!
๐‘Ž(๐‘ก). ๐‘(๐‘ฅ, ๐‘ก) โˆ’
I 8 !
.
.
?M !,8
?!
= โˆ’
?
?!
๐ฝN + ๐ฝ2
ยจ ๐ฝN = ๐‘Ž ๐‘ก . ๐‘(๐‘ฅ, ๐‘ก) and ๐ฝ2 ๐‘ฅ, ๐‘ก = โˆ’๐ท(๐‘ก).
?M !,8
?!
ยจ Defining:
ยจ z
๐œŽ(๐‘ก).. ๐‘ก = โˆซ
K=<
K=8
๐œŽ ๐‘  .. ๐‘‘๐‘  setting ๐œŽ ๐‘ก = ๐‘(๐‘ก) and ๐ท ๐‘ก =
-(8)!
.
ยจ Also defining: z
๐ท ๐‘ก . ๐‘ก = โˆซ
K=<
K=8
๐ท(๐‘ ). ๐‘‘๐‘ 
ยจ z
๐ท ๐‘ก is the average diffusion coefficient over time
ยจ z
๐œŽ ๐‘ก is the average volatility coefficient over time
48
Luc_Faucheux_2021
Sixth simple example โ€“ IX dX= a(t).dt+b(t).dW
ยจ Also defining:
ยจ ๐‘… ๐‘ก = ๐‘‹ ๐‘ก = ๐‘‹< + โˆซ
8=8<
8
๐‘Ž(๐‘ ). ๐‘‘๐‘ 
ยจ ๐‘‰ ๐‘ก = z
๐‘(๐‘ก).. ๐‘ก = โˆซ
K=<
K=8
๐‘ ๐‘  .. ๐‘‘๐‘  = z
๐œŽ(๐‘ก).. ๐‘ก = โˆซ
K=<
K=8
๐œŽ ๐‘  .. ๐‘‘๐‘  = z
2๐ท ๐‘ก . ๐‘ก = 2 โˆซ
K=<
K=8
๐ท(๐‘ ). ๐‘‘๐‘ 
ยจ A PDF solution for the above PDE is:
ยจ Subject to ๐‘ ๐‘ฅ, ๐‘ก = ๐‘ก< = ๐›ฟ ๐‘ฅ โˆ’ ๐‘‹ ๐‘ก< = ๐›ฟ(๐‘ฅ โˆ’ ๐‘‹<)
ยจ ๐‘ ๐‘ฅ, ๐‘ก =
*
.1O
- 8 ! 8)8-
. ๐‘’๐‘ฅ ๐‘ โˆ’
!)& 8
!
.O
- 8 ! 8)8-
=
*
@1O
2(8) (8)8-)
. ๐‘’๐‘ฅ๐‘(โˆ’
(!)& 8 )!
@O
2(8)(8)8-)
)
49
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XX
ยจ So this makes sense if you think of the sum of independent normal variables if you index those
variables with time
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก . ๐‘‘๐‘ก + ๐‘(๐‘ก). ([). ๐‘‘๐‘Š
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘‹(๐‘กA) = โˆซ
J=8'
J=8
๐‘‘๐‘‹(๐‘ข)
ยจ At each time ๐‘ก, the little increment ๐‘‘๐‘‹ ๐‘ก is picked from a normal distribution with mean
๐‘Ž ๐‘ก . ๐‘‘๐‘ก and variance ๐‘ ๐‘ก .. ๐‘‘๐‘ก
ยจ So ๐‘‹ ๐‘ก โˆ’ ๐‘‹(๐‘กA) is picked from a normal distribution with:
ยจ ๐‘… ๐‘ก = ๐‘‹ ๐‘ก = ๐‘€[๐‘‹(๐‘ก)] = ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8
E)
{๐‘‹ ๐‘ก ๐”‰ ๐‘กA = ๐‘‹(๐‘กA) + โˆซ
8=8'
8
๐‘Ž(๐‘ ). ๐‘‘๐‘ 
ยจ Variance: ๐‘‰ ๐‘ก = z
๐‘ ๐‘ก .. (๐‘ก โˆ’ ๐‘กA) = โˆซ
K=8'
K=8
๐‘ ๐‘  .. ๐‘‘๐‘  = z
๐œŽ ๐‘ก .. (๐‘ก โˆ’ ๐‘กA) = โˆซ
K=8'
K=8
๐œŽ ๐‘  .. ๐‘‘๐‘ 
ยจ ๐‘‰ ๐‘ก = z
2๐ท ๐‘ก . (๐‘ก โˆ’ ๐‘กA) = 2 โˆซ
K=8'
K=8
๐ท(๐‘ ). ๐‘‘๐‘ 
50
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXI
ยจ At each time ๐‘ก, the little increment ๐‘‘๐‘‹ ๐‘ก is picked from a normal distribution with mean
๐‘Ž ๐‘ก . ๐‘‘๐‘ก and variance ๐‘ ๐‘ก .. ๐‘‘๐‘ก
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘‹(๐‘กA) is picked from a normal distribution with:
ยจ Mean: โˆซ
8=8'
8
๐‘Ž(๐‘ ). ๐‘‘๐‘ 
ยจ Variance: โˆซ
K=8'
K=8
๐‘ ๐‘  .. ๐‘‘๐‘ 
ยจ So this should not come as a surprise that a sum of normally distributed random variable is
itself normally distributed
ยจ But WAIT a second you should say, the case we are looking at is NOT independent as we
have: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
! >= ๐œŒ. ๐‘‘๐‘ก
51
Luc_Faucheux_2021
A sum of independent normally distributed
variables is also normally distributed.
How about when there is correlation?
52
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXII
ยจ This is true indeed, so we just need to be a little more careful here.
ยจ Almost there in justifying the use of the term โ€œgaussianโ€ for those models, so here we go:
ยจ First of all, letโ€™s see what we can say about the mean and the variance, before saying
anything about the functional form of the PDF
ยจ We could also express the equations in a slightly different ways (do a Choleski
decomposition of the Covar matrix).
53
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXIII
ยจ In any case, letโ€™s look at the sum of two normally distributed variables that are NOT
independent (have a non-zero correlation)
ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก
ยจ ๐‘€ ๐‘‹ ๐‘ก and ๐‘‰ ๐‘‹ ๐‘ก are such that ๐‘‹ ๐‘ก ~๐‘(๐‘€ ๐‘‹ ๐‘ก , ๐‘‰ ๐‘‹ ๐‘ก )
ยจ ๐‘€ ๐‘Œ ๐‘ก and ๐‘‰ ๐‘Œ ๐‘ก are such that ๐‘Œ(๐‘ก)~๐‘(๐‘€ ๐‘Œ ๐‘ก , ๐‘‰ ๐‘Œ ๐‘ก )
ยจ ๐‘€ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ + ๐‘Œ = ๐”ผ ๐‘‹} + ๐”ผ{๐‘Œ = ๐‘€ ๐‘‹ ๐‘ก + ๐‘€ ๐‘Œ ๐‘ก
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ (๐‘(๐‘ก) โˆ’ ๐‘€ ๐‘ ๐‘ก ).
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘(๐‘ก). + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐‘(๐‘ก)
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘(๐‘ก).} + ๐”ผ{๐‘€ ๐‘ ๐‘ก .} โˆ’ ๐”ผ{2๐‘€ ๐‘ ๐‘ก . ๐‘(๐‘ก)
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘(๐‘ก).} + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐”ผ{๐‘(๐‘ก)
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘(๐‘ก).} + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐‘€ ๐‘ ๐‘ก
54
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXIV
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘(๐‘ก).} + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐‘€ ๐‘ ๐‘ก
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘(๐‘ก).} โˆ’ ๐‘€ ๐‘ ๐‘ก .
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{(๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก ).} โˆ’ ๐‘€ ๐‘ ๐‘ก .
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก . ๐‘Œ ๐‘ก + 2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ ๐‘€ ๐‘ ๐‘ก .
ยจ Note that I have been a little liberal on the notation for the expectation, as one needs to consider
the joint distribution. In any case:
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก . ๐‘Œ ๐‘ก + 2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ (๐‘€[๐‘‹ ๐‘ก + ๐‘€[๐‘Œ ๐‘ก ]).
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก } + ๐”ผ{๐‘Œ ๐‘ก . ๐‘Œ ๐‘ก } + ๐”ผ{2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ (๐‘€[๐‘‹ ๐‘ก + ๐‘€[๐‘Œ ๐‘ก ]).
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก .} + ๐”ผ{๐‘Œ ๐‘ก .} + ๐”ผ{2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ (๐‘€[๐‘‹ ๐‘ก + ๐‘€[๐‘Œ ๐‘ก ]).
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ ๐‘ก .
+ ๐”ผ ๐‘Œ ๐‘ก .
+ ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก .
โˆ’ ๐‘€ ๐‘Œ ๐‘ก .
โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ]
55
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXV
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ ๐‘ก .
+ ๐”ผ ๐‘Œ ๐‘ก .
+ ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก .
โˆ’ ๐‘€ ๐‘Œ ๐‘ก .
โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ]
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ ๐‘ก .
โˆ’ ๐‘€ ๐‘‹ ๐‘ก .
+ ๐”ผ ๐‘Œ ๐‘ก .
โˆ’ ๐‘€ ๐‘Œ ๐‘ก .
+ ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ]
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ]
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. {๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก }
ยจ Now:
ยจ ๐ด = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐ด = ๐”ผ ๐‘‹(๐‘ก . ๐‘Œ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘Œ ๐‘ก . ๐‘€[๐‘‹(๐‘ก)]}
ยจ ๐ด = ๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐”ผ{๐‘‹ ๐‘ก }. ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐”ผ{๐‘Œ ๐‘ก }. ๐‘€[๐‘‹(๐‘ก)]}
ยจ ๐ด = ๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . ๐‘€[๐‘‹(๐‘ก)]}
ยจ ๐ด = ๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก
56
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXVI
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. {๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก }
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ That is right there the definition of the covariance
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก
ยจ IF ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are independent, the Covariance is 0, and we recover the fact that the
variance of the sum is the sum of the variances
ยจ Note that the reverse is NOT true, you could have non-independent variable that will show a
0 covariance
57
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXVII
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ For example: ๐‘Œ ๐‘ก = ๐‘‹ ๐‘ก .
ยจ Obviously not independent
ยจ However
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘‹ ๐‘ก . โˆ’ ๐‘€[๐‘‹ ๐‘ก .])
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = ๐”ผ (๐‘‹ ๐‘ก P โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก . โˆ’ ๐‘€ ๐‘‹ ๐‘ก . . ๐‘‹ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘‹ ๐‘ก .])
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = ๐”ผ{ ๐‘‹ ๐‘ก P โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘‹ ๐‘ก .
ยจ Suppose that ๐‘‹ ๐‘ก is normally distributed, then
ยจ ๐”ผ{ ๐‘‹ ๐‘ก P = 0 and ๐‘€ ๐‘‹ ๐‘ก = 0
ยจ So ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = 0 even though obviously ๐‘‹ ๐‘ก and ๐‘‹ ๐‘ก . are not independent
58
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXVIII
ยจ All right, back to:
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก
ยจ Note that if ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก , then we also have by expanding the first equation:
ยจ ๐”ผ{ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก = ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก
ยจ So we have shown that the sum of two variables is such that:
ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก
ยจ ๐‘€ ๐‘ ๐‘ก = ๐‘€ ๐‘‹ ๐‘ก + ๐‘€ ๐‘Œ ๐‘ก
ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก
ยจ Note that this is NOT saying that if ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are normally distributed, then ๐‘ ๐‘ก is also
normally distributed. This requires a little more work but we are almost there.
59
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXIX
ยจ I have to admit here that I do not have a super elegant proof that the sum of correlated
Gaussians is also a Gaussian. Turns out the math get a little tricky between marginal and
jointly.
ยจ The best I can sort of do on that one is following deck III of the Stochastic Calculus that we
went over a while back.
ยจ So here it goes for the best I can do:
ยจ You have 2 variables:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ With : < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
" >= ๐œŒ. ๐‘‘๐‘ก
60
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXX
ยจ < ๐‘‘๐‘‹ ๐‘ก > to denote the usual quantity ๐”ผ ๐‘‘๐‘‹ = ๐”ผ8Q$8
E)
{๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก) ๐”‰ ๐‘ก that we
have been using the deck II of the stochastic calculus decks
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก)
ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘ ๐‘ก > = ๐‘€ ๐‘ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘ ๐‘ก > = < ๐‘‘๐‘‹ ๐‘ก > +< ๐‘‘๐‘Œ ๐‘ก >
61
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXI
ยจ The correlation does NOT change the drift
ยจ The correlation does NOT affect the expected return
ยจ That is not surprising, we know that from the MPT theory (mean variance portfolio), where
the correlation between assets will change the risk (variance, volatility, standard deviation),
but NOT the expected return
ยจ Conversely, the drift will NOT change the correlation
ยจ We also know that from the RN (Radon-Nykodym) section with the change of measure,
being an added drift to the Brownian motion.
ยจ The change of measure does NOT change the variance
ยจ The change of measure does NOT change the correlation
ยจ The change of measure changes the drift (expected return, mean, average, advection) but
NOT the diffusion, variance, standard deviation, correlation
62
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXII
ยจ Letโ€™s put here a couple of the slides from deck III on stochastic calculus.
63
Luc_Faucheux_2021
Couple of slides to remind us of deck III on
Stochastic Calculus
64
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - II
ยจ The ITO integral is defined as:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘‹(๐‘ก) = lim
Rโ†’>
{โˆ‘0=*
0=R
๐‘“(๐‘‹(๐‘ก0)). [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]}
ยจ The Stratonovitch integral is defined as:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘‹(๐‘ก) = lim
Rโ†’>
{โˆ‘0=*
0=R
๐‘“ [๐‘‹(๐‘ก0 + ๐‘‹(๐‘ก0Q*)]/2). [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]}
ยจ We can define the [๐›ผ] integral as:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘‹(๐‘ก) = lim
Rโ†’>
{โˆ‘0=*
0=R
๐‘“(๐‘‹(๐‘ก0) + ๐›ผ. [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]). [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]}
ยจ ITO will be the case ๐›ผ = 0
ยจ STRATO will be the case ๐›ผ = 1/2
65
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - III
ยจ We had the relation on the integrals:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘Š ๐‘ก . (โˆ˜). ๐‘‘๐‘Š(๐‘ก) = โˆซ
8=8A
8=8I
๐‘“ ๐‘Š ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) +
*
.
โˆซ
8=8A
8=8I
๐‘“โ€ฒ ๐‘Š ๐‘ก . ๐‘‘๐‘ก
ยจ This becomes:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘Š ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š(๐‘ก) = โˆซ
8=8A
8=8I
๐‘“ ๐‘Š ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + ๐›ผ. โˆซ
8=8A
8=8I
๐‘“โ€ฒ ๐‘Š ๐‘ก . ๐‘‘๐‘ก
ยจ Or:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘Š ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š(๐‘ก) = โˆซ
8=8A
8=8I
๐‘“ ๐‘Š ๐‘ก . ([๐›ผ] = 0). ๐‘‘๐‘Š(๐‘ก) + ๐›ผ. โˆซ
8=8A
8=8I
๐‘“โ€ฒ ๐‘Š ๐‘ก . ๐‘‘๐‘ก
66
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - IV
ยจ For a more complicated stochastic process
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š
ยจ We have:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š ๐‘ก = โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + โˆซ
8=8A
8=8I *
.
. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
๐‘“ ๐‘‹(๐‘ก . ๐‘‘๐‘ก
ยจ This now becomes:
ยจ โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š ๐‘ก = โˆซ
8=8A
8=8I
๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + โˆซ
8=8A
8=8I
๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
๐‘“ ๐‘‹(๐‘ก . ๐‘‘๐‘ก
67
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - V
ยจ For the SDE we had the following mapping between ITO and STRATO
ยจ The ITO SDE:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
ยจ Has the same solution (is the same) as the STRATO SDE in STRATO calculus:
ยจ ๐‘‘๐‘‹ ๐‘ก = [๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก โˆ’
*
.
. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
๐‘ ๐‘ก, ๐‘‹ ๐‘ก ]. ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š
ยจ The STRATO SDE
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š
ยจ Has the same solution (is the same) as the ITO SDE in ITO calculus
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก +
*
.
. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
68
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - VI
ยจ This now becomes:
ยจ The ITO SDE:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
ยจ Has the same solution (is the same) as the [๐›ผ] SDE in [๐›ผ] calculus:
ยจ ๐‘‘๐‘‹ ๐‘ก = [๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก โˆ’ ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
๐‘ ๐‘ก, ๐‘‹ ๐‘ก ]. ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ The [๐›ผ] SDE
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ Has the same solution (is the same) as the ITO SDE in ITO calculus
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
69
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - VII
ยจ The ITO lemma (chain rule) reads:
ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = โˆซ
8=8A
8=8I ?G
?C
. ([). ๐‘‘๐‘‹(๐‘ก) +
*
.
โˆซ
8=8A
8=8I ?!N
?!! (๐‘‹ ๐‘ก ). ๐‘ ๐‘ก, ๐‘‹ ๐‘ก
.
๐‘‘๐‘ก
ยจ In the โ€limitโ€ of small time increments, this can be written formally as the Ito lemma:
ยจ ๐›ฟ๐‘“ =
?G
?C
. ๐›ฟ๐‘‹ +
*
.
.
?!N
?!! . ๐‘.๐›ฟ๐‘ก
ยจ The STRATO lemma reads:
ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = โˆซ
8=8A
8=8I ?G
?C
. (โˆ˜). ๐‘‘๐‘‹(๐‘ก)
ยจ In the โ€limitโ€ of small time increments, this can be written formally as the Strato lemma:
ยจ ๐›ฟ๐‘“ =
?G
?C
. โˆ˜ . ๐›ฟ๐‘‹
70
Luc_Faucheux_2021
Introducing the [๐›ผ] calculus - VIII
ยจ In the [๐›ผ] calculus the [๐›ผ] lemma (chain rule) now reads :
ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = โˆซ
8=8A
8=8I ?G
?C
. ([๐›ผ]). ๐‘‘๐‘‹(๐‘ก) +
*
.
โˆ’ ๐›ผ . โˆซ
8=8A
8=8I ?!N
?!! ๐‘‹ ๐‘ก . ๐‘ ๐‘ก, ๐‘‹ ๐‘ก
.
. ๐‘‘๐‘ก
ยจ In the โ€limitโ€ of small time increments, this can be written formally as the [๐›ผ] lemma:
ยจ ๐›ฟ๐‘“ =
?G
?C
. ๐›ฟ๐‘‹ +
*
.
โˆ’ ๐›ผ .
?!N
?!! . ๐‘.. ๐›ฟ๐‘ก
ยจ NOTE: you can convince yourselves by redoing the derivation we had on pages 55-60
ยจ This actually highlights why STRATO took the middle point ๐›ผ = 1/2 , as this is the point
that cancels out the (1/2) coming from the Taylor expansion of ๐‘“ ๐‘‹ ๐‘กI from the left point.
ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = lim
Rโ†’>
โˆ‘0=*
0=R
{๐‘“(๐‘‹(๐‘ก0)) โˆ’ ๐‘“(๐‘‹(๐‘ก0)*))}
ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = lim
Rโ†’>
โˆ‘0=*
0=R
{
?G
?C
. ([). ๐›ฟ๐‘‹ +
*
.
.
?!N
?!! . ([). (๐›ฟ๐‘‹).}
71
Luc_Faucheux_2021
We need a nice summary to avoid any confusion
ยจ ITO SDE is: ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
ยจ This implies that the PDF follows the FORWARD ITO Kolmogorov PDE
ยจ
?M(!,8|C',8')
?8
= โˆ’
?
?C
๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ
?M
?8
= โˆ’
?
?C
๐‘Ž๐‘ โˆ’
?
?C
I!M
.
= โˆ’
?
?C
[๐‘Ž๐‘] +
*
.
?!
?C! [
I!M
.
]
ยจ
?M
?8
= โˆ’
?
?C
๐‘Ž๐‘ โˆ’ ๐‘
?I
?C
. ๐‘ โˆ’
*
.
. ๐‘. .
?
?C
๐‘
ยจ
?M
?8
= โˆ’
?
?C
๐‘Ž๐‘ โˆ’
?2
?C
. ๐‘ โˆ’ ๐ท.
?
?C
๐‘
ยจ
?M
?8
= โˆ’
?
?C
๐‘Ž๐‘ โˆ’
?
?C
(๐ท๐‘)
72
Luc_Faucheux_2021
We need a nice summary to avoid any confusion - II
ยจ [๐›ผ] SDE is: ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ This implies that the PDF follows the FORWARD [๐›ผ] Kolmogorov PDE
ยจ
?M(!,8|C',8')
?8
= โˆ’
?
?C
ฦ’
โ€ž
{l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [j
๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ
?M
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ + ๐›ผ. j
๐‘.
?
?C
j
๐‘. ๐‘ โˆ’
?
?C
[
*
.
. [j
๐‘. . ๐‘]
ยจ
?M
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ + ๐›ผ. j
๐‘.
?
?C
j
๐‘. ๐‘ โˆ’
?
?C
F
I!M
.
= โˆ’
?
?C
l
๐‘Ž๐‘ +
?
?C
๐›ผ. j
๐‘.
?
?C
j
๐‘. ๐‘ +
*
.
?!
?C! [
F
I!M
.
]
ยจ
?M
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ + ๐›ผ. j
๐‘.
?F
I
?C
. ๐‘ โˆ’ j
๐‘.
?F
I
?C
. ๐‘ โˆ’
*
.
. j
๐‘..
?
?C
๐‘
ยจ
?M
?8
= โˆ’
?
?C
๐‘Ž๐‘ + ๐›ผ.
?U
2
?C
. ๐‘ โˆ’
?U
2
?C
. ๐‘ โˆ’ โ€ฆ
๐ท.
?
?C
๐‘
73
Luc_Faucheux_2021
We need a nice summary to avoid any confusion - III
ยจ [๐›ผ = 1/2] STRATO SDE is: ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š
ยจ This implies that the PDF follows the FORWARD STRATO Kolmogorov PDE
ยจ
?V(!,8|C',8')
?8
= โˆ’
?
?C
ฦ’
โ€ž
{l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก +
*
.
. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ƒ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [j
๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘ƒ(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ
?V
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ƒ +
*
.
. j
๐‘.
?F
I
?C
. ๐‘ƒ โˆ’
?
?C
*
.
. [j
๐‘. . ๐‘ƒ
ยจ
?V
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ƒ +
*
.
. j
๐‘.
?
?C
j
๐‘. ๐‘ƒ โˆ’
?
?C
F
I!V
.
= โˆ’
?
?C
l
๐‘Ž๐‘ƒ +
?
?C
*
.
. j
๐‘.
?
?C
j
๐‘. ๐‘ƒ +
*
.
?!
?C! [
F
I!V
.
]
ยจ
?V
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ƒ +
*
.
. j
๐‘.
?F
I
?C
. ๐‘ƒ โˆ’ j
๐‘.
?F
I
?C
. ๐‘ƒ โˆ’
*
.
. j
๐‘..
?
?C
๐‘ƒ = โˆ’
?
?C
l
๐‘Ž๐‘ƒ โˆ’
*
.
j
๐‘
?F
I
?C
๐‘ƒ โˆ’
*
.
j
๐‘. ?
?C
๐‘ƒ
ยจ
?V
?8
= โˆ’
?
?C
l
๐‘Ž๐‘ƒ โˆ’
*
.
.
?U
2
?C
. ๐‘ƒ โˆ’ โ€ฆ
๐ท.
?
?C
๐‘ƒ = โˆ’
?
?C
l
๐‘Ž๐‘ƒ +
*
.
.
?U
2
?C
. ๐‘ƒ โˆ’
?
?C
(โ€ฆ
๐ท๐‘ƒ)
74
Luc_Faucheux_2021
We need a nice summary to avoid any confusion - IV
ยจ ITO SDE is: ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
ยจ This implies that the PDF follows the FORWARD ITO Kolmogorov PDE
ยจ
?M(!,8|C',8')
?8
= โˆ’
?
?C
๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE:
ยจ
?M(!,8|C',8')
?8'
= โˆ’๐‘Ž ๐‘‹A, ๐‘กA
?
?C'
๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
*
.
. ๐‘(๐‘‹A, ๐‘กA). ?!
?C'
! ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)
ยจ
?M
?8'
= โˆ’๐‘Ž
?M
?C'
โˆ’
*
.
. ๐‘. ?!M
?C'
!
ยจ
?M
?8'
= โˆ’๐‘Ž
?M
?C'
โˆ’ ๐ท
?!M
?C'
!
ยจ Where I have explicitly kept the notation ๐‘กA and ๐‘‹A to indicate the fact that this is a
BACKWARD PDE (expectation of a payoff at maturity)
75
Luc_Faucheux_2021
We need a nice summary to avoid any confusion - V
ยจ [๐›ผ] SDE is: ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ This implies that the PDF follows the FORWARD [๐›ผ] Kolmogorov PDE
ยจ
?M(!,8|C',8')
?8
= โˆ’
?
?C
ฦ’
โ€ž
{l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [j
๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE:
ยจ
?M(!,8|C',8')
?8'
= โˆ’ l
๐‘Ž ๐‘กA, ๐‘‹ ๐‘กA + ๐›ผ. j
๐‘ ๐‘กA, ๐‘‹ ๐‘กA .
?
?C'
j
๐‘ ๐‘กA, ๐‘‹ ๐‘กA
?
?C'
๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
*
.
. ๐‘(๐‘‹A, ๐‘กA). ?!
?C'
! ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)
ยจ
?M
?8'
= โˆ’ l
๐‘Ž + ๐›ผ. j
๐‘
?
?C'
j
๐‘
?
?C'
๐‘ โˆ’
*
.
. ๐‘. ?!
?C'
! ๐‘
ยจ
?M
?8'
= โˆ’ l
๐‘Ž + ๐›ผ.
?U
2
?C'
?M
?C'
โˆ’ โ€ฆ
๐ท
?!M
?C'
!
76
Luc_Faucheux_2021
We need a nice summary to avoid any confusion - VI
ยจ [๐›ผ = 1/2] STRATO SDE is: ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š
ยจ This implies that the PDF follows the FORWARD STRATO Kolmogorov PDE
ยจ
?M(!,8|C',8')
?8
= โˆ’
?
?C
ฦ’
โ€ž
{l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก +
*
.
. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [j
๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE:
ยจ
?M(!,8|C',8')
?8'
= โˆ’ l
๐‘Ž ๐‘กA, ๐‘‹ ๐‘กA +
*
.
. j
๐‘ ๐‘กA, ๐‘‹ ๐‘กA .
?
?C'
j
๐‘ ๐‘กA, ๐‘‹ ๐‘กA
?
?C'
๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
*
.
. ๐‘(๐‘‹A, ๐‘กA). ?!
?C'
! ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)
ยจ
?M
?8'
= โˆ’ l
๐‘Ž +
*
.
. j
๐‘
?
?C'
j
๐‘
?
?C'
๐‘ โˆ’
*
.
. j
๐‘. ?!
?C'
! ๐‘
ยจ
?M
?8'
= โˆ’ l
๐‘Ž +
*
.
.
?U
2
?C'
?M
?C'
โˆ’ โ€ฆ
๐ท
?!M
?C'
!
77
Luc_Faucheux_2021
Why did we go through all this trouble?
ยจ Letโ€™s recap:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š in ITO calculus
ยจ We have shown that in that case the PDF follows a FORWARD ITO Kolmogorov (FP)
ยจ
?M(!,8|C',8')
?8
= โˆ’
?
?C
๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ < โˆ†๐‘‹ > = ๐ธ โˆ†๐‘‹ =< ๐‘ฅ >8Qโˆ†8 โˆ’< ๐‘ฅ >8= ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . โˆ†๐‘ก (advection term)
ยจ < โˆ†๐‘‹.> = ๐ธ โˆ†๐‘‹. =< (๐‘ฅโˆ’< ๐‘ฅ >8Qโˆ†8).>8Qโˆ†8= ๐‘(๐‘‹ ๐‘ก , ๐‘ก).. โˆ†๐‘ก (diffusion term)
78
Luc_Faucheux_2021
Why did we go through all this trouble? - II
ยจ We ALSO know that going between ITO and [๐›ผ]:
ยจ The ITO SDE:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
ยจ Has the same solution (is the same) as the [๐›ผ] SDE in [๐›ผ] calculus:
ยจ ๐‘‘๐‘‹ ๐‘ก = [๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก โˆ’ ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
๐‘ ๐‘ก, ๐‘‹ ๐‘ก ]. ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ The [๐›ผ] SDE
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ Has the same solution (is the same) as the ITO SDE in ITO calculus
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
79
Luc_Faucheux_2021
Why did we go through all this trouble? - III
ยจ And so, if we start with an [๐›ผ] SDE: ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ It has the same solution (is the same) as the ITO SDE in ITO calculus
ยจ ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
ยจ Which will then follow the ITO FORWARD Kolmogorov (FP):
ยจ
?V(!,8|C',8')
?8
= โˆ’
?
?C
๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ƒ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’
?
?C
[
*
.
. [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘ƒ(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)]
ยจ With:
ยจ ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก
ยจ ๐‘ ๐‘‹ ๐‘ก , ๐‘ก = j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก
ยจ ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
๐‘ ๐‘ก, ๐‘‹ ๐‘ก
80
Luc_Faucheux_2021
Why did we go through all this trouble? โ€“ III - a
ยจ < โˆ†๐‘‹ > = ๐ธ โˆ†๐‘‹ =< ๐‘ฅ >8Qโˆ†8 โˆ’< ๐‘ฅ >8= ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . โˆ†๐‘ก (advection term)
ยจ < โˆ†๐‘‹.> = ๐ธ โˆ†๐‘‹. =< (๐‘ฅโˆ’< ๐‘ฅ >8Qโˆ†8).>8Qโˆ†8= ๐‘(๐‘‹ ๐‘ก , ๐‘ก).. โˆ†๐‘ก (diffusion term)
ยจ With:
ยจ ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก
ยจ ๐‘ ๐‘‹ ๐‘ก , ๐‘ก = j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก
ยจ Remember that we started from : ๐‘‘๐‘‹ ๐‘ก = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š
ยจ So: < โˆ†๐‘‹ > = ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . โˆ†๐‘ก = {l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. โˆ†๐‘ก
ยจ < โˆ†๐‘‹ > = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก
ยจ < โˆ†๐‘‹ > =< l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š >
81
Luc_Faucheux_2021
Why did we go through all this trouble? โ€“ III - b
ยจ < โˆ†๐‘‹ > = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก + ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก
ยจ < โˆ†๐‘‹ > = < l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก > + < j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š >
ยจ And
ยจ < l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก > = l
๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก
ยจ So we have:
ยจ < j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š > = ๐›ผ. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก
ยจ In particular:
ยจ ITO : < j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [ . ๐‘‘๐‘Š > = 0
ยจ STRATO: < j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š > = [
*
.
]. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก
82
Luc_Faucheux_2021
Why did we go through all this trouble? โ€“ III - c
ยจ ITO : < j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [ . ๐‘‘๐‘Š > = 0
ยจ One can also go back to the definition of the ITO integral (because remember it is never a
SDE, it is ALWAYS and SIE) , but essentially the convention [ of taking the value โ€œbefore the
jumpโ€, implies that the ITO integral is a martingale of expected value 0
ยจ STRATO: < j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š > = [
*
.
]. j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
?
?C
j
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก
ยจ Again we can explicitly derive this from the integral, but the convention โˆ˜ implies taking
the value โ€œin the middle of the jumpโ€, hence the STRATO integral CANNOT be a martingale
and has a non zero expected value.
ยจ We did this derivation when we looking at the correspondence between the ITO and
STRATO.
83
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXIII
ยจ So back to the sum of two variables:
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก)
ยจ < ๐‘‘๐‘ ๐‘ก > = < ๐‘‘๐‘‹ ๐‘ก > +< ๐‘‘๐‘Œ ๐‘ก >
ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘‹. > = ๐‘!(๐‘‹ ๐‘ก , ๐‘ก).. ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘Œ. > = ๐‘"(๐‘Œ ๐‘ก , ๐‘ก).. ๐‘‘๐‘ก
84
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXIV
ยจ < ๐‘‘๐‘. > =< ๐‘‘(๐‘‹ + ๐‘Œ). >
ยจ < ๐‘‘๐‘. > =< (๐‘‹ ๐‘ก + ๐‘‘๐‘ก + ๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ < ๐‘‹ ๐‘ก + ๐‘‘๐‘ก > โˆ’ < ๐‘Œ(๐‘ก + ๐‘‘๐‘ก) >).>
ยจ < ๐‘‘๐‘. > =< (๐‘(๐‘ก + ๐‘‘๐‘ก)โˆ’ < ๐‘ ๐‘ก + ๐‘‘๐‘ก >).>
ยจ < ๐‘‘๐‘. > =< (๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ < ๐‘‹ ๐‘ก + ๐‘‘๐‘ก > +๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ < ๐‘Œ(๐‘ก + ๐‘‘๐‘ก) >).>
ยจ < ๐‘‘๐‘. > =< (๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
!(๐‘ก) + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š
"(๐‘ก) ). >
ยจ < ๐‘‘๐‘. > =< (๐‘!. ๐‘‘๐‘Š
!).+(๐‘". ๐‘‘๐‘Š
").+2. ๐‘!. ๐‘‘๐‘Š
!. ๐‘". ๐‘‘๐‘Š
" >
ยจ < ๐‘‘๐‘. > = ๐‘!
.
. ๐‘‘๐‘ก + ๐‘"
.
. ๐‘‘๐‘ก + 2. ๐œŒ. ๐‘!. ๐‘". ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘. > =< ๐‘‘๐‘‹. > + < ๐‘‘๐‘Œ. > +2. ๐œŒ. ๐‘!. ๐‘". ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘. > = (๐‘!
.
+ ๐‘"
.
+ 2. ๐œŒ. ๐‘!. ๐‘"). ๐‘‘๐‘ก
85
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXV
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก)
ยจ < ๐‘‘๐‘ ๐‘ก > = < ๐‘‘๐‘‹ ๐‘ก > +< ๐‘‘๐‘Œ ๐‘ก >
ยจ < ๐‘‘๐‘ ๐‘ก > = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก + ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘. > = (๐‘!
.
+ ๐‘"
.
+ 2. ๐œŒ. ๐‘!. ๐‘"). ๐‘‘๐‘ก
ยจ And so the process for ๐‘ ๐‘ก can be described (within some mathematical reasons) by the
SDE:
ยจ ๐‘‘๐‘ ๐‘ก = ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก . ๐‘‘๐‘ก + ๐‘# ๐‘ก, ๐‘ ๐‘ก . ([). ๐‘‘๐‘Š
#(๐‘ก)
86
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXVI
ยจ ๐‘‘๐‘ ๐‘ก = ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก . ๐‘‘๐‘ก + ๐‘# ๐‘ก, ๐‘ ๐‘ก . ([). ๐‘‘๐‘Š
#(๐‘ก)
ยจ ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก + ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก
ยจ ๐‘Ž# = ๐‘Ž! + ๐‘Ž"
ยจ ๐‘#
.
= (๐‘!
.
+ ๐‘"
.
+ 2. ๐œŒ. ๐‘!. ๐‘")
ยจ So we know that the PDF for that process will follow the FP equation
ยจ This implies that the PDF follows the FORWARD ITO Kolmogorov PDE
ยจ
?M(#,8|X',8')
?8
= โˆ’
?
?X
๐‘Ž ๐‘ ๐‘ก , ๐‘ก . ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’
?
?X
[
*
.
. [๐‘(๐‘ ๐‘ก , ๐‘ก). . ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)]
ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE:
ยจ
?M(#,8|X',8')
?8'
= โˆ’๐‘Ž ๐‘A, ๐‘กA
?
?X'
๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’
*
.
. ๐‘(๐‘A, ๐‘กA). ?!
?X'
! ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)
87
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXVII
ยจ ๐‘‘๐‘ ๐‘ก = ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก . ๐‘‘๐‘ก + ๐‘# ๐‘ก, ๐‘ ๐‘ก . ([). ๐‘‘๐‘Š
#(๐‘ก)
ยจ ๐‘Ž# = ๐‘Ž! + ๐‘Ž"
ยจ ๐‘#
.
= (๐‘!
.
+ ๐‘"
.
+ 2. ๐œŒ. ๐‘!. ๐‘")
ยจ
?M(#,8|X',8')
?8
= โˆ’
?
?X
๐‘Ž ๐‘ ๐‘ก , ๐‘ก . ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’
?
?X
[
*
.
. [๐‘(๐‘ ๐‘ก , ๐‘ก). . ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)]
ยจ In almost all cases (and certainly in the simple cases where say the advection and diffusion
coefficients are either constant or function only of the time), the solution of that PDE will be
a Gaussian.
ยจ Am sorry guys, but this is how I explain that the sum of correlated Gaussians is itself a
Gaussian
ยจ There could be some weird functions ๐‘Ž!, ๐‘Ž", ๐‘! and ๐‘" for which that would not be the
case.
ยจ Usually if you formulated a model with such behavior, switch to a simpler one
88
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXVIII
ยจ I truly wished that I could have been more rigorous in that section, and that keeps me up at
night, so apologies for what I perceived to be a cope out, I would be happy if one of you
email me an insulting letter with a more rigorous approach to this (and also more general)
89
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXIX
ยจ Saying it in another way, I do not have a good argument as to why:
ยจ If ๐‘Ž!, ๐‘Ž", ๐‘! and ๐‘" are such functions so that the PDF for ๐‘‹(๐‘ก) and ๐‘Œ(๐‘ก) are such that they
have for solutions a Gaussian distribution
ยจ THEN the PDF for ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) which is of the form:
ยจ
?M(#,8|X',8')
?8
= โˆ’
?
?X
๐‘Ž ๐‘ ๐‘ก , ๐‘ก . ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’
?
?X
[
*
.
. [๐‘(๐‘ ๐‘ก , ๐‘ก). . ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)]
ยจ With:
ยจ ๐‘Ž# = ๐‘Ž! + ๐‘Ž"
ยจ ๐‘#
.
= (๐‘!
.
+ ๐‘"
.
+ 2. ๐œŒ. ๐‘!. ๐‘")
ยจ ALSO has a Gaussian for solution of the PDF
ยจ At least not obvious to me
90
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXX
ยจ In some simple cases (like the ones we are dealing with here), the best way to look at it is if
you can find an explicit solution of the SDE:
ยจ When we had:
ยจ ๐‘‘๐‘‹ = โˆ’๐‘˜!. ๐‘‹. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ We had for the solution:
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
ยจ Which was normally distributed with moments:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
91
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXXI
ยจ Similarly we had for ๐‘Œ(๐‘ก):
ยจ ๐‘‘๐‘Œ = โˆ’๐‘˜". ๐‘Œ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ We had for the solution:
ยจ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+.(8)8')
+ โˆซ
J=8'
J=8
๐‘’)0+. 8)J
. ๐œŽ". ([). ๐‘‘๐‘Š
" ๐‘ข
ยจ Which was normally distributed with moments:
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ(๐‘กA). ๐‘’)0+.(8)8')
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. 1 โˆ’ ๐‘’).0+. 8)8'
92
Luc_Faucheux_2021
IRMA โ€“ Mercurio โ€“ G2++ - XXXXII
ยจ So in that case we get an explicit solution for ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก)
ยจ ๐‘(๐‘ก) = ๐‘Œ ๐‘ก! . ๐‘’"#!.(&"&")
+ โˆซ
()&"
()&
๐‘’"#!. &"(
. ๐œŽ*. ([). ๐‘‘๐‘Š
* ๐‘ข + ๐‘‹ ๐‘ก! . ๐‘’"##.(&"&") + โˆซ
()&"
()&
๐‘’"##. &"( . ๐œŽ+. ([). ๐‘‘๐‘Š
+ ๐‘ข
ยจ And we know that any function of the form:
ยจ โˆซ
J=8'
J=8
๐‘“(๐‘ข). ([). ๐‘‘๐‘Š
" ๐‘ข is normally distributed, because of the martingale and isometry
properties of the ITO integral
ยจ So ๐‘(๐‘ก) is a mixture of normal distributions, which is normally distributed (because you can
recast the correlation using the Cholesky decomposition into two independent normal
distribution)
ยจ So in that case you can say that ๐‘(๐‘ก) is normally distributed.
ยจ Again this is in the specific case of the Langevin equation.
ยจ I unfortunately do not have a solid general argument otherwise
93
Luc_Faucheux_2021
Re-casting the correlation
94
Luc_Faucheux_2021
Recasting the correlation - I
ยจ The Mercurio G2++ model was written as:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š
#
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
" >= ๐œŒ. ๐‘‘๐‘ก
ยจ ๐œŽ# = 0
ยจ ๐‘˜# โ†’ โˆž so ๐‘ฅ + ๐‘ฆ โˆ’ ๐‘ง โ†’ 0 so ๐‘ง ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ(๐‘ก)
ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘(๐‘ก)
ยจ Sometimes it is not that convenient to work with: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
" >= ๐œŒ. ๐‘‘๐‘ก
ยจ We would rather work with picking from the Normal distribution in a way where we do not
have to take the correlation into account. We can do that in the following manner:
95
Luc_Faucheux_2021
Recasting the correlation - II
ยจ Instead of writing :
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ With: < ๐‘‘๐‘Š
!. ๐‘‘๐‘Š
" >= ๐œŒ. ๐‘‘๐‘ก
ยจ Let us show that can write the above using 2 other independent Brownian motions:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห†
๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"}
ยจ With: < ๐‘‘ ห†
๐‘Š
!. ๐‘‘ ห†
๐‘Š
" > = 0
96
Luc_Faucheux_2021
Recasting the correlation - III
ยจ Alternatively, comparing the two sets of equations:
ยจ ๐‘‘๐‘Š
! = ๐‘‘ ห†
๐‘Š
!
ยจ ๐‘‘๐‘Š
" = ๐œŒ. ๐‘‘ ห†
๐‘Š
! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"
ยจ Or again:
ยจ ๐‘‘ ห†
๐‘Š
! = ๐‘‘๐‘Š
!
ยจ ๐‘‘ ห†
๐‘Š
" =
$E+
*)f!
โˆ’ ๐œŒ.
$E)
*)f!
97
Luc_Faucheux_2021
Recasting the correlation - IV
ยจ When we had:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!
ยจ We had for the solution:
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข
ยจ Which was normally distributed with moments:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
98
Luc_Faucheux_2021
Recasting the correlation - V
ยจ Similarly we had for ๐‘Œ(๐‘ก):
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"
ยจ We had for the solution:
ยจ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+.(8)8')
+ โˆซ
J=8'
J=8
๐‘’)0+. 8)J
. ๐œŽ". ([). ๐‘‘๐‘Š
" ๐‘ข
ยจ Which was normally distributed with moments:
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ(๐‘กA). ๐‘’)0+.(8)8')
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. 1 โˆ’ ๐‘’).0+. 8)8'
99
Luc_Faucheux_2021
Recasting the correlation - VI
ยจ We are now concerning ourselves with the Covariance:
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š
! ๐‘ข ). (โˆซ
J=8'
J=8
๐‘’)0+. 8)J
. ๐œŽ". ([). ๐‘‘๐‘Š
" ๐‘ข )
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ๐‘‘๐‘Š
! ๐‘ข ). (โˆซ
J=8'
J=8
๐‘’)0+. 8)J
. ๐œŽ". ๐‘‘๐‘Š
" ๐‘ข )
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". ๐”ผ โˆซ
J=8'
J=8
๐‘‘๐‘Š
! ๐‘ข โˆซ
J=8'
J=8
๐‘‘๐‘Š
" ๐‘ข ๐‘’)0+. 8)J
. ๐‘’)0). 8)J
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". ๐”ผ โˆซ
J=8'
J=8
โˆซ
J=8'
J=8
๐‘’)0+. 8)J
. ๐‘’)0). 8)J . ๐‘‘๐‘Š
! ๐‘ข . ๐‘‘๐‘Š
" ๐‘ข
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". โˆซ
J=8'
J=8
๐‘’)0+. 8)J
. ๐‘’)0). 8)J . ๐œŒ. ๐‘‘๐‘ข
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". โˆซ
J=8'
J=8
๐‘’)(0)Q0+). 8)J
. ๐œŒ. ๐‘‘๐‘ข
100
Luc_Faucheux_2021
Recasting the correlation - VII
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". โˆซ
J=8'
J=8
๐‘’)(0)Q0+). 8)J
. ๐œŒ. ๐‘‘๐‘ข
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŒ. ๐œŽ!. ๐œŽ". [
B#($)/$+). &#0
(0)Q0+)
]J=8'
J=8
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
(0)Q0+)
[1 โˆ’ ๐‘’)(0)Q0+). 8)8' ]
101
Luc_Faucheux_2021
Recasting the correlation - VIII
ยจ All right so now letโ€™s redo that exercise starting from:
ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห†
๐‘Š
!
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"}
ยจ With: < ๐‘‘ ห†
๐‘Š
!. ๐‘‘ ห†
๐‘Š
" > = 0
ยจ The first one for ๐‘‹(๐‘ก) is formally the same as before:
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข
ยจ Which was normally distributed with moments:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
102
Luc_Faucheux_2021
Recasting the correlation - IX
ยจ The second one for ๐‘Œ ๐‘ก is slightly more complicated:
ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"}
ยจ Again now letโ€™s try to be consistent in our notations (again, this is a promise, once I get that
book deal the notation will be nicely consistent throughout the book)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ Again as before we are going to use ITO lemma on :
ยจ j
๐‘Œ ๐‘ก = exp ๐‘˜". ๐‘ก . ๐‘Œ(๐‘ก)
ยจ ๐‘‘ j
๐‘Œ =
? F
D
?D
. [ . ๐‘‘๐‘Œ +
*
.
.
?! F
D
?D! . ๐‘‘๐‘Œ. +
? F
D
?8
. [ . ๐‘‘๐‘ก
103
Luc_Faucheux_2021
Recasting the correlation - XI
ยจ Again, remember that we used the notation for ITO lemma for sake of ease, what you really
have is a regular function
ยจ j
๐‘Œ = ๐‘“ ๐‘Œ Stochastic Variable
ยจ l
๐‘ฆ = ๐‘“ ๐‘ฆ Regular โ€œNewtonianโ€ variable with well defined partial derivatives
ยจ ๐›ฟ๐‘“ =
?G
?"
. ๐›ฟ๐‘Œ +
*
.
.
?!G
?"! . (๐›ฟ๐‘Œ). +
?G
?8
. ๐‘‘๐‘ก
ยจ
?G
?"
=
?G
?"
|"=D 8 ,8
ยจ
?!G
?"! =
?!G
?"! |"=D 8 ,8
ยจ
?G
?8
=
?G
?8
|"=D 8 ,8
104
Luc_Faucheux_2021
Recasting the correlation - XII
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ j
๐‘Œ ๐‘ก = exp ๐‘˜". ๐‘ก . ๐‘Œ(๐‘ก)
ยจ ๐‘‘ j
๐‘Œ =
? F
D
?D
. [ . ๐‘‘๐‘Œ +
*
.
.
?! F
D
?D! . ๐‘‘๐‘Œ. +
? F
D
?8
. [ . ๐‘‘๐‘ก
ยจ
? F
D
?D
= exp ๐‘˜". ๐‘ก
ยจ
?! F
D
?D! = 0
ยจ
? F
D
?8
= ๐‘˜". exp ๐‘˜". ๐‘ก . ๐‘Œ ๐‘ก = ๐‘˜".j
๐‘Œ ๐‘ก
ยจ ๐‘‘ j
๐‘Œ = exp ๐‘˜". ๐‘ก . [ . ๐‘‘๐‘Œ +
*
.
. 0. ๐‘‘๐‘Œ. + ๐‘˜".j
๐‘Œ ๐‘ก . [ . ๐‘‘๐‘ก
105
Luc_Faucheux_2021
Recasting the correlation - XIII
ยจ ๐‘‘ j
๐‘Œ = exp ๐‘˜". ๐‘ก . [ . ๐‘‘๐‘Œ +
*
.
. 0. ๐‘‘๐‘Œ. + ๐‘˜".j
๐‘Œ ๐‘ก . [ . ๐‘‘๐‘ก
ยจ ๐‘‘ j
๐‘Œ = exp ๐‘˜". ๐‘ก . ๐‘‘๐‘Œ + ๐‘˜".j
๐‘Œ ๐‘ก . ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ ๐‘‘ j
๐‘Œ = exp ๐‘˜". ๐‘ก . (โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}) + ๐‘˜".j
๐‘Œ ๐‘ก . ๐‘‘๐‘ก
ยจ ๐‘‘ j
๐‘Œ = exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)})
ยจ j
๐‘Œ ๐‘กI โˆ’ j
๐‘Œ ๐‘กA = โˆซ
8=8'
8=8,
๐‘‘ j
๐‘Œ ๐‘ก = โˆซ
8=8'
8=8,
exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)})
ยจ j
๐‘Œ ๐‘ก = exp ๐‘˜". ๐‘ก . ๐‘Œ(๐‘ก)
ยจ j
๐‘Œ ๐‘กI = exp ๐‘˜". ๐‘กI . ๐‘Œ(๐‘กI)
ยจ j
๐‘Œ ๐‘กA = exp ๐‘˜". ๐‘กA . ๐‘Œ(๐‘กA)
106
Luc_Faucheux_2021
Recasting the correlation - XIV
ยจ j
๐‘Œ ๐‘กI โˆ’ j
๐‘Œ ๐‘กA = โˆซ
8=8'
8=8,
๐‘‘ j
๐‘Œ ๐‘ก = โˆซ
8=8'
8=8,
exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)})
ยจ exp ๐‘˜". ๐‘กI . ๐‘Œ(๐‘กI) โˆ’ exp ๐‘˜". ๐‘กA . ๐‘Œ(๐‘กA) = โˆซ
8=8'
8=8,
exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)})
ยจ ๐‘Œ ๐‘กI = ๐‘’)0+ 8,)8' . ๐‘Œ ๐‘กA + โˆซ
8=8'
8=8,
๐‘’)0+ 8,)8
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)})
ยจ ๐‘Œ ๐‘ก = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA + โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})
ยจ And we know apply the usual trick of:
ยจ ITO integral is a martingale to compute the mean
ยจ ITO integral exhibits the property of isometry to compute the variance
107
Luc_Faucheux_2021
Recasting the correlation - XV
ยจ ๐‘Œ ๐‘ก = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA + โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐”ผ ๐‘Œ = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA as before
ยจ The Variance is a little more tricky
ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ).
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8'
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = (โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})).
ยจ Where there again we are going to use the isometry property and the fact that:
ยจ < ๐‘‘ ห†
๐‘Š
!. ๐‘‘ ห†
๐‘Š
" > = 0
108
Luc_Faucheux_2021
Recasting the correlation - XVI
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = (โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})).
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = ๐œŽ"
.. (โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข + โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)).
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = ๐œŽ"
.. (๐ด + ๐ต + ๐ถ)
ยจ ๐ด = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข)
ยจ ๐ต = 2. โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐ถ = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข). โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ"
.. ๐”ผ ๐ด + ๐ต + ๐ถ
109
Luc_Faucheux_2021
Recasting the correlation - XVII
ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ"
.. ๐”ผ ๐ด + ๐ต + ๐ถ
ยจ ๐ด = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข)
ยจ ๐”ผ{๐ด} = ๐”ผ{โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข }
ยจ ๐”ผ ๐ด = โˆซ
J=8'
J=8
๐‘’).0+ 8)J
. ๐œŒ.. ๐‘‘๐‘ข = ๐œŒ.. [
*
.0+
. ๐‘’).0+ 8)J
]J=8'
J=8
ยจ ๐”ผ ๐ด =
f!
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
110
Luc_Faucheux_2021
Recasting the correlation - XVIII
ยจ ๐ต = 2. โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐”ผ{๐ต} = ๐”ผ{2. โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
" ๐‘ข }
ยจ Since < ๐‘‘ ห†
๐‘Š
!. ๐‘‘ ห†
๐‘Š
" > = 0
ยจ ๐”ผ ๐ต = 0
111
Luc_Faucheux_2021
Recasting the correlation - XIX
ยจ ๐ถ = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข). โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐”ผ{๐ถ} = ๐”ผ{โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข). โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)}
ยจ ๐”ผ{๐ถ} = {โˆซ
J=8'
J=8
๐‘’)..0+ 8)J
. (1 โˆ’ ๐œŒ.). ๐‘‘๐‘ข}
ยจ ๐”ผ ๐ถ = โˆซ
J=8'
J=8
๐‘’).0+ 8)J
. (1 โˆ’ ๐œŒ.). ๐‘‘๐‘ข =. (1 โˆ’ ๐œŒ.). [
*
.0+
. ๐‘’).0+ 8)J
]J=8'
J=8
ยจ ๐”ผ ๐ถ =
(*)f!)
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
112
Luc_Faucheux_2021
Recasting the correlation - XX
ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ"
.. ๐”ผ ๐ด + ๐ต + ๐ถ
ยจ ๐”ผ ๐ด =
f!
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
ยจ ๐”ผ ๐ต = 0
ยจ ๐”ผ ๐ถ =
(*)f!)
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ"
.. ๐”ผ ๐ด + ๐ต + ๐ถ
ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐œŽ"
..
(*)f!Qf!)
.0+
. 1 โˆ’ ๐‘’).0+ 8)8' =
-+
!
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
113
Luc_Faucheux_2021
Recasting the correlation - XXI
ยจ So far we have recovered the same expression for the mean and Variance for both ๐‘‹ ๐‘ก and
also ๐‘Œ(๐‘ก)
ยจ We are now left with the Covariance
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ All right we are almost there, and since we know that both ๐‘‹ ๐‘ก and ๐‘Œ(๐‘ก) are normally
distributed, if we can prove that we also recover the Covariance then both descriptions are
identical. That will be quite an achievement (again might seem obvious if you are not too
concerned about being somewhat rigorous, or at least trying to be).
114
Luc_Faucheux_2021
Recasting the correlation - XXII
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข
ยจ Which was normally distributed with moments:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข
115
Luc_Faucheux_2021
Recasting the correlation - XXIII
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐‘Œ ๐‘ก = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA + โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐”ผ ๐‘Œ = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)})
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŽ". ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข + โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
116
Luc_Faucheux_2021
Recasting the correlation - XXIV
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข
ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŽ". ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข + โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = ๐ด + ๐ต
ยจ ๐ด = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŽ". ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข
ยจ ๐ต = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)])
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ ๐ด + ๐ต = ๐”ผ ๐ด + ๐”ผ ๐ต
117
Luc_Faucheux_2021
Recasting the correlation - XXV
ยจ ๐ด = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŽ". ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข
ยจ ๐”ผ{๐ด} = ๐”ผ{โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. ๐œŽ". ๐œŒ. ๐‘‘ ห†
๐‘Š
! ๐‘ข }
ยจ ๐”ผ{๐ด} = {โˆซ
J=8'
J=8
๐‘’)(0)Q0+). 8)J
. ๐œŽ!. ๐œŽ". ๐œŒ. ๐‘‘๐‘ข}
ยจ ๐”ผ ๐ด = ๐œŒ. ๐œŽ!. ๐œŽ". โˆซ
J=8'
J=8
๐‘’)(0)Q0+). 8)J
๐‘‘๐‘ข = ๐œŒ. ๐œŽ!. ๐œŽ". [
*
0)Q0+
. ๐‘’)(0)Q0+). 8)J
]J=8'
J=8
ยจ ๐”ผ ๐ด =
f.-).-+
0)Q0+
. [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ]
118
Luc_Faucheux_2021
Recasting the correlation - XXVI
ยจ ๐ต = โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ข)
ยจ ๐”ผ{๐ต} = ๐”ผ{โˆซ
J=8'
J=8
๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห†
๐‘Š
! ๐‘ข . โˆซ
J=8'
J=8
๐‘’)0+ 8)J
. 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
" ๐‘ข }
ยจ ๐”ผ ๐ต = 0
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ ๐ด + ๐ต = ๐”ผ ๐ด + ๐”ผ ๐ต
ยจ ๐”ผ ๐ด =
f.-).-+
0)Q0+
. [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ]
ยจ ๐”ผ ๐ต = 0
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
0)Q0+
. [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ]
ยจ We recover indeed the same formula for the Covariance
119
Luc_Faucheux_2021
Recasting the correlation - XXVII
ยจ This is actually seen quite often in the literature (Mercurio p.134 for example), and is usually
useful when you want to deal with independent Brownian motions, and do not want to have
to deal with the correlation when โ€œpickingโ€ the stochastic process out of the distribution.
120
Luc_Faucheux_2021
Recasting the correlation - XXVIII
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ With: < ๐‘‘๐‘Š
!(๐‘ก). ๐‘‘๐‘Š
"(๐‘ก) >= ๐œŒ. ๐‘‘๐‘ก
ยจ Is equivalent to:
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห†
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ With: < ๐‘‘ ห†
๐‘Š
!(๐‘ก). ๐‘‘ ห†
๐‘Š
"(๐‘ก) > = 0
121
Luc_Faucheux_2021
Recasting the correlation - XXIX
ยจ In both formulation we have:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8'
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
0)Q0+
. [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ]
122
Luc_Faucheux_2021
Recasting the correlation - XXX
ยจ It pays to look at the small time approximation: (๐‘ก โ†’ ๐‘กA)
ยจ This would be also the weak mean reversion regime ๐‘˜! โ†’ 0 and ๐‘˜" โ†’ 0 (diffusive regime)
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') โ†’ ๐‘‹(๐‘กA)
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8' โ†’
-)
!
.0)
. 1 โˆ’ 1 + 2๐‘˜!. ๐‘ก โˆ’ ๐‘กA = ๐œŽ!
.. ๐‘ก โˆ’ ๐‘กA
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' โ†’ ๐‘Œ(๐‘กA)
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. 1 โˆ’ ๐‘’).0+ 8)8' โ†’ ๐œŽ"
.. ๐‘ก โˆ’ ๐‘กA
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
0)Q0+
. 1 โˆ’ ๐‘’) 0)Q0+ . 8)8' โ†’
f.-).-+
0)Q0+
. 1 โˆ’ 1 + ๐‘˜! + ๐‘˜" . ๐‘ก โˆ’ ๐‘กA
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก โ†’ ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘ก โˆ’ ๐‘กA
123
Luc_Faucheux_2021
Recasting the correlation - XXXI
ยจ In the strong mean reversion regime, ๐‘˜! โ†’ โˆž and ๐‘˜" โ†’ โˆž
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') โ†’ 0
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8' โ†’
-)
!
.0)
. 1 โˆ’ 0 โ†’ 0
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' โ†’ 0
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. 1 โˆ’ ๐‘’).0+ 8)8' โ†’ 0
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
0)Q0+
. 1 โˆ’ ๐‘’) 0)Q0+ . 8)8' โ†’
f.-).-+
0)Q0+
. 1 โˆ’ 0 โ†’ 0
ยจ Looks boring, but we saw that this is a nice limit of the IRMA formalism for ๐‘(๐‘ก)
124
Luc_Faucheux_2021
Recasting the correlation - XXXII
ยจ And just because physicists loooove steady state (equilibrium or ๐‘ก โ†’ โˆž) solutions
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') โ†’ 0
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8' โ†’
-)
!
.0)
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' โ†’ 0
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. 1 โˆ’ ๐‘’).0+ 8)8' โ†’
-+
!
.0+
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
0)Q0+
. 1 โˆ’ ๐‘’) 0)Q0+ . 8)8' โ†’
f.-).-+
0)Q0+
ยจ So the distributions are bounded, which is quite nice, which was one of the original
attraction about the Langevin equation
125
Luc_Faucheux_2021
Re-casting the correlation for the
instantaneous variables
126
Luc_Faucheux_2021
Recasting the correlation instantaneous - I
ยจ Instead of looking at the exact solutions:
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8')
ยจ ๐‘‰ ๐‘‹ ๐‘ก =
-)
!
.0)
. 1 โˆ’ ๐‘’).0). 8)8'
ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8'
ยจ ๐‘‰ ๐‘Œ ๐‘ก =
-+
!
.0+
. [1 โˆ’ ๐‘’).0+ 8)8' ]
ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก =
f.-).-+
0)Q0+
. [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ]
ยจ We could have also only looked like Tuckman does p. 288 at the instantaneous quantities
๐‘€ ๐‘‘๐‘‹ ๐‘ก , ๐‘‰ ๐‘‘๐‘‹ ๐‘ก , ๐‘€ ๐‘‘๐‘Œ ๐‘ก , ๐‘‰ ๐‘‘๐‘Œ ๐‘ก , ๐ถ๐‘‚๐‘‰ ๐‘‘๐‘‹ ๐‘ก , ๐‘‘๐‘Œ ๐‘ก
ยจ Letโ€™s do that to gain some intuition
127
Luc_Faucheux_2021
Recasting the correlation instantaneous - II
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ With: < ๐‘‘๐‘Š
!(๐‘ก). ๐‘‘๐‘Š
"(๐‘ก) >= ๐œŒ. ๐‘‘๐‘ก
ยจ Is equivalent to:
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห†
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ With: < ๐‘‘ ห†
๐‘Š
!(๐‘ก). ๐‘‘ ห†
๐‘Š
"(๐‘ก) > = 0
128
Luc_Faucheux_2021
Recasting the correlation instantaneous - III
ยจ Letโ€™s look at :
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ Using the notation:
ยจ < ๐‘‘๐‘‹ ๐‘ก > to denote the usual quantity ๐”ผ ๐‘‘๐‘‹ = ๐”ผ8Q$8
E)
{๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก) ๐”‰ ๐‘ก that we
have been using the deck II of the stochastic calculus decks
ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐”ผ ๐‘‘๐‘‹ = ๐”ผ8Q$8
E)
{๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก) ๐”‰ ๐‘ก
ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐”ผ ๐‘‘๐‘‹ = ๐”ผ โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก
ยจ That is the usual drift / advection term
ยจ Letโ€™s now look at the higher moment (diffusion)
129
Luc_Faucheux_2021
Recasting the correlation instantaneous - IV
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐”ผ ๐‘‘๐‘‹. = ๐”ผ8Q$8
E)
{(๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก)). ๐”‰ ๐‘ก
ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐”ผ ๐‘‘๐‘‹.
ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐”ผ (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก) ).
ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐œŽ!
.. ๐‘‘๐‘ก
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ < ๐‘‘๐‘‹ ๐‘ก > = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐œŽ!
.. ๐‘‘๐‘ก
ยจ Same for the process ๐‘Œ(๐‘ก)
130
Luc_Faucheux_2021
Recasting the correlation instantaneous - V
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ = ๐”ผ8Q$8
E)
{ ๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹ ๐‘ก . (๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘Œ(๐‘ก)) ๐”‰ ๐‘ก
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š
"(๐‘ก)
ยจ With: < ๐‘‘๐‘Š
!(๐‘ก). ๐‘‘๐‘Š
"(๐‘ก) >= ๐œŒ. ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก) ). (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š
!(๐‘ก) )
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ (๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก) ). (๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก) )
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŽ!. ๐œŽ". ๐”ผ ๐‘‘๐‘Š
! ๐‘ก . ๐‘‘๐‘Š
"(๐‘ก)
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘‘๐‘ก
131
Luc_Faucheux_2021
Recasting the correlation instantaneous - VI
ยจ Starting from:
ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห†
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ With: < ๐‘‘ ห†
๐‘Š
!(๐‘ก). ๐‘‘ ห†
๐‘Š
"(๐‘ก) > = 0
ยจ < ๐‘‘๐‘‹ ๐‘ก > = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐œŽ!
.. ๐‘‘๐‘ก
ยจ The term for the process ๐‘Œ(๐‘ก) is a little more complicated, but essentially the same
derivation we had for the full explicit solution in the previous slides.
132
Luc_Faucheux_2021
Recasting the correlation instantaneous - VII
ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ ๐‘‘๐‘Œ = ๐”ผ8Q$8
g
E), g
E+
{๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘Œ(๐‘ก) ๐”‰ ๐‘ก
ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ ๐‘‘๐‘Œ = ๐”ผ โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ < ๐‘‘๐‘Œ ๐‘ก > = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐”ผ ๐‘‘๐‘Œ.
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐”ผ (โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}).
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ". ๐œŒ).๐”ผ (๐‘‘ ห†
๐‘Š
!(๐‘ก)). + (๐œŽ". 1 โˆ’ ๐œŒ.).๐”ผ (๐‘‘ ห†
๐‘Š
"(๐‘ก)). +
๐œŽ". ๐œŒ. ๐œŽ". 1 โˆ’ ๐œŒ.. ๐”ผ ๐‘‘ ห†
๐‘Š
! ๐‘ก . ๐‘‘ ห†
๐‘Š
"(๐‘ก)
133
Luc_Faucheux_2021
Recasting the correlation instantaneous - VIII
ยจ < ๐‘‘๐‘Œ ๐‘ก .
> = (๐œŽ1. ๐œŒ).
๐”ผ (๐‘‘ 6
๐‘Š
2(๐‘ก)).
+ (๐œŽ1. 1 โˆ’ ๐œŒ.).
๐”ผ (๐‘‘ 6
๐‘Š
1(๐‘ก)).
+ ๐œŽ1. ๐œŒ. ๐œŽ1. 1 โˆ’ ๐œŒ.. ๐”ผ ๐‘‘ 6
๐‘Š
2 ๐‘ก . ๐‘‘ 6
๐‘Š
1(๐‘ก)
ยจ < ๐‘‘ ห†
๐‘Š
!(๐‘ก). ๐‘‘ ห†
๐‘Š
"(๐‘ก) > = 0
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ". ๐œŒ).๐”ผ (๐‘‘ ห†
๐‘Š
!(๐‘ก)). + (๐œŽ". 1 โˆ’ ๐œŒ.).๐”ผ (๐‘‘ ห†
๐‘Š
"(๐‘ก)).
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ". ๐œŒ).. ๐‘‘๐‘ก + (๐œŽ". 1 โˆ’ ๐œŒ.).. ๐‘‘๐‘ก
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐œŽ"
.. ๐‘‘๐‘ก. {๐œŒ. + 1 โˆ’ ๐œŒ.
.
}
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐œŽ"
.. ๐‘‘๐‘ก. {๐œŒ. + 1 โˆ’ ๐œŒ.}
ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐œŽ"
.. ๐‘‘๐‘ก
134
Luc_Faucheux_2021
Recasting the correlation instantaneous - IX
ยจ And now to finish with the cross term:
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ = ๐”ผ8Q$8
g
E), g
E+
{ ๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹ ๐‘ก . (๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘Œ(๐‘ก)) ๐”‰ ๐‘ก
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ (โˆ’๐‘˜2. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ2. ๐‘‘ 6
๐‘Š
2(๐‘ก)). (โˆ’๐‘˜1. ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ1. {๐œŒ. ๐‘‘ 6
๐‘Š
2(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ 6
๐‘Š
1(๐‘ก)})
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ{๐œŽ!. ๐‘‘ ห†
๐‘Š
! ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห†
๐‘Š
!(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)})}
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐”ผ ๐‘‘ ห†
๐‘Š
! ๐‘ก . ๐‘‘ ห†
๐‘Š
! ๐‘ก + ๐”ผ{๐œŽ!. ๐‘‘ ห†
๐‘Š
! ๐‘ก . ๐œŽ". 1 โˆ’ ๐œŒ.. ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘‘๐‘ก + 1 โˆ’ ๐œŒ.. ๐œŽ!. ๐œŽ". ๐”ผ{๐‘‘ ห†
๐‘Š
! ๐‘ก . ๐‘‘ ห†
๐‘Š
"(๐‘ก)}
ยจ < ๐‘‘ ห†
๐‘Š
!(๐‘ก). ๐‘‘ ห†
๐‘Š
"(๐‘ก) > = 0
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘‘๐‘ก
135
Luc_Faucheux_2021
Recasting the correlation instantaneous - X
ยจ So we do recover the same expressions in both sets of equations for the quantities:
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) >
ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘‹(๐‘ก) >
ยจ < ๐‘‘๐‘Œ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) >
ยจ < ๐‘‘๐‘‹ ๐‘ก >
ยจ < ๐‘‘๐‘Œ(๐‘ก) >
ยจ Following the logic of the deck on stochastic calculus, we will also recover the same PDE
(Partial Differential equations) for the PDF (Probability Distribution Function) of the
processes that we described through the SDE (stochastic Differential Equations).
ยจ Hence the 2 descriptions are equivalent
136
Luc_Faucheux_2021
Tuckman โ€œGauss+โ€ model
137
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ I
138
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ II
ยจ Bruce Tuckman worked at Salomon on the โ€2+ IRMAโ€ model with other intellectual giants
like Craig Fithian, Francis Longstaff and other too numerous to name here.
ยจ SO he knows what he is talking about.
ยจ His book is awesome to read.
ยจ He expresses the model on page 288 as:
ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. (๐œŒ. ๐‘‘๐‘Š*(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘๐‘Š.(๐‘ก))
ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘๐‘Š*(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘๐‘Š*(๐‘ก). ๐‘‘๐‘Š.(๐‘ก) > = 0
ยจ Takes a little work to show that this can be casted into the 2+ IRMA formalism, but letโ€™s do it.
ยจ Itโ€™s worth it, plus I got let go of my job at Natixis, so I need to get my bearings backโ€ฆ.J
139
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ III
ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. (๐œŒ. ๐‘‘๐‘Š*(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘๐‘Š.(๐‘ก))
ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘๐‘Š*(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘๐‘Š*(๐‘ก). ๐‘‘๐‘Š.(๐‘ก) > = 0
ยจ So first of all we can recast the correlation as:
ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. ๐‘‘ โ€ฆ
๐‘Š.(๐‘ก)
ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘ โ€ฆ
๐‘Š*(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘ โ€ฆ
๐‘Š* ๐‘ก . ๐‘‘ โ€ฆ
๐‘Š. ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
140
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ IV
ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. ๐‘‘ โ€ฆ
๐‘Š.(๐‘ก)
ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘ โ€ฆ
๐‘Š*(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘ โ€ฆ
๐‘Š* ๐‘ก . ๐‘‘ โ€ฆ
๐‘Š. ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
ยจ Letโ€™s rename with ๐‘ฅ and ๐‘ฆ:
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ(๐‘ก) โˆ’ ๐‘ฅ(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ
๐‘Š
"(๐‘ก)
ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. (๐‘ฅ(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘ โ€ฆ
๐‘Š
! ๐‘ก . ๐‘‘ โ€ฆ
๐‘Š
" ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
141
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ V
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ(๐‘ก) โˆ’ ๐‘ฅ(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ
๐‘Š
"(๐‘ก)
ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. (๐‘ฅ(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘ โ€ฆ
๐‘Š
! ๐‘ก . ๐‘‘ โ€ฆ
๐‘Š
" ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
ยจ Letโ€™s โ€œcascadeโ€ (this is a Bruce Tuckman term) l
๐‘ฅ ๐‘ก = ๐‘ฅ ๐‘ก โˆ’ ๐œƒ (remember that is a
constant)
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ ๐‘ก โˆ’ l
๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ
๐‘Š
"(๐‘ก)
ยจ ๐‘‘ l
๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. l
๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘ โ€ฆ
๐‘Ši
! ๐‘ก . ๐‘‘ โ€ฆ
๐‘Š
" ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
142
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ VI
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ ๐‘ก โˆ’ l
๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ
๐‘Š
"(๐‘ก)
ยจ ๐‘‘ l
๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. l
๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ
๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก
ยจ With: < ๐‘‘ โ€ฆ
๐‘Ši
! ๐‘ก . ๐‘‘ โ€ฆ
๐‘Š
" ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
ยจ Replacing l
๐‘ฅ by ๐‘ฅ, the ๐›ผ with ๐‘˜ and ๐‘Ÿ with ๐‘ง
ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก)
ยจ ๐‘‘๐‘ง ๐‘ก = โˆ’๐‘˜#. ๐‘ง ๐‘ก โˆ’ ๐‘ฆ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ#. ๐‘‘๐‘Š
#(๐‘ก) with ๐œŽ# = 0
ยจ With: < ๐‘‘๐‘Š
! ๐‘ก . ๐‘‘๐‘Š
" ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
ยจ ๐‘Ÿ(๐‘ก) = ๐‘ง(๐‘ก)
143
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ VII
ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก)
ยจ ๐‘‘๐‘ง ๐‘ก = โˆ’๐‘˜#. ๐‘ง ๐‘ก โˆ’ ๐‘ฆ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ#. ๐‘‘๐‘Š
#(๐‘ก)
ยจ With: < ๐‘‘๐‘Š
! ๐‘ก . ๐‘‘๐‘Š
" ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก
ยจ ๐‘Ÿ(๐‘ก) = ๐‘ง(๐‘ก)
ยจ This one has the โ€œcascadeโ€ form because first you have ๐‘ฅ, then (๐‘ฆ โˆ’ ๐‘ฅ) then (๐‘ง โˆ’ ๐‘ฆ)
ยจ We can use matrices like Tuckman does in the appendix or just โ€œcascadeโ€ the change of
variables
ยจ l
๐‘ฅ = ๐‘ฅ
ยจ l
๐‘ฆ = ๐‘˜!. ๐‘ฆ โˆ’ ๐‘˜". ๐‘ฅ
144
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ VIII
ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)
ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก)
ยจ l
๐‘ฅ = ๐›ผ!,!. ๐‘ฅ + ๐›ผ!,". ๐‘ฆ
ยจ l
๐‘ฆ = ๐›ผ",!. ๐‘ฅ + ๐›ผ",". ๐‘ฆ
ยจ And then we will solve for the variables ๐›ผ!,! to reduce the mean reversion to be diagonal
ยจ ๐‘‘ l
๐‘ฅ = ๐›ผ!,!. ๐‘‘๐‘ฅ + ๐›ผ!,". ๐‘‘๐‘ฆ
ยจ ๐‘‘ l
๐‘ฆ = ๐›ผ",!. ๐‘‘๐‘ฅ + ๐›ผ",". ๐‘‘๐‘ฆ
ยจ ๐‘‘ l
๐‘ฅ = ๐›ผ!,!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)) + ๐›ผ!,". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก))
ยจ ๐‘‘ l
๐‘ฆ = ๐›ผ",!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)) + ๐›ผ",". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก))
145
Luc_Faucheux_2021
IRMA โ€“ Tuckman โ€“ Gauss+ IX
ยจ ๐‘‘ l
๐‘ฅ = ๐›ผ!,!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)) + ๐›ผ!,". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก))
ยจ ๐‘‘ l
๐‘ฆ = ๐›ผ",!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š
!(๐‘ก)) + ๐›ผ",". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š
"(๐‘ก))
ยจ And then we replace ๐‘ฅ and ๐‘ฆ by l
๐‘ฅ and l
๐‘ฆ, which is a matrix inversion.
ยจ l
๐‘ฅ = ๐›ผ!,!. ๐‘ฅ + ๐›ผ!,". ๐‘ฆ
ยจ l
๐‘ฆ = ๐›ผ",!. ๐‘ฅ + ๐›ผ",". ๐‘ฆ
ยจ ๐›ผ",! . l
๐‘ฅ = ๐›ผ",!. ๐›ผ!,!. ๐‘ฅ + ๐›ผ",!. ๐›ผ!,". ๐‘ฆ
ยจ ๐›ผ!,!. l
๐‘ฆ = ๐›ผ!,!. ๐›ผ",!. ๐‘ฅ + ๐›ผ!,!. ๐›ผ",". ๐‘ฆ
ยจ ๐›ผ",! . l
๐‘ฅ โˆ’ ๐›ผ!,!. l
๐‘ฆ = ๐›ผ!,!. ๐›ผ",!. ๐‘ฅ โˆ’ ๐›ผ!,!. ๐›ผ",!. ๐‘ฅ + (๐›ผ",!. ๐›ผ!," โˆ’ ๐›ผ!,!. ๐›ผ","). ๐‘ฆ
ยจ ๐›ผ",! . l
๐‘ฅ โˆ’ ๐›ผ!,!. l
๐‘ฆ = ๐›ผ",!. ๐›ผ!," โˆ’ ๐›ผ!,!. ๐›ผ","). ๐‘ฆ
146
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma

More Related Content

What's hot

Lf 2020 langevin
Lf 2020 langevinLf 2020 langevin
Lf 2020 langevinluc faucheux
ย 
Lf 2020 trees
Lf 2020 treesLf 2020 trees
Lf 2020 treesluc faucheux
ย 
Lf 2020 rates_iii
Lf 2020 rates_iiiLf 2020 rates_iii
Lf 2020 rates_iiiluc faucheux
ย 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiluc faucheux
ย 
Lf 2020 rates_i
Lf 2020 rates_iLf 2020 rates_i
Lf 2020 rates_iluc faucheux
ย 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aluc faucheux
ย 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viiiluc faucheux
ย 

What's hot (7)

Lf 2020 langevin
Lf 2020 langevinLf 2020 langevin
Lf 2020 langevin
ย 
Lf 2020 trees
Lf 2020 treesLf 2020 trees
Lf 2020 trees
ย 
Lf 2020 rates_iii
Lf 2020 rates_iiiLf 2020 rates_iii
Lf 2020 rates_iii
ย 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-ii
ย 
Lf 2020 rates_i
Lf 2020 rates_iLf 2020 rates_i
Lf 2020 rates_i
ย 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-a
ย 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viii
ย 

Similar to Lf 2021 rates_iv_a_irma

Machine learning introduction lecture notes
Machine learning introduction lecture notesMachine learning introduction lecture notes
Machine learning introduction lecture notesUmeshJagga1
ย 
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...AmeryWalters
ย 
Algebra factoring
Algebra factoringAlgebra factoring
Algebra factoringTrabahoLang
ย 
rational expressions
rational expressionsrational expressions
rational expressionsTrabahoLang
ย 
2. data types, variables and operators
2. data types, variables and operators2. data types, variables and operators
2. data types, variables and operatorsPhD Research Scholar
ย 
How much time will be used for driving
How much time will be used for drivingHow much time will be used for driving
How much time will be used for drivingRuo Yang
ย 
Intro to Quant Trading Strategies (Lecture 3 of 10)
Intro to Quant Trading Strategies (Lecture 3 of 10)Intro to Quant Trading Strategies (Lecture 3 of 10)
Intro to Quant Trading Strategies (Lecture 3 of 10)Adrian Aley
ย 
Inverse1
Inverse1Inverse1
Inverse1nocture
ย 
Inverse1
Inverse1Inverse1
Inverse1nocture
ย 
TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)
TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)
TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)ChrysleerSalazar
ย 
CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹
CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹
CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹sumisumith
ย 
Introduction to Python Language and Data Types
Introduction to Python Language and Data TypesIntroduction to Python Language and Data Types
Introduction to Python Language and Data TypesRavi Shankar
ย 
Inverse 3
Inverse 3Inverse 3
Inverse 3nocture
ย 
Mam1
Mam1Mam1
Mam1nocture
ย 
Mam1
Mam1Mam1
Mam1nocture
ย 
P1-Chp13-Integration.pptx
P1-Chp13-Integration.pptxP1-Chp13-Integration.pptx
P1-Chp13-Integration.pptxYashTiwari512330
ย 
ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†
ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†
ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†Ichigaku Takigawa
ย 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recapFarzad Javidanrad
ย 

Similar to Lf 2021 rates_iv_a_irma (20)

Machine learning introduction lecture notes
Machine learning introduction lecture notesMachine learning introduction lecture notes
Machine learning introduction lecture notes
ย 
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
ย 
05 Jo P May 07
05 Jo P May 0705 Jo P May 07
05 Jo P May 07
ย 
Algebra factoring
Algebra factoringAlgebra factoring
Algebra factoring
ย 
20 Jo P Aug 08
20 Jo P Aug 0820 Jo P Aug 08
20 Jo P Aug 08
ย 
rational expressions
rational expressionsrational expressions
rational expressions
ย 
2. data types, variables and operators
2. data types, variables and operators2. data types, variables and operators
2. data types, variables and operators
ย 
How much time will be used for driving
How much time will be used for drivingHow much time will be used for driving
How much time will be used for driving
ย 
Intro to Quant Trading Strategies (Lecture 3 of 10)
Intro to Quant Trading Strategies (Lecture 3 of 10)Intro to Quant Trading Strategies (Lecture 3 of 10)
Intro to Quant Trading Strategies (Lecture 3 of 10)
ย 
Inverse1
Inverse1Inverse1
Inverse1
ย 
Inverse1
Inverse1Inverse1
Inverse1
ย 
TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)
TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)
TALLER PARCIAL II CรLCULO 3246 (CASTRO,SALAZAR,SHIGUANGO)
ย 
CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹
CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹
CVPR2016 Fitting Surface Models to Data ๆŠœ็ฒ‹
ย 
Introduction to Python Language and Data Types
Introduction to Python Language and Data TypesIntroduction to Python Language and Data Types
Introduction to Python Language and Data Types
ย 
Inverse 3
Inverse 3Inverse 3
Inverse 3
ย 
Mam1
Mam1Mam1
Mam1
ย 
Mam1
Mam1Mam1
Mam1
ย 
P1-Chp13-Integration.pptx
P1-Chp13-Integration.pptxP1-Chp13-Integration.pptx
P1-Chp13-Integration.pptx
ย 
ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†
ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†
ๆฉŸๆขฐๅญฆ็ฟ’ใจ่‡ชๅ‹•ๅพฎๅˆ†
ย 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
ย 

More from luc faucheux

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfluc faucheux
ย 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfluc faucheux
ย 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdfluc faucheux
ย 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdfluc faucheux
ย 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfluc faucheux
ย 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfluc faucheux
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
ย 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2luc faucheux
ย 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iluc faucheux
ย 
Lf 2020 structured
Lf 2020 structuredLf 2020 structured
Lf 2020 structuredluc faucheux
ย 
Lf 2020 options
Lf 2020 optionsLf 2020 options
Lf 2020 optionsluc faucheux
ย 
Lf 2020 skew
Lf 2020 skewLf 2020 skew
Lf 2020 skewluc faucheux
ย 
Lf 2020 bachelier
Lf 2020 bachelierLf 2020 bachelier
Lf 2020 bachelierluc faucheux
ย 

More from luc faucheux (14)

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdf
ย 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdf
ย 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdf
ย 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
ย 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ย 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdf
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
ย 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2
ย 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-i
ย 
Lf 2020 structured
Lf 2020 structuredLf 2020 structured
Lf 2020 structured
ย 
Lf 2020 options
Lf 2020 optionsLf 2020 options
Lf 2020 options
ย 
Lf 2020 skew
Lf 2020 skewLf 2020 skew
Lf 2020 skew
ย 
Lf 2020 bachelier
Lf 2020 bachelierLf 2020 bachelier
Lf 2020 bachelier
ย 

Recently uploaded

CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual serviceCALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual serviceanilsa9823
ย 
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptxFinTech Belgium
ย 
The Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfThe Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfGale Pooley
ย 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spiritegoetzinger
ย 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignHenry Tapper
ย 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptxFinTech Belgium
ย 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdfFinTech Belgium
ย 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
ย 
The Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfThe Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfGale Pooley
ย 
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
ย 
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home DeliveryPooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home DeliveryPooja Nehwal
ย 
Call US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure service
Call US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure serviceCall US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure service
Call US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure servicePooja Nehwal
ย 
Instant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School DesignsInstant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School Designsegoetzinger
ย 
The Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfThe Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfGale Pooley
ย 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
ย 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Pooja Nehwal
ย 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptxFinTech Belgium
ย 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfGale Pooley
ย 

Recently uploaded (20)

CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual serviceCALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Gomti Nagar Lucknow best sexual service
ย 
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
ย 
The Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfThe Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdf
ย 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spirit
ย 
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
ย 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaign
ย 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx
ย 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
ย 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
ย 
Veritas Interim Report 1 Januaryโ€“31 March 2024
Veritas Interim Report 1 Januaryโ€“31 March 2024Veritas Interim Report 1 Januaryโ€“31 March 2024
Veritas Interim Report 1 Januaryโ€“31 March 2024
ย 
The Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfThe Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdf
ย 
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home DeliveryPooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
ย 
Call US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure service
Call US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure serviceCall US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure service
Call US ๐Ÿ“ž 9892124323 โœ… Kurla Call Girls In Kurla ( Mumbai ) secure service
ย 
Instant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School DesignsInstant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School Designs
ย 
The Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfThe Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdf
ย 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
ย 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
ย 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
ย 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdf
ย 

Lf 2021 rates_iv_a_irma

  • 1. Luc_Faucheux_2021 THE RATES WORLD โ€“ Part IV_a Starting to look at modeling rates, a taxonomy of modelsโ€ฆappendix on IRMA, and mostly 2 factors short rate models, plus my squid teacher 1
  • 2. Luc_Faucheux_2021 Couple of notes on those slides ยจ This is expanding a little the section on the IRMA function ยจ More generally we are looking at multi factor short rate models ยจ Trip down memory lane about some short rate models that were common in the โ€˜80s and โ€˜90s ยจ Actually most of those came from Salomon Brothers, those guys had a 3 factor model up and running in the late โ€˜70s, and with people moving to other firms it gradually became the standard for a while ยจ These days I do not think that anyone still use it, as most the of the industry moved to LMM, BGM and FMM models based on the forwards, not the short rate, as computing became cheaper and faster (still rates is the requirements are โ€œinordinately demandingโ€ as Peter Carr would say) 2
  • 3. Luc_Faucheux_2021 IRMA ยจ If you get bored with one-factor short rate models, you can using multi-factors short rate models. ยจ If you are a genius like Craig Fithian and worked at Salomon in 1972, you write (am using the SIE form to be more compact) what got to be known worldwide as the 2+ IRMA model ยจ ! ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด[๐‘ง ๐‘ก + ๐œ‡ ๐‘ก ] ยจ Where ๐ผ๐‘…๐‘€๐ด(z) is the IRMA function (Interest Rate Mapping I think) which created an incredible stable skew, they had historical data on skew going back to the 1960 ยจ IRMA was not named after the hurricane from 2017 3
  • 4. Luc_Faucheux_2021 IRMA - II ยจ The Salomon IRMA function was NOT named after hurricane IRMA (2017) 4
  • 5. Luc_Faucheux_2021 IRMA - III ยจ I recalled the day when working there I got my hands on the original code (which I think was in FORTRAN) from 1972. ยจ Thinks about it, when Black Sholes came out, Salomon Brothers was running its swap and option desk with a 3-factor short rate model with IRMA skew !! ยจ The trick was the calibration of the IRMA mapping. ยจ It was defined with 3 variables originally (we then extended to 4 to account for negative rates, and yours truly tried to replace IRMA with SQUID, more to come on this), but the original three variables were: ยจ < Intercept ๐ผ Slope ๐‘† Regime Change ๐‘… 5
  • 6. Luc_Faucheux_2021 IRMA - IV ยจ The IRMA function ๐ผ๐‘…๐‘€๐ด ๐‘ง was actually defined by parametrizing the function: ยจ ๐‘” ๐‘Ÿ = $%&'( # $# = $%&'( $# ๐ผ๐‘…๐‘€๐ด)* ๐‘Ÿ = ๐ผ๐‘…๐‘€๐ดโ€ฒ(๐ผ๐‘…๐‘€๐ด)* ๐‘Ÿ ) 6 ๐‘Ÿ ๐‘”(๐‘Ÿ) Regime Change ๐‘… Intercept ๐ผ Slope ๐‘†
  • 7. Luc_Faucheux_2021 IRMA - V ยจ Above the Regime Change ๐‘…, the function IRMA is a straight line of slope ๐‘† ยจ If that straight line was continued below the regime change ๐‘… it would intercept the y-axis at the Intercept ๐ผ ยจ Below the Regime Change ๐‘…, the function IRMA is a quadratic function that connect with the straight line at the point (๐‘…, ๐ผ + ๐‘†. ๐‘…) and goes through the origin (0,0) ยจ Note, when I got there in 2002, that function was still used throughout the firm and matched the observed skew in a very stable and remarkable manner. We dabbled into tweaking it for negative rates by essentially adding a parameter similar to the shifted lognormal model, so that the above sentence got changed to: ยจ Below the Regime Change ๐‘…, the function IRMA is a quadratic function that connect with the straight line at the point (๐‘…, ๐ผ + ๐‘†. ๐‘…) and goes through a point (โˆ’๐‘, 0) left of the origin 7
  • 8. Luc_Faucheux_2021 IRMA - VI ยจ You can see the beauty of this: ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด[๐‘ง ๐‘ก + ๐œ‡ ๐‘ก ] ยจ IF (๐‘† = 0, ๐‘… = 0, ๐ผ = ๐‘๐‘ก๐‘’) then we have: ๐‘” ๐‘Ÿ = ๐ผ and so $%&'( # $# = ๐ผ ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง = ๐ผ. ๐‘ง + ๐ถ is a linear function of the Gaussian variable ๐‘ง ๐‘ก , the model will produce a NORMAL skew ยจ IF (๐‘† = ๐‘๐‘ก๐‘’, ๐‘… = 0, ๐ผ = 0) then we have: ๐‘” ๐‘Ÿ = ๐‘†. ๐‘Ÿ and so $%&'( # $# = ๐‘†. ๐ผ๐‘…๐‘€๐ด(๐‘ง) ยจ We then get: ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง = exp ๐‘†. ๐‘ง + ๐ถ ยจ ๐‘Ÿ ๐‘ก is an exponential function of the Gaussian variable ๐‘ง ๐‘ก , the model will produce a LOGNORMAL skew ยจ The quadratic part under the Regime Change ๐‘… when non-zero will fold the distribution of ๐‘ง ๐‘ก back on positive rates, so the model avoids negative rates (which for a while was deemed to be a good thing, unless things changed) ยจ We will go back to all the beautiful ways we can parametrize IRMA to recover the market skew and smile 8
  • 9. Luc_Faucheux_2021 IRMA - VII ยจ The 3 parameters had been calibrated to historical data for the skew covering like 40 years of historical market moves or so, which was in itself amazing (the fact that Salomon had a clean database that you could use that was going back so far) ยจ The 3 parameters were surprisingly stable, and essentially produced something that was getting Lognormal at low rates below the Regime Change ๐‘…, and closer to Normal above the Regime Change ๐‘… ยจ Ask anyone who worked on the options desk there and worked with 2+IRMA, and they might still remember by heart those parameters ยจ < Intercept ๐ผ = 0.06 Slope ๐‘†=0.2 Regime Change ๐‘… = 0.01 ยจ Yours truly worked on implemented SQUID in order to recover the market skew and smile at high strike (SQUID=Skew of Quadratic Interest rate Distribution) 9
  • 10. Luc_Faucheux_2021 IRMA - VIII ยจ The SQUID function ๐‘”(๐‘Ÿ) in order to recover skew and smile. Long live baby squid Cthulhu !! 10 ๐‘Ÿ ๐‘”(๐‘Ÿ) Intercept ๐ผ Slope ๐‘† Regime Change ๐‘…! Quadratic Switch ๐‘…"
  • 11. Luc_Faucheux_2021 2+ IRMA in the literature 11
  • 12. Luc_Faucheux_2021 IRMA - VIII ยจ The model became quite widely known and adopted in the literature and in the financial industry. ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น(๐‘ง) ยจ It is referred to as a 3 factors OU (Ornstein-Uhlenbeck) process ยจ Remember Ornstein-Uhlenbeck is only a fancy way to say โ€œLangevinโ€ 12
  • 13. Luc_Faucheux_2021 IRMA - IX ยจ At Citi, it was known as 2+ ยจ The reason it was known as 2+ is actually quite funny. A two factor version had been implemented previously and had been approved internally by Risk, modeling,โ€ฆ ยจ A three factor version would have been too much work to go through all the documentation and approval processes (remember at the time things were a little more flexible), so it was easier to pass the new 3-factor model as a modification (a +) on the existing 2-factor model and call it 2+ ยจ Every time an option trader drives on the highway and sees the sign for the HOV (High Occupancy Lanes) with usually an indication of โ€œ2+โ€, meaning that you can be on the HOV if you have 2 passengers or more in your car, he or she think with sweet longing about the 2+ IRMA model, at least I know I do 13
  • 15. Luc_Faucheux_2021 IRMA - Piterbarg - I ยจ In the literature, it is sometimes referred to (with some tweaks) as the Gaussian model. ยจ In Piterbarg (p. 494), you see the original formulation of the โ€2 Factor Gaussian modelโ€ ยจ Piterbarg actually writes the equations as: ยจ ๐‘‘๐œ€ = โˆ’๐‘˜+. ๐œ€. ๐‘‘๐‘ก + ๐œŽ+. ([). ๐‘‘๐‘Š + ยจ ๐‘‘๐‘Ÿ = ๐‘˜,. {๐œ— ๐‘ก + ๐œ€ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ,. ([). ๐‘‘๐‘Š , ยจ With: < ๐‘‘๐‘Š +. ๐‘‘๐‘Š , >= ๐œŒ. ๐‘‘๐‘ก 15
  • 16. Luc_Faucheux_2021 IRMA - Piterbarg - II ยจ But you can break those down as: ยจ Step 1: replace ๐œ€ ๐‘ก by ๐‘ฅ ๐‘ก (that is an easy oneโ€ฆ) ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘Ÿ = ๐‘˜,. {๐œ— ๐‘ก + ๐‘ฅ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ,. ([). ๐‘‘๐‘Š , ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š , >= ๐œŒ. ๐‘‘๐‘ก 16
  • 17. Luc_Faucheux_2021 IRMA - Piterbarg - III ยจ Step 2: forget about the second equation because this is a 2-factor model, not a 3-factor one ยจ So forget about ๐‘ฆ being stochastic variable, it is a deterministic variable ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘ฆ(๐‘ก) = ๐œ— ๐‘ก ยจ ๐‘‘๐‘ง = ๐‘˜#. {๐‘ฆ ๐‘ก + ๐‘ฅ ๐‘ก โˆ’ ๐‘ง ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š # >= ๐œŒ. ๐‘‘๐‘ก ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ยจ That is as simple an IRMA function as we can get, and is called Gaussian because it does not perturb the initial Gaussian distribution of the Langevin equations. I will add the slides from the Langevin deck to remind us that the probability distribution is a Gaussian indeed ยจ Also the linear transformation ๐น ๐‘ง = ๐‘ง keeps the Gaussian untouched 17
  • 18. Luc_Faucheux_2021 IRMA - Piterbarg - IV ยจ In that formulation: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘ฆ(๐‘ก) = ๐œ— ๐‘ก ยจ ๐‘‘๐‘ง = ๐‘˜#. {๐‘ฆ ๐‘ก + ๐‘ฅ ๐‘ก โˆ’ ๐‘ง ๐‘ก }. ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š # >= ๐œŒ. ๐‘‘๐‘ก ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ยจ It is usually customary to think of the variable ๐‘ฅ(๐‘ก) as the โ€œshort-term rateโ€ or more exactly shocks in the front end of the curve ยจ The variable ๐‘ฆ(๐‘ก) = ๐œ— ๐‘ก is then the slope of the yield curve ยจ Bear in mind though that this is still a short rate model and not a term structure model 18
  • 19. Luc_Faucheux_2021 IRMA - Piterbarg - V ยจ Alternatively, to make it even closer to 2+IRMA, we can write it as: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง + ๐œ— ๐‘ก ยจ With: ยจ ๐œŽ" = 0 ยจ ๐‘˜" = 0 ยจ ๐‘ฆ ๐‘ก = ๐‘ฆ 0 = 0 19
  • 21. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - I ยจ In the Mercurio book it is referred to as the G2++ model, which is quite close to the original โ€œ2+โ€ terminology at Salomon Brothers (p.132) 21
  • 22. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - II ยจ Mercurio writes down the model as (p.133) ยจ ๐‘‘๐‘ฅ = โˆ’๐‘Ž. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘. ๐‘ฆ. ๐‘‘๐‘ก + ๐œ‚. ([). ๐‘‘๐‘Š " ยจ ๐‘Ÿ ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ ๐‘ก + ๐œ‘(๐‘ก) ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก ยจ We can see again that we can recast those in the 2+IRMA format with: ยจ ๐‘˜! = ๐‘Ž ยจ ๐‘˜" = ๐‘ ยจ ๐œŽ! = ๐œŽ ยจ ๐œŽ! = ๐œ‚ 22
  • 23. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - III 23 ยจ We then get: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ ๐‘Ÿ ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ ๐‘ก + ๐œ‘(๐‘ก) ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก ยจ Again because it is a 2 factor model, the third variable in this case is deterministic and set to: ยจ ๐‘ง ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ ๐‘ก ยจ Which itself is the limit of the original: ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With ๐œŽ# = 0 and ๐‘˜# โ†’ โˆž ยจ And then ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘(๐‘ก)
  • 24. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - IV ยจ So the G2++ model from Mercurio is also the 2+IRMA with the following: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก ยจ And : ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น(๐‘ง) ยจ ๐œŽ# = 0 ยจ ๐‘˜# โ†’ โˆž so ๐‘ฅ + ๐‘ฆ โˆ’ ๐‘ง โ†’ 0 so ๐‘ง ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ(๐‘ก) ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘(๐‘ก) ยจ So again the fact that the IRMA function ๐น ๐‘ง is affine enforces the Gaussian distribution 24
  • 25. Luc_Faucheux_2021 Why do we call those models โ€œGaussianโ€ ? 25
  • 26. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - V ยจ Why is called Gaussian by the way ? Looks pretty complicated, how do we know that distribution is a Gaussian ? ยจ First of all, letโ€™s look at the equations for ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก) ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ They BOTH individually fit the Langevin equation (or if you are in Finance you call that OU process, again just ask Ranjit Bhattacharjee, the king of OU models) ยจ Time for a little refresher on the results of the Langevin deck, using some of those slides verbatim 26
  • 27. Luc_Faucheux_2021 PDF for the Langevin equation - XVI ยจ Langevin equation is usually for the particle velocity: ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜. ๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š ยจ With the usual Diffusion coefficient ๐ท = -! . ยจ ๐‘/ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 = 0 .12.(*)567 ).08 ) . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜ (:);" < .567 )08 )! .2.(*)567 ).08 ) ) ยจ Remember ๐‘‰ ๐‘ก is the stochastic process ยจ ๐‘ฃ is a regular variable ยจ ๐‘ƒ/ ๐‘ฃ, ๐‘ก = ๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘Ž๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐‘‰ โ‰ค ๐‘ฃ, ๐‘ก = โˆซ "=)> "=: ๐‘/ ๐‘ฆ, ๐‘ก . ๐‘‘๐‘ฆ ยจ ๐‘/(๐‘ฃ, ๐‘ก) = ? ?: ๐‘ƒ/ ๐‘ฃ, ๐‘ก sometimes just noted ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 27
  • 28. Luc_Faucheux_2021 PDF for the Langevin equation - XVIII ยจ After much calculation, this is the celebrated Langevin PDF: ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 = 0 .12.(*)567 ).08 ) . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜ (:);" < .567 )08 )! .2.(*)567 ).08 ) ) ยจ SMALL TIME LIMIT ยจ IF ๐‘ก โ†’ 0 0 2.(*)567 ).08 ) = * .28 + ๐•† ๐‘ก. ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 โ†’ * @128 . ๐‘’๐‘ฅ๐‘(โˆ’ (:);" < )! @28 ) ยจ At short time scales (underdamped regime), the Langevin diffuses as a regular diffusion process ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š โ†’ ๐œŽ. ๐‘‘๐‘Š 28
  • 29. Luc_Faucheux_2021 PDF for the Langevin equation - XIX ยจ SMALL ๐‘˜ limit ยจ IF ๐‘˜ โ†’ 0 0 2.(*)567 ).08 ) = * .28 + ๐•† ๐‘˜. ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 โ†’ * @128 . ๐‘’๐‘ฅ๐‘(โˆ’ (:);" < )! @28 ) ยจ This is expected since when ๐‘˜ โ†’ 0 we should recover the usual diffusion: ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š โ†’ ๐œŽ. ๐‘‘๐‘Š 29
  • 30. Luc_Faucheux_2021 PDF for the Langevin equation - XX ยจ STEADY STATE LIMIT ยจ IF ๐‘ก โ†’ โˆž 0 2.(*)567 ).08 ) = 0 2 + ๐•† ๐‘ก)* ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘š* 0 , ๐‘ก = 0 = 0 .12.(*)567 ).08 ) . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜ (:);" < .567 )08 )! .2.(*)567 ).08 ) ) ยจ ๐‘ ๐‘ฃ, ๐‘ก โ†’ โˆž|๐‘š* 0 , ๐‘ก = 0 = 0 .12 . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜ :! .2 ) ยจ This is referred to as the โ€œinvariant Gaussian distributionโ€ 30
  • 31. Luc_Faucheux_2021 PDF for the Langevin equation - XXI ยจ In the case where ๐‘˜ โ†’ 0, the SDE becomes : ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š = ๐œŽ. ๐‘‘๐‘Š ยจ And we should recover the usual Brownian diffusion ยจ ๐‘š* ๐‘ก = ๐‘š* 0 . exp โˆ’๐‘˜๐‘ก โ†’ ๐‘š* 0 ยจ ๐‘š. ๐‘ก = ๐‘š. โˆž + exp โˆ’2๐‘˜๐‘ก . ๐‘š. 0 โˆ’ ๐‘š. โˆž โ†’ ๐‘š. 0 ยจ ๐‘ ๐‘ฃ, ๐‘ก = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰< = ๐‘š* 0 , ๐‘ก = 0 = * .1;! 8 . ๐‘’๐‘ฅ๐‘(โˆ’ (:);" 8 )! .;! 8 ) ยจ ๐‘ ๐‘ฃ, ๐‘ก = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰< = ๐‘š* 0 , ๐‘ก = 0 = * .1;! < . ๐‘’๐‘ฅ๐‘(โˆ’ (:);" < )! .;! < ) 31
  • 32. Luc_Faucheux_2021 PDF for the Langevin equation - XXII ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ ๐‘กA , ๐‘กA = 0 .12.(*)B#!$(&#&')) . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜ (:);" 8' .B#$(&#&'))! .2(*)B#!$(&#&')) ) ยจ The Langevin process is Gaussian (the PDF can be expressed as a Gaussian function) ยจ The Langevin process is Markov (the PDF only depends on ๐‘‰ ๐‘กA , ๐‘กA and not on the entire history before) ยจ ๐‘ ๐‘ฃ, ๐‘ก|{๐‘‰ ๐‘  , ๐‘  โ‰ค ๐‘กA} = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ ๐‘กA , ๐‘กA ยจ The Langevin process is stationary (only depends on (๐‘ก โˆ’ ๐‘กA)) ยจ ๐‘ ๐‘ฃ, ๐‘ก + โ„Ž|๐‘‰ ๐‘กA + โ„Ž = ๐‘‰ A, ๐‘กA + โ„Ž = ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ A, ๐‘กA ยจ The increments of the Langevin process are NOT independents. Indeed the increments are not even uncorrelated (as opposed to a Wiener process) ยจ The correlation function decays as an exponential. In some textbooks they base the definition of the process on the knowledge of the auto-correlation function, as an equivalent starting point 32
  • 33. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - VI ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜. ๐‘‰ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š ยจ ๐‘ ๐‘ฃ, ๐‘ก|๐‘‰ ๐‘กA = ๐‘ฃA, ๐‘กA = 0 .12.(*)B#!$(&#&')) . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜ (:):'.B#$(&#&'))! .2(*)B#!$(&#&')) ) ยจ ๐‘‘๐‘‹ = โˆ’๐‘˜!. ๐‘‹. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! with ๐ท! = -) ! . ยจ ๐‘C ๐‘ฅ, ๐‘ก|๐‘‹ ๐‘กA = ๐‘ฅA, ๐‘กA = 0) .12). *)B#!$). &#&' . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜!. (!)!'.B#$).(&#&'))! .2).(*)B#!$).(&#&')) ) ยจ ๐‘‘๐‘Œ = โˆ’๐‘˜". ๐‘Œ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " with ๐ท" = -+ ! . ยจ ๐‘D ๐‘ฆ, ๐‘ก|๐‘Œ ๐‘กA = ๐‘ฆA, ๐‘กA = 0+ .12+. *)B#!$+. &#&' . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜". (")"'.B#$+.(&#&') )! .2+.(*)B#!$+.(&#&') ) ) 33
  • 34. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - VII ยจ So both ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are normally distributed (the Probability distribution function is a Gaussian). ยจ Letโ€™s pick one ยจ ๐‘C ๐‘ฅ, ๐‘ก|๐‘‹ ๐‘กA = ๐‘ฅA, ๐‘กA = 0) .12). *)B#!$). &#&' . ๐‘’๐‘ฅ๐‘(โˆ’๐‘˜!. (!)!'.B#$).(&#&'))! .2).(*)B#!$).(&#&')) ) ยจ This has a mean (average, expected value) given by: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8 E) {๐‘‹ ๐‘ก ๐”‰ ๐‘กA = ๐‘ฅA. ๐‘’)0). 8)8' = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). = ๐”ผ8 E) {(๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). ๐”‰ ๐‘กA ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' 34
  • 35. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - VIII ยจ Another way to see that is to start from the SDE: ยจ ๐‘‘๐‘‹ = โˆ’๐‘˜!. ๐‘‹. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! with ๐ท! = -) ! . ยจ We write the SIE using the ITO integral: ยจ Letโ€™s define j ๐‘‹ ๐‘ก = exp ๐‘˜!. ๐‘ก . ๐‘‹(๐‘ก) and use the ITO lemma ยจ ๐‘‘ j ๐‘‹ = ? F C ?C . [ . ๐‘‘๐‘‹ + * . . ?! F C ?C! . ๐‘‘๐‘‹. + ? F C ?8 . [ . ๐‘‘๐‘ก ยจ ? F C ?8 = ๐‘˜!. ๐‘ก. ๐‘‹ ๐‘ก ยจ ? F C ?C = exp(๐‘˜!. ๐‘ก) ยจ ?! F C ?C! = 0 35
  • 36. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - IX ยจ Again, remember that we used the notation for ITO lemma for sake of ease, what you really have is a regular function ยจ j ๐‘‹ = ๐‘“ ๐‘‹ Stochastic Variable ยจ l ๐‘ฅ = ๐‘“ ๐‘ฅ Regular โ€œNewtonianโ€ variable with well defined partial derivatives ยจ ๐›ฟ๐‘“ = ?G ?! . ๐›ฟ๐‘‹ + * . . ?!G ?!! . (๐›ฟ๐‘‹). + ?G ?8 . ๐‘‘๐‘ก ยจ ?G ?! = ?G ?! |!=C 8 ,8 ยจ ?!G ?!! = ?!G ?!! |!=C 8 ,8 ยจ ?G ?8 = ?G ?8 |!=C 8 ,8 36
  • 37. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - X ยจ We then get: ยจ ๐‘‘ j ๐‘‹ = exp ๐‘˜!. ๐‘ก . ([). ๐‘‘๐‘‹ + ๐‘˜!. ๐‘ก. ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘ก ยจ ๐‘‘ j ๐‘‹ = exp ๐‘˜!. ๐‘ก . ([). (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !) + ๐‘˜!. ๐‘ก. ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘ก = exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘ j ๐‘‹ = exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ Which we should really write as an SIE anyways: ยจ j ๐‘‹ ๐‘กI โˆ’ j ๐‘‹ ๐‘กA = โˆซ 8=8A 8=8I ๐‘‘ j ๐‘‹ ๐‘ก = โˆซ 8=8A 8=8I exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ exp ๐‘˜!. ๐‘กI . ๐‘‹ ๐‘กI โˆ’ exp ๐‘˜!. ๐‘กA . ๐‘‹ ๐‘กA = โˆซ 8=8A 8=8I exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‹ ๐‘กI = exp โˆ’๐‘˜!. ๐‘กI . {exp ๐‘˜!. ๐‘กA . ๐‘‹ ๐‘กA + โˆซ 8=8A 8=8I exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก)} 37
  • 38. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XI ยจ ๐‘‹ ๐‘กI = exp โˆ’๐‘˜!. ๐‘กI . {exp ๐‘˜!. ๐‘กA . ๐‘‹ ๐‘กA + โˆซ 8=8' 8=8, exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก)} ยจ ๐‘‹ ๐‘กI = ๐‘‹ ๐‘กA . exp โˆ’๐‘˜!. (๐‘กI โˆ’ ๐‘กA) + exp โˆ’๐‘˜!. ๐‘กI . โˆซ 8=8' 8=8, exp ๐‘˜!. ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‹ ๐‘กI = ๐‘‹ ๐‘กA . exp โˆ’๐‘˜!. (๐‘กI โˆ’ ๐‘กA) + โˆซ 8=8' 8=8, exp โˆ’๐‘˜!. ๐‘กI โˆ’ ๐‘ก . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ก ยจ ๐‘‹ ๐‘กI = ๐‘‹ ๐‘กA . ๐‘’)0).(8,)8') + โˆซ 8=8' 8=8, ๐‘’)0). 8,)8 . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ก ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ยจ From there on, we know that the ITO integral is a martingale: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8 E) {๐‘‹ ๐‘ก ๐”‰ ๐‘กA 38
  • 39. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XII ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8 E) {๐‘‹ ๐‘ก ๐”‰ ๐‘กA ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ8 E) {๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ๐”‰ ๐‘กA ยจ ๐”ผ8 E) {๐‘‹ ๐‘กA . ๐‘’)0). 8)8' ๐”‰ ๐‘กA = ๐‘‹ ๐‘กA . ๐‘’)0). 8)8' ยจ ๐”ผ8 E) {โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ๐”‰ ๐‘กA = 0 since the ITO integral is a martingale. ยจ This is at times a supe useful trick, to take the expected value of something that simplifies if it contains an ITO integral ยจ Calin book page 195 has a couple of nifty applications of this trick. ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0). 8)8' 39
  • 40. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XIII ยจ The variance is a little more complicated but also relies on a nifty little property of the ITO integral, the isometry property. ยจ So as a rule: ยจ Average โ€“ Mean โ€“ Expected Value: use the fact that ITO integrals are martingale ยจ Second moment โ€“ variance โ€“ standard deviation : use the fact that the ITO integral exhibits the Isometry property ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). = ๐”ผ8 E) {(๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). ๐”‰ ๐‘กA ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0). 8)8' ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข 40
  • 41. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XIV ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). = ๐”ผ8 E) {(๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). ๐”‰ ๐‘กA ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ8 E) {(โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ). ๐”‰ ๐‘กA ยจ This is where the isometry property comes handy. ยจ Let us remind us first what it is: ยจ ๐”ผ{ โˆซ K=< K=8 ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  . } = โˆซ K=< K=8 ๐‘“ ๐‘  .. ๐‘‘๐‘  ยจ ๐”ผ{ โˆซ K=< K=8 ๐‘“ ๐‘Š ๐‘  , ๐‘  . ๐‘‘๐‘Š ๐‘  . } = โˆซ K=< K=8 ๐‘“ ๐‘Š ๐‘  , ๐‘  .. ๐‘‘๐‘  41
  • 42. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XV ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ8 E) {(โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ). ๐”‰ ๐‘กA ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ8 E) {โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ! . . ๐‘‘๐‘ข ๐”‰ ๐‘กA ยจ ๐‘‰ ๐‘‹ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ! . . ๐‘‘๐‘ข ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐œŽ! .. โˆซ J=8' J=8 ๐‘’)..0). 8)J . ๐‘‘๐‘ข ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐œŽ! .. [ * ..0) . ๐‘’)..0). 8)J ]J=8' J=8 ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! ..0) . [1 โˆ’ ๐‘’..0). 8)8' ] 42
  • 43. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XVI ยจ So we do recover: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' 43
  • 44. Luc_Faucheux_2021 A sum of independent normally distributed variables is also normally distributed 44
  • 45. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XVII ยจ OK, so we know that both ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are NORMALLY distributed (the Probability Distribution function) is a Gaussian with mean and variance for ๐‘‹ ๐‘ก (and respectively same for ๐‘Œ ๐‘ก by changing the notation) ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' ยจ So that could be an indication that defining: ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘ ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ(๐‘ก) + ๐œ‘ ๐‘ก ยจ Could lead to a Gaussian distribution for ๐‘Ÿ ๐‘ก ยจ Really to stick to a somewhat consistent notation, we should have used capital letters for the stochastic processes: ยจ ๐‘… ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ = ๐‘ ๐‘ก + ๐œ‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) + ๐œ‘ ๐‘ก ยจ Remember that ๐œ‘ ๐‘ก is a deterministic function and not a stochastic process 45
  • 46. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XVIII ยจ NOW, we also know by now that the sum of a bunch of independent variables that are normally distributed is also normally distributed ยจ The mean of the sum is the sum of the means ยจ The variance of the sum is the sum of the variances ยจ Suppose that ๐‘‹L are a number of independent random variables normally distributed with respective means ๐‘šL and variances ๐‘ฃL ยจ Yeah I know I have been using capital letter ๐‘€L and ๐‘‰L for those ยจ Promised, once I get the book deal and rewrite it I will hire a couple of interns to ensure the consistency of the notation throughout those decks ยจ Then the sum ๐‘‹ = โˆ‘ ๐‘‹L has: ยจ Mean: ๐‘€ = โˆ‘ ๐‘€L ยจ Variance: ๐‘‰ = ๐œŽ. = โˆ‘ ๐‘‰L = โˆ‘ ๐œŽL . 46
  • 47. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XIX ยจ Another way that we knew that was in the deck on the diffusion (Stochastic calculus II if I am not mistaken), when looking at solution of the SDE: ยจ dX(t)= a(t).dt+b(t).dW ยจ Letโ€™s refresh our memory with a couple of slides from this deck 47
  • 48. Luc_Faucheux_2021 Sixth simple example โ€“ VIII dX= a(t).dt+b(t).dW ยจ So we have the mapping: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก . ๐‘‘๐‘ก + ๐‘(๐‘ก). ([). ๐‘‘๐‘Š ยจ ? ?8 . ๐‘ ๐‘ฅ, ๐‘ก = โˆ’ ? ?! ๐‘Ž(๐‘ก). ๐‘(๐‘ฅ, ๐‘ก) โˆ’ I 8 ! . . ?M !,8 ?! = โˆ’ ? ?! ๐ฝN + ๐ฝ2 ยจ ๐ฝN = ๐‘Ž ๐‘ก . ๐‘(๐‘ฅ, ๐‘ก) and ๐ฝ2 ๐‘ฅ, ๐‘ก = โˆ’๐ท(๐‘ก). ?M !,8 ?! ยจ Defining: ยจ z ๐œŽ(๐‘ก).. ๐‘ก = โˆซ K=< K=8 ๐œŽ ๐‘  .. ๐‘‘๐‘  setting ๐œŽ ๐‘ก = ๐‘(๐‘ก) and ๐ท ๐‘ก = -(8)! . ยจ Also defining: z ๐ท ๐‘ก . ๐‘ก = โˆซ K=< K=8 ๐ท(๐‘ ). ๐‘‘๐‘  ยจ z ๐ท ๐‘ก is the average diffusion coefficient over time ยจ z ๐œŽ ๐‘ก is the average volatility coefficient over time 48
  • 49. Luc_Faucheux_2021 Sixth simple example โ€“ IX dX= a(t).dt+b(t).dW ยจ Also defining: ยจ ๐‘… ๐‘ก = ๐‘‹ ๐‘ก = ๐‘‹< + โˆซ 8=8< 8 ๐‘Ž(๐‘ ). ๐‘‘๐‘  ยจ ๐‘‰ ๐‘ก = z ๐‘(๐‘ก).. ๐‘ก = โˆซ K=< K=8 ๐‘ ๐‘  .. ๐‘‘๐‘  = z ๐œŽ(๐‘ก).. ๐‘ก = โˆซ K=< K=8 ๐œŽ ๐‘  .. ๐‘‘๐‘  = z 2๐ท ๐‘ก . ๐‘ก = 2 โˆซ K=< K=8 ๐ท(๐‘ ). ๐‘‘๐‘  ยจ A PDF solution for the above PDE is: ยจ Subject to ๐‘ ๐‘ฅ, ๐‘ก = ๐‘ก< = ๐›ฟ ๐‘ฅ โˆ’ ๐‘‹ ๐‘ก< = ๐›ฟ(๐‘ฅ โˆ’ ๐‘‹<) ยจ ๐‘ ๐‘ฅ, ๐‘ก = * .1O - 8 ! 8)8- . ๐‘’๐‘ฅ ๐‘ โˆ’ !)& 8 ! .O - 8 ! 8)8- = * @1O 2(8) (8)8-) . ๐‘’๐‘ฅ๐‘(โˆ’ (!)& 8 )! @O 2(8)(8)8-) ) 49
  • 50. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XX ยจ So this makes sense if you think of the sum of independent normal variables if you index those variables with time ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก . ๐‘‘๐‘ก + ๐‘(๐‘ก). ([). ๐‘‘๐‘Š ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘‹(๐‘กA) = โˆซ J=8' J=8 ๐‘‘๐‘‹(๐‘ข) ยจ At each time ๐‘ก, the little increment ๐‘‘๐‘‹ ๐‘ก is picked from a normal distribution with mean ๐‘Ž ๐‘ก . ๐‘‘๐‘ก and variance ๐‘ ๐‘ก .. ๐‘‘๐‘ก ยจ So ๐‘‹ ๐‘ก โˆ’ ๐‘‹(๐‘กA) is picked from a normal distribution with: ยจ ๐‘… ๐‘ก = ๐‘‹ ๐‘ก = ๐‘€[๐‘‹(๐‘ก)] = ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ = ๐”ผ8 E) {๐‘‹ ๐‘ก ๐”‰ ๐‘กA = ๐‘‹(๐‘กA) + โˆซ 8=8' 8 ๐‘Ž(๐‘ ). ๐‘‘๐‘  ยจ Variance: ๐‘‰ ๐‘ก = z ๐‘ ๐‘ก .. (๐‘ก โˆ’ ๐‘กA) = โˆซ K=8' K=8 ๐‘ ๐‘  .. ๐‘‘๐‘  = z ๐œŽ ๐‘ก .. (๐‘ก โˆ’ ๐‘กA) = โˆซ K=8' K=8 ๐œŽ ๐‘  .. ๐‘‘๐‘  ยจ ๐‘‰ ๐‘ก = z 2๐ท ๐‘ก . (๐‘ก โˆ’ ๐‘กA) = 2 โˆซ K=8' K=8 ๐ท(๐‘ ). ๐‘‘๐‘  50
  • 51. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXI ยจ At each time ๐‘ก, the little increment ๐‘‘๐‘‹ ๐‘ก is picked from a normal distribution with mean ๐‘Ž ๐‘ก . ๐‘‘๐‘ก and variance ๐‘ ๐‘ก .. ๐‘‘๐‘ก ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘‹(๐‘กA) is picked from a normal distribution with: ยจ Mean: โˆซ 8=8' 8 ๐‘Ž(๐‘ ). ๐‘‘๐‘  ยจ Variance: โˆซ K=8' K=8 ๐‘ ๐‘  .. ๐‘‘๐‘  ยจ So this should not come as a surprise that a sum of normally distributed random variable is itself normally distributed ยจ But WAIT a second you should say, the case we are looking at is NOT independent as we have: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š ! >= ๐œŒ. ๐‘‘๐‘ก 51
  • 52. Luc_Faucheux_2021 A sum of independent normally distributed variables is also normally distributed. How about when there is correlation? 52
  • 53. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXII ยจ This is true indeed, so we just need to be a little more careful here. ยจ Almost there in justifying the use of the term โ€œgaussianโ€ for those models, so here we go: ยจ First of all, letโ€™s see what we can say about the mean and the variance, before saying anything about the functional form of the PDF ยจ We could also express the equations in a slightly different ways (do a Choleski decomposition of the Covar matrix). 53
  • 54. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXIII ยจ In any case, letโ€™s look at the sum of two normally distributed variables that are NOT independent (have a non-zero correlation) ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก ยจ ๐‘€ ๐‘‹ ๐‘ก and ๐‘‰ ๐‘‹ ๐‘ก are such that ๐‘‹ ๐‘ก ~๐‘(๐‘€ ๐‘‹ ๐‘ก , ๐‘‰ ๐‘‹ ๐‘ก ) ยจ ๐‘€ ๐‘Œ ๐‘ก and ๐‘‰ ๐‘Œ ๐‘ก are such that ๐‘Œ(๐‘ก)~๐‘(๐‘€ ๐‘Œ ๐‘ก , ๐‘‰ ๐‘Œ ๐‘ก ) ยจ ๐‘€ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ + ๐‘Œ = ๐”ผ ๐‘‹} + ๐”ผ{๐‘Œ = ๐‘€ ๐‘‹ ๐‘ก + ๐‘€ ๐‘Œ ๐‘ก ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ (๐‘(๐‘ก) โˆ’ ๐‘€ ๐‘ ๐‘ก ). ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘(๐‘ก). + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐‘(๐‘ก) ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘(๐‘ก).} + ๐”ผ{๐‘€ ๐‘ ๐‘ก .} โˆ’ ๐”ผ{2๐‘€ ๐‘ ๐‘ก . ๐‘(๐‘ก) ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘(๐‘ก).} + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐”ผ{๐‘(๐‘ก) ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘(๐‘ก).} + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐‘€ ๐‘ ๐‘ก 54
  • 55. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXIV ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘(๐‘ก).} + ๐‘€ ๐‘ ๐‘ก . โˆ’ 2๐‘€ ๐‘ ๐‘ก . ๐‘€ ๐‘ ๐‘ก ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘(๐‘ก).} โˆ’ ๐‘€ ๐‘ ๐‘ก . ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{(๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก ).} โˆ’ ๐‘€ ๐‘ ๐‘ก . ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก . ๐‘Œ ๐‘ก + 2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ ๐‘€ ๐‘ ๐‘ก . ยจ Note that I have been a little liberal on the notation for the expectation, as one needs to consider the joint distribution. In any case: ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก . ๐‘Œ ๐‘ก + 2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ (๐‘€[๐‘‹ ๐‘ก + ๐‘€[๐‘Œ ๐‘ก ]). ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก } + ๐”ผ{๐‘Œ ๐‘ก . ๐‘Œ ๐‘ก } + ๐”ผ{2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ (๐‘€[๐‘‹ ๐‘ก + ๐‘€[๐‘Œ ๐‘ก ]). ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ{๐‘‹ ๐‘ก .} + ๐”ผ{๐‘Œ ๐‘ก .} + ๐”ผ{2๐‘‹ ๐‘ก . ๐‘Œ(๐‘ก)} โˆ’ (๐‘€[๐‘‹ ๐‘ก + ๐‘€[๐‘Œ ๐‘ก ]). ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ ๐‘ก . + ๐”ผ ๐‘Œ ๐‘ก . + ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . โˆ’ ๐‘€ ๐‘Œ ๐‘ก . โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ] 55
  • 56. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXV ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ ๐‘ก . + ๐”ผ ๐‘Œ ๐‘ก . + ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . โˆ’ ๐‘€ ๐‘Œ ๐‘ก . โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ] ยจ ๐‘‰ ๐‘ ๐‘ก = ๐”ผ ๐‘‹ ๐‘ก . โˆ’ ๐‘€ ๐‘‹ ๐‘ก . + ๐”ผ ๐‘Œ ๐‘ก . โˆ’ ๐‘€ ๐‘Œ ๐‘ก . + ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ] ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + ๐”ผ 2๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ 2. ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘Œ ๐‘ก ] ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. {๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก } ยจ Now: ยจ ๐ด = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐ด = ๐”ผ ๐‘‹(๐‘ก . ๐‘Œ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘Œ ๐‘ก . ๐‘€[๐‘‹(๐‘ก)]} ยจ ๐ด = ๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐”ผ{๐‘‹ ๐‘ก }. ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐”ผ{๐‘Œ ๐‘ก }. ๐‘€[๐‘‹(๐‘ก)]} ยจ ๐ด = ๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . ๐‘€[๐‘‹(๐‘ก)]} ยจ ๐ด = ๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก 56
  • 57. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXVI ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. {๐”ผ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก } ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ That is right there the definition of the covariance ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก ยจ IF ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are independent, the Covariance is 0, and we recover the fact that the variance of the sum is the sum of the variances ยจ Note that the reverse is NOT true, you could have non-independent variable that will show a 0 covariance 57
  • 58. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXVII ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ For example: ๐‘Œ ๐‘ก = ๐‘‹ ๐‘ก . ยจ Obviously not independent ยจ However ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘‹ ๐‘ก . โˆ’ ๐‘€[๐‘‹ ๐‘ก .]) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = ๐”ผ (๐‘‹ ๐‘ก P โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘‹ ๐‘ก . โˆ’ ๐‘€ ๐‘‹ ๐‘ก . . ๐‘‹ ๐‘ก + ๐‘€ ๐‘‹ ๐‘ก . ๐‘€[๐‘‹ ๐‘ก .]) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = ๐”ผ{ ๐‘‹ ๐‘ก P โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘‹ ๐‘ก . ยจ Suppose that ๐‘‹ ๐‘ก is normally distributed, then ยจ ๐”ผ{ ๐‘‹ ๐‘ก P = 0 and ๐‘€ ๐‘‹ ๐‘ก = 0 ยจ So ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘‹ ๐‘ก . = 0 even though obviously ๐‘‹ ๐‘ก and ๐‘‹ ๐‘ก . are not independent 58
  • 59. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXVIII ยจ All right, back to: ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก ยจ Note that if ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก , then we also have by expanding the first equation: ยจ ๐”ผ{ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก = ๐‘€ ๐‘‹ ๐‘ก . ๐‘€ ๐‘Œ ๐‘ก ยจ So we have shown that the sum of two variables is such that: ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ ๐‘ก ยจ ๐‘€ ๐‘ ๐‘ก = ๐‘€ ๐‘‹ ๐‘ก + ๐‘€ ๐‘Œ ๐‘ก ยจ ๐‘‰ ๐‘ ๐‘ก = ๐‘‰ ๐‘‹ ๐‘ก + ๐‘‰ ๐‘Œ ๐‘ก + 2. ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก ยจ Note that this is NOT saying that if ๐‘‹ ๐‘ก and ๐‘Œ ๐‘ก are normally distributed, then ๐‘ ๐‘ก is also normally distributed. This requires a little more work but we are almost there. 59
  • 60. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXIX ยจ I have to admit here that I do not have a super elegant proof that the sum of correlated Gaussians is also a Gaussian. Turns out the math get a little tricky between marginal and jointly. ยจ The best I can sort of do on that one is following deck III of the Stochastic Calculus that we went over a while back. ยจ So here it goes for the best I can do: ยจ You have 2 variables: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š "(๐‘ก) ยจ With : < ๐‘‘๐‘Š !. ๐‘‘๐‘Š " >= ๐œŒ. ๐‘‘๐‘ก 60
  • 61. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXX ยจ < ๐‘‘๐‘‹ ๐‘ก > to denote the usual quantity ๐”ผ ๐‘‘๐‘‹ = ๐”ผ8Q$8 E) {๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก) ๐”‰ ๐‘ก that we have been using the deck II of the stochastic calculus decks ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š "(๐‘ก) ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก ยจ < ๐‘‘๐‘ ๐‘ก > = ๐‘€ ๐‘ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก ยจ < ๐‘‘๐‘ ๐‘ก > = < ๐‘‘๐‘‹ ๐‘ก > +< ๐‘‘๐‘Œ ๐‘ก > 61
  • 62. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXI ยจ The correlation does NOT change the drift ยจ The correlation does NOT affect the expected return ยจ That is not surprising, we know that from the MPT theory (mean variance portfolio), where the correlation between assets will change the risk (variance, volatility, standard deviation), but NOT the expected return ยจ Conversely, the drift will NOT change the correlation ยจ We also know that from the RN (Radon-Nykodym) section with the change of measure, being an added drift to the Brownian motion. ยจ The change of measure does NOT change the variance ยจ The change of measure does NOT change the correlation ยจ The change of measure changes the drift (expected return, mean, average, advection) but NOT the diffusion, variance, standard deviation, correlation 62
  • 63. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXII ยจ Letโ€™s put here a couple of the slides from deck III on stochastic calculus. 63
  • 64. Luc_Faucheux_2021 Couple of slides to remind us of deck III on Stochastic Calculus 64
  • 65. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - II ยจ The ITO integral is defined as: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘‹(๐‘ก) = lim Rโ†’> {โˆ‘0=* 0=R ๐‘“(๐‘‹(๐‘ก0)). [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]} ยจ The Stratonovitch integral is defined as: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘‹(๐‘ก) = lim Rโ†’> {โˆ‘0=* 0=R ๐‘“ [๐‘‹(๐‘ก0 + ๐‘‹(๐‘ก0Q*)]/2). [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]} ยจ We can define the [๐›ผ] integral as: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘‹(๐‘ก) = lim Rโ†’> {โˆ‘0=* 0=R ๐‘“(๐‘‹(๐‘ก0) + ๐›ผ. [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]). [๐‘‹(๐‘ก0Q*) โˆ’ ๐‘‹(๐‘ก0)]} ยจ ITO will be the case ๐›ผ = 0 ยจ STRATO will be the case ๐›ผ = 1/2 65
  • 66. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - III ยจ We had the relation on the integrals: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘Š ๐‘ก . (โˆ˜). ๐‘‘๐‘Š(๐‘ก) = โˆซ 8=8A 8=8I ๐‘“ ๐‘Š ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + * . โˆซ 8=8A 8=8I ๐‘“โ€ฒ ๐‘Š ๐‘ก . ๐‘‘๐‘ก ยจ This becomes: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘Š ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š(๐‘ก) = โˆซ 8=8A 8=8I ๐‘“ ๐‘Š ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + ๐›ผ. โˆซ 8=8A 8=8I ๐‘“โ€ฒ ๐‘Š ๐‘ก . ๐‘‘๐‘ก ยจ Or: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘Š ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š(๐‘ก) = โˆซ 8=8A 8=8I ๐‘“ ๐‘Š ๐‘ก . ([๐›ผ] = 0). ๐‘‘๐‘Š(๐‘ก) + ๐›ผ. โˆซ 8=8A 8=8I ๐‘“โ€ฒ ๐‘Š ๐‘ก . ๐‘‘๐‘ก 66
  • 67. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - IV ยจ For a more complicated stochastic process ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ยจ We have: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š ๐‘ก = โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + โˆซ 8=8A 8=8I * . . ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C ๐‘“ ๐‘‹(๐‘ก . ๐‘‘๐‘ก ยจ This now becomes: ยจ โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š ๐‘ก = โˆซ 8=8A 8=8I ๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + โˆซ 8=8A 8=8I ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C ๐‘“ ๐‘‹(๐‘ก . ๐‘‘๐‘ก 67
  • 68. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - V ยจ For the SDE we had the following mapping between ITO and STRATO ยจ The ITO SDE: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š ยจ Has the same solution (is the same) as the STRATO SDE in STRATO calculus: ยจ ๐‘‘๐‘‹ ๐‘ก = [๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก โˆ’ * . . ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ]. ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š ยจ The STRATO SDE ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š ยจ Has the same solution (is the same) as the ITO SDE in ITO calculus ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + * . . j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š 68
  • 69. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - VI ยจ This now becomes: ยจ The ITO SDE: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š ยจ Has the same solution (is the same) as the [๐›ผ] SDE in [๐›ผ] calculus: ยจ ๐‘‘๐‘‹ ๐‘ก = [๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก โˆ’ ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ]. ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ The [๐›ผ] SDE ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ Has the same solution (is the same) as the ITO SDE in ITO calculus ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š 69
  • 70. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - VII ยจ The ITO lemma (chain rule) reads: ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = โˆซ 8=8A 8=8I ?G ?C . ([). ๐‘‘๐‘‹(๐‘ก) + * . โˆซ 8=8A 8=8I ?!N ?!! (๐‘‹ ๐‘ก ). ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก ยจ In the โ€limitโ€ of small time increments, this can be written formally as the Ito lemma: ยจ ๐›ฟ๐‘“ = ?G ?C . ๐›ฟ๐‘‹ + * . . ?!N ?!! . ๐‘.๐›ฟ๐‘ก ยจ The STRATO lemma reads: ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = โˆซ 8=8A 8=8I ?G ?C . (โˆ˜). ๐‘‘๐‘‹(๐‘ก) ยจ In the โ€limitโ€ of small time increments, this can be written formally as the Strato lemma: ยจ ๐›ฟ๐‘“ = ?G ?C . โˆ˜ . ๐›ฟ๐‘‹ 70
  • 71. Luc_Faucheux_2021 Introducing the [๐›ผ] calculus - VIII ยจ In the [๐›ผ] calculus the [๐›ผ] lemma (chain rule) now reads : ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = โˆซ 8=8A 8=8I ?G ?C . ([๐›ผ]). ๐‘‘๐‘‹(๐‘ก) + * . โˆ’ ๐›ผ . โˆซ 8=8A 8=8I ?!N ?!! ๐‘‹ ๐‘ก . ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . . ๐‘‘๐‘ก ยจ In the โ€limitโ€ of small time increments, this can be written formally as the [๐›ผ] lemma: ยจ ๐›ฟ๐‘“ = ?G ?C . ๐›ฟ๐‘‹ + * . โˆ’ ๐›ผ . ?!N ?!! . ๐‘.. ๐›ฟ๐‘ก ยจ NOTE: you can convince yourselves by redoing the derivation we had on pages 55-60 ยจ This actually highlights why STRATO took the middle point ๐›ผ = 1/2 , as this is the point that cancels out the (1/2) coming from the Taylor expansion of ๐‘“ ๐‘‹ ๐‘กI from the left point. ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = lim Rโ†’> โˆ‘0=* 0=R {๐‘“(๐‘‹(๐‘ก0)) โˆ’ ๐‘“(๐‘‹(๐‘ก0)*))} ยจ ๐‘“ ๐‘‹ ๐‘กI โˆ’ ๐‘“ ๐‘‹ ๐‘กA = lim Rโ†’> โˆ‘0=* 0=R { ?G ?C . ([). ๐›ฟ๐‘‹ + * . . ?!N ?!! . ([). (๐›ฟ๐‘‹).} 71
  • 72. Luc_Faucheux_2021 We need a nice summary to avoid any confusion ยจ ITO SDE is: ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š ยจ This implies that the PDF follows the FORWARD ITO Kolmogorov PDE ยจ ?M(!,8|C',8') ?8 = โˆ’ ? ?C ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ ?M ?8 = โˆ’ ? ?C ๐‘Ž๐‘ โˆ’ ? ?C I!M . = โˆ’ ? ?C [๐‘Ž๐‘] + * . ?! ?C! [ I!M . ] ยจ ?M ?8 = โˆ’ ? ?C ๐‘Ž๐‘ โˆ’ ๐‘ ?I ?C . ๐‘ โˆ’ * . . ๐‘. . ? ?C ๐‘ ยจ ?M ?8 = โˆ’ ? ?C ๐‘Ž๐‘ โˆ’ ?2 ?C . ๐‘ โˆ’ ๐ท. ? ?C ๐‘ ยจ ?M ?8 = โˆ’ ? ?C ๐‘Ž๐‘ โˆ’ ? ?C (๐ท๐‘) 72
  • 73. Luc_Faucheux_2021 We need a nice summary to avoid any confusion - II ยจ [๐›ผ] SDE is: ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ This implies that the PDF follows the FORWARD [๐›ผ] Kolmogorov PDE ยจ ?M(!,8|C',8') ?8 = โˆ’ ? ?C ฦ’ โ€ž {l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [j ๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ ?M ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ + ๐›ผ. j ๐‘. ? ?C j ๐‘. ๐‘ โˆ’ ? ?C [ * . . [j ๐‘. . ๐‘] ยจ ?M ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ + ๐›ผ. j ๐‘. ? ?C j ๐‘. ๐‘ โˆ’ ? ?C F I!M . = โˆ’ ? ?C l ๐‘Ž๐‘ + ? ?C ๐›ผ. j ๐‘. ? ?C j ๐‘. ๐‘ + * . ?! ?C! [ F I!M . ] ยจ ?M ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ + ๐›ผ. j ๐‘. ?F I ?C . ๐‘ โˆ’ j ๐‘. ?F I ?C . ๐‘ โˆ’ * . . j ๐‘.. ? ?C ๐‘ ยจ ?M ?8 = โˆ’ ? ?C ๐‘Ž๐‘ + ๐›ผ. ?U 2 ?C . ๐‘ โˆ’ ?U 2 ?C . ๐‘ โˆ’ โ€ฆ ๐ท. ? ?C ๐‘ 73
  • 74. Luc_Faucheux_2021 We need a nice summary to avoid any confusion - III ยจ [๐›ผ = 1/2] STRATO SDE is: ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š ยจ This implies that the PDF follows the FORWARD STRATO Kolmogorov PDE ยจ ?V(!,8|C',8') ?8 = โˆ’ ? ?C ฦ’ โ€ž {l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + * . . j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ƒ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [j ๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘ƒ(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ ?V ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ƒ + * . . j ๐‘. ?F I ?C . ๐‘ƒ โˆ’ ? ?C * . . [j ๐‘. . ๐‘ƒ ยจ ?V ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ƒ + * . . j ๐‘. ? ?C j ๐‘. ๐‘ƒ โˆ’ ? ?C F I!V . = โˆ’ ? ?C l ๐‘Ž๐‘ƒ + ? ?C * . . j ๐‘. ? ?C j ๐‘. ๐‘ƒ + * . ?! ?C! [ F I!V . ] ยจ ?V ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ƒ + * . . j ๐‘. ?F I ?C . ๐‘ƒ โˆ’ j ๐‘. ?F I ?C . ๐‘ƒ โˆ’ * . . j ๐‘.. ? ?C ๐‘ƒ = โˆ’ ? ?C l ๐‘Ž๐‘ƒ โˆ’ * . j ๐‘ ?F I ?C ๐‘ƒ โˆ’ * . j ๐‘. ? ?C ๐‘ƒ ยจ ?V ?8 = โˆ’ ? ?C l ๐‘Ž๐‘ƒ โˆ’ * . . ?U 2 ?C . ๐‘ƒ โˆ’ โ€ฆ ๐ท. ? ?C ๐‘ƒ = โˆ’ ? ?C l ๐‘Ž๐‘ƒ + * . . ?U 2 ?C . ๐‘ƒ โˆ’ ? ?C (โ€ฆ ๐ท๐‘ƒ) 74
  • 75. Luc_Faucheux_2021 We need a nice summary to avoid any confusion - IV ยจ ITO SDE is: ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š ยจ This implies that the PDF follows the FORWARD ITO Kolmogorov PDE ยจ ?M(!,8|C',8') ?8 = โˆ’ ? ?C ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE: ยจ ?M(!,8|C',8') ?8' = โˆ’๐‘Ž ๐‘‹A, ๐‘กA ? ?C' ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ * . . ๐‘(๐‘‹A, ๐‘กA). ?! ?C' ! ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA) ยจ ?M ?8' = โˆ’๐‘Ž ?M ?C' โˆ’ * . . ๐‘. ?!M ?C' ! ยจ ?M ?8' = โˆ’๐‘Ž ?M ?C' โˆ’ ๐ท ?!M ?C' ! ยจ Where I have explicitly kept the notation ๐‘กA and ๐‘‹A to indicate the fact that this is a BACKWARD PDE (expectation of a payoff at maturity) 75
  • 76. Luc_Faucheux_2021 We need a nice summary to avoid any confusion - V ยจ [๐›ผ] SDE is: ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ This implies that the PDF follows the FORWARD [๐›ผ] Kolmogorov PDE ยจ ?M(!,8|C',8') ?8 = โˆ’ ? ?C ฦ’ โ€ž {l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [j ๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE: ยจ ?M(!,8|C',8') ?8' = โˆ’ l ๐‘Ž ๐‘กA, ๐‘‹ ๐‘กA + ๐›ผ. j ๐‘ ๐‘กA, ๐‘‹ ๐‘กA . ? ?C' j ๐‘ ๐‘กA, ๐‘‹ ๐‘กA ? ?C' ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ * . . ๐‘(๐‘‹A, ๐‘กA). ?! ?C' ! ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA) ยจ ?M ?8' = โˆ’ l ๐‘Ž + ๐›ผ. j ๐‘ ? ?C' j ๐‘ ? ?C' ๐‘ โˆ’ * . . ๐‘. ?! ?C' ! ๐‘ ยจ ?M ?8' = โˆ’ l ๐‘Ž + ๐›ผ. ?U 2 ?C' ?M ?C' โˆ’ โ€ฆ ๐ท ?!M ?C' ! 76
  • 77. Luc_Faucheux_2021 We need a nice summary to avoid any confusion - VI ยจ [๐›ผ = 1/2] STRATO SDE is: ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘Š ยจ This implies that the PDF follows the FORWARD STRATO Kolmogorov PDE ยจ ?M(!,8|C',8') ?8 = โˆ’ ? ?C ฦ’ โ€ž {l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + * . . j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [j ๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE: ยจ ?M(!,8|C',8') ?8' = โˆ’ l ๐‘Ž ๐‘กA, ๐‘‹ ๐‘กA + * . . j ๐‘ ๐‘กA, ๐‘‹ ๐‘กA . ? ?C' j ๐‘ ๐‘กA, ๐‘‹ ๐‘กA ? ?C' ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ * . . ๐‘(๐‘‹A, ๐‘กA). ?! ?C' ! ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA) ยจ ?M ?8' = โˆ’ l ๐‘Ž + * . . j ๐‘ ? ?C' j ๐‘ ? ?C' ๐‘ โˆ’ * . . j ๐‘. ?! ?C' ! ๐‘ ยจ ?M ?8' = โˆ’ l ๐‘Ž + * . . ?U 2 ?C' ?M ?C' โˆ’ โ€ฆ ๐ท ?!M ?C' ! 77
  • 78. Luc_Faucheux_2021 Why did we go through all this trouble? ยจ Letโ€™s recap: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š in ITO calculus ยจ We have shown that in that case the PDF follows a FORWARD ITO Kolmogorov (FP) ยจ ?M(!,8|C',8') ?8 = โˆ’ ? ?C ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ < โˆ†๐‘‹ > = ๐ธ โˆ†๐‘‹ =< ๐‘ฅ >8Qโˆ†8 โˆ’< ๐‘ฅ >8= ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . โˆ†๐‘ก (advection term) ยจ < โˆ†๐‘‹.> = ๐ธ โˆ†๐‘‹. =< (๐‘ฅโˆ’< ๐‘ฅ >8Qโˆ†8).>8Qโˆ†8= ๐‘(๐‘‹ ๐‘ก , ๐‘ก).. โˆ†๐‘ก (diffusion term) 78
  • 79. Luc_Faucheux_2021 Why did we go through all this trouble? - II ยจ We ALSO know that going between ITO and [๐›ผ]: ยจ The ITO SDE: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š ยจ Has the same solution (is the same) as the [๐›ผ] SDE in [๐›ผ] calculus: ยจ ๐‘‘๐‘‹ ๐‘ก = [๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก โˆ’ ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ]. ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ The [๐›ผ] SDE ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ Has the same solution (is the same) as the ITO SDE in ITO calculus ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š 79
  • 80. Luc_Faucheux_2021 Why did we go through all this trouble? - III ยจ And so, if we start with an [๐›ผ] SDE: ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ It has the same solution (is the same) as the ITO SDE in ITO calculus ยจ ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š ยจ Which will then follow the ITO FORWARD Kolmogorov (FP): ยจ ?V(!,8|C',8') ?8 = โˆ’ ? ?C ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . ๐‘ƒ ๐‘ฅ, ๐‘ก ๐‘‹A, ๐‘กA โˆ’ ? ?C [ * . . [๐‘(๐‘‹ ๐‘ก , ๐‘ก). . ๐‘ƒ(๐‘ฅ, ๐‘ก|๐‘‹A, ๐‘กA)] ยจ With: ยจ ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ยจ ๐‘ ๐‘‹ ๐‘ก , ๐‘ก = j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ยจ ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C ๐‘ ๐‘ก, ๐‘‹ ๐‘ก 80
  • 81. Luc_Faucheux_2021 Why did we go through all this trouble? โ€“ III - a ยจ < โˆ†๐‘‹ > = ๐ธ โˆ†๐‘‹ =< ๐‘ฅ >8Qโˆ†8 โˆ’< ๐‘ฅ >8= ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . โˆ†๐‘ก (advection term) ยจ < โˆ†๐‘‹.> = ๐ธ โˆ†๐‘‹. =< (๐‘ฅโˆ’< ๐‘ฅ >8Qโˆ†8).>8Qโˆ†8= ๐‘(๐‘‹ ๐‘ก , ๐‘ก).. โˆ†๐‘ก (diffusion term) ยจ With: ยจ ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ยจ ๐‘ ๐‘‹ ๐‘ก , ๐‘ก = j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก ยจ Remember that we started from : ๐‘‘๐‘‹ ๐‘ก = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ([๐›ผ]). ๐‘‘๐‘Š ยจ So: < โˆ†๐‘‹ > = ๐‘Ž ๐‘‹ ๐‘ก , ๐‘ก . โˆ†๐‘ก = {l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก }. โˆ†๐‘ก ยจ < โˆ†๐‘‹ > = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก ยจ < โˆ†๐‘‹ > =< l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š > 81
  • 82. Luc_Faucheux_2021 Why did we go through all this trouble? โ€“ III - b ยจ < โˆ†๐‘‹ > = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก + ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก ยจ < โˆ†๐‘‹ > = < l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก > + < j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š > ยจ And ยจ < l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก > = l ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก ยจ So we have: ยจ < j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [๐›ผ] . ๐‘‘๐‘Š > = ๐›ผ. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก ยจ In particular: ยจ ITO : < j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [ . ๐‘‘๐‘Š > = 0 ยจ STRATO: < j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š > = [ * . ]. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก 82
  • 83. Luc_Faucheux_2021 Why did we go through all this trouble? โ€“ III - c ยจ ITO : < j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . [ . ๐‘‘๐‘Š > = 0 ยจ One can also go back to the definition of the ITO integral (because remember it is never a SDE, it is ALWAYS and SIE) , but essentially the convention [ of taking the value โ€œbefore the jumpโ€, implies that the ITO integral is a martingale of expected value 0 ยจ STRATO: < j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š > = [ * . ]. j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ? ?C j ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . โˆ†๐‘ก ยจ Again we can explicitly derive this from the integral, but the convention โˆ˜ implies taking the value โ€œin the middle of the jumpโ€, hence the STRATO integral CANNOT be a martingale and has a non zero expected value. ยจ We did this derivation when we looking at the correspondence between the ITO and STRATO. 83
  • 84. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXIII ยจ So back to the sum of two variables: ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š "(๐‘ก) ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) ยจ < ๐‘‘๐‘ ๐‘ก > = < ๐‘‘๐‘‹ ๐‘ก > +< ๐‘‘๐‘Œ ๐‘ก > ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก ยจ < ๐‘‘๐‘‹. > = ๐‘!(๐‘‹ ๐‘ก , ๐‘ก).. ๐‘‘๐‘ก ยจ < ๐‘‘๐‘Œ. > = ๐‘"(๐‘Œ ๐‘ก , ๐‘ก).. ๐‘‘๐‘ก 84
  • 85. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXIV ยจ < ๐‘‘๐‘. > =< ๐‘‘(๐‘‹ + ๐‘Œ). > ยจ < ๐‘‘๐‘. > =< (๐‘‹ ๐‘ก + ๐‘‘๐‘ก + ๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ < ๐‘‹ ๐‘ก + ๐‘‘๐‘ก > โˆ’ < ๐‘Œ(๐‘ก + ๐‘‘๐‘ก) >).> ยจ < ๐‘‘๐‘. > =< (๐‘(๐‘ก + ๐‘‘๐‘ก)โˆ’ < ๐‘ ๐‘ก + ๐‘‘๐‘ก >).> ยจ < ๐‘‘๐‘. > =< (๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ < ๐‘‹ ๐‘ก + ๐‘‘๐‘ก > +๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ < ๐‘Œ(๐‘ก + ๐‘‘๐‘ก) >).> ยจ < ๐‘‘๐‘. > =< (๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š !(๐‘ก) + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š "(๐‘ก) ). > ยจ < ๐‘‘๐‘. > =< (๐‘!. ๐‘‘๐‘Š !).+(๐‘". ๐‘‘๐‘Š ").+2. ๐‘!. ๐‘‘๐‘Š !. ๐‘". ๐‘‘๐‘Š " > ยจ < ๐‘‘๐‘. > = ๐‘! . . ๐‘‘๐‘ก + ๐‘" . . ๐‘‘๐‘ก + 2. ๐œŒ. ๐‘!. ๐‘". ๐‘‘๐‘ก ยจ < ๐‘‘๐‘. > =< ๐‘‘๐‘‹. > + < ๐‘‘๐‘Œ. > +2. ๐œŒ. ๐‘!. ๐‘". ๐‘‘๐‘ก ยจ < ๐‘‘๐‘. > = (๐‘! . + ๐‘" . + 2. ๐œŒ. ๐‘!. ๐‘"). ๐‘‘๐‘ก 85
  • 86. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXV ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘! ๐‘ก, ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ ๐‘ก = ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก + ๐‘" ๐‘ก, ๐‘Œ ๐‘ก . ([). ๐‘‘๐‘Š "(๐‘ก) ยจ ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) ยจ < ๐‘‘๐‘ ๐‘ก > = < ๐‘‘๐‘‹ ๐‘ก > +< ๐‘‘๐‘Œ ๐‘ก > ยจ < ๐‘‘๐‘ ๐‘ก > = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก + ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก . ๐‘‘๐‘ก ยจ < ๐‘‘๐‘. > = (๐‘! . + ๐‘" . + 2. ๐œŒ. ๐‘!. ๐‘"). ๐‘‘๐‘ก ยจ And so the process for ๐‘ ๐‘ก can be described (within some mathematical reasons) by the SDE: ยจ ๐‘‘๐‘ ๐‘ก = ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก . ๐‘‘๐‘ก + ๐‘# ๐‘ก, ๐‘ ๐‘ก . ([). ๐‘‘๐‘Š #(๐‘ก) 86
  • 87. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXVI ยจ ๐‘‘๐‘ ๐‘ก = ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก . ๐‘‘๐‘ก + ๐‘# ๐‘ก, ๐‘ ๐‘ก . ([). ๐‘‘๐‘Š #(๐‘ก) ยจ ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก = ๐‘Ž! ๐‘ก, ๐‘‹ ๐‘ก + ๐‘Ž" ๐‘ก, ๐‘Œ ๐‘ก ยจ ๐‘Ž# = ๐‘Ž! + ๐‘Ž" ยจ ๐‘# . = (๐‘! . + ๐‘" . + 2. ๐œŒ. ๐‘!. ๐‘") ยจ So we know that the PDF for that process will follow the FP equation ยจ This implies that the PDF follows the FORWARD ITO Kolmogorov PDE ยจ ?M(#,8|X',8') ?8 = โˆ’ ? ?X ๐‘Ž ๐‘ ๐‘ก , ๐‘ก . ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’ ? ?X [ * . . [๐‘(๐‘ ๐‘ก , ๐‘ก). . ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)] ยจ The PDF ALSO follows the BACKWARD ITO Kolmogorov PDE: ยจ ?M(#,8|X',8') ?8' = โˆ’๐‘Ž ๐‘A, ๐‘กA ? ?X' ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’ * . . ๐‘(๐‘A, ๐‘กA). ?! ?X' ! ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA) 87
  • 88. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXVII ยจ ๐‘‘๐‘ ๐‘ก = ๐‘Ž# ๐‘ก, ๐‘ ๐‘ก . ๐‘‘๐‘ก + ๐‘# ๐‘ก, ๐‘ ๐‘ก . ([). ๐‘‘๐‘Š #(๐‘ก) ยจ ๐‘Ž# = ๐‘Ž! + ๐‘Ž" ยจ ๐‘# . = (๐‘! . + ๐‘" . + 2. ๐œŒ. ๐‘!. ๐‘") ยจ ?M(#,8|X',8') ?8 = โˆ’ ? ?X ๐‘Ž ๐‘ ๐‘ก , ๐‘ก . ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’ ? ?X [ * . . [๐‘(๐‘ ๐‘ก , ๐‘ก). . ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)] ยจ In almost all cases (and certainly in the simple cases where say the advection and diffusion coefficients are either constant or function only of the time), the solution of that PDE will be a Gaussian. ยจ Am sorry guys, but this is how I explain that the sum of correlated Gaussians is itself a Gaussian ยจ There could be some weird functions ๐‘Ž!, ๐‘Ž", ๐‘! and ๐‘" for which that would not be the case. ยจ Usually if you formulated a model with such behavior, switch to a simpler one 88
  • 89. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXVIII ยจ I truly wished that I could have been more rigorous in that section, and that keeps me up at night, so apologies for what I perceived to be a cope out, I would be happy if one of you email me an insulting letter with a more rigorous approach to this (and also more general) 89
  • 90. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXIX ยจ Saying it in another way, I do not have a good argument as to why: ยจ If ๐‘Ž!, ๐‘Ž", ๐‘! and ๐‘" are such functions so that the PDF for ๐‘‹(๐‘ก) and ๐‘Œ(๐‘ก) are such that they have for solutions a Gaussian distribution ยจ THEN the PDF for ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) which is of the form: ยจ ?M(#,8|X',8') ?8 = โˆ’ ? ?X ๐‘Ž ๐‘ ๐‘ก , ๐‘ก . ๐‘ ๐‘ง, ๐‘ก ๐‘A, ๐‘กA โˆ’ ? ?X [ * . . [๐‘(๐‘ ๐‘ก , ๐‘ก). . ๐‘(๐‘ง, ๐‘ก|๐‘A, ๐‘กA)] ยจ With: ยจ ๐‘Ž# = ๐‘Ž! + ๐‘Ž" ยจ ๐‘# . = (๐‘! . + ๐‘" . + 2. ๐œŒ. ๐‘!. ๐‘") ยจ ALSO has a Gaussian for solution of the PDF ยจ At least not obvious to me 90
  • 91. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXX ยจ In some simple cases (like the ones we are dealing with here), the best way to look at it is if you can find an explicit solution of the SDE: ยจ When we had: ยจ ๐‘‘๐‘‹ = โˆ’๐‘˜!. ๐‘‹. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ We had for the solution: ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ยจ Which was normally distributed with moments: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' 91
  • 92. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXXI ยจ Similarly we had for ๐‘Œ(๐‘ก): ยจ ๐‘‘๐‘Œ = โˆ’๐‘˜". ๐‘Œ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ We had for the solution: ยจ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+.(8)8') + โˆซ J=8' J=8 ๐‘’)0+. 8)J . ๐œŽ". ([). ๐‘‘๐‘Š " ๐‘ข ยจ Which was normally distributed with moments: ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ(๐‘กA). ๐‘’)0+.(8)8') ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . 1 โˆ’ ๐‘’).0+. 8)8' 92
  • 93. Luc_Faucheux_2021 IRMA โ€“ Mercurio โ€“ G2++ - XXXXII ยจ So in that case we get an explicit solution for ๐‘ ๐‘ก = ๐‘‹ ๐‘ก + ๐‘Œ(๐‘ก) ยจ ๐‘(๐‘ก) = ๐‘Œ ๐‘ก! . ๐‘’"#!.(&"&") + โˆซ ()&" ()& ๐‘’"#!. &"( . ๐œŽ*. ([). ๐‘‘๐‘Š * ๐‘ข + ๐‘‹ ๐‘ก! . ๐‘’"##.(&"&") + โˆซ ()&" ()& ๐‘’"##. &"( . ๐œŽ+. ([). ๐‘‘๐‘Š + ๐‘ข ยจ And we know that any function of the form: ยจ โˆซ J=8' J=8 ๐‘“(๐‘ข). ([). ๐‘‘๐‘Š " ๐‘ข is normally distributed, because of the martingale and isometry properties of the ITO integral ยจ So ๐‘(๐‘ก) is a mixture of normal distributions, which is normally distributed (because you can recast the correlation using the Cholesky decomposition into two independent normal distribution) ยจ So in that case you can say that ๐‘(๐‘ก) is normally distributed. ยจ Again this is in the specific case of the Langevin equation. ยจ I unfortunately do not have a solid general argument otherwise 93
  • 95. Luc_Faucheux_2021 Recasting the correlation - I ยจ The Mercurio G2++ model was written as: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ ๐‘‘๐‘ง = โˆ’๐‘˜#. (๐‘ง โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ). ๐‘‘๐‘ก + ๐œŽ#. ([). ๐‘‘๐‘Š # ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š " >= ๐œŒ. ๐‘‘๐‘ก ยจ ๐œŽ# = 0 ยจ ๐‘˜# โ†’ โˆž so ๐‘ฅ + ๐‘ฆ โˆ’ ๐‘ง โ†’ 0 so ๐‘ง ๐‘ก = ๐‘ฅ ๐‘ก + ๐‘ฆ(๐‘ก) ยจ ๐‘Ÿ ๐‘ก = ๐ผ๐‘…๐‘€๐ด ๐‘ง ๐‘ก + ๐œ‡ ๐‘ก = ๐น ๐‘ง = ๐‘ง ๐‘ก + ๐œ‘(๐‘ก) ยจ Sometimes it is not that convenient to work with: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š " >= ๐œŒ. ๐‘‘๐‘ก ยจ We would rather work with picking from the Normal distribution in a way where we do not have to take the correlation into account. We can do that in the following manner: 95
  • 96. Luc_Faucheux_2021 Recasting the correlation - II ยจ Instead of writing : ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ With: < ๐‘‘๐‘Š !. ๐‘‘๐‘Š " >= ๐œŒ. ๐‘‘๐‘ก ยจ Let us show that can write the above using 2 other independent Brownian motions: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห† ๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š ! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "} ยจ With: < ๐‘‘ ห† ๐‘Š !. ๐‘‘ ห† ๐‘Š " > = 0 96
  • 97. Luc_Faucheux_2021 Recasting the correlation - III ยจ Alternatively, comparing the two sets of equations: ยจ ๐‘‘๐‘Š ! = ๐‘‘ ห† ๐‘Š ! ยจ ๐‘‘๐‘Š " = ๐œŒ. ๐‘‘ ห† ๐‘Š ! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š " ยจ Or again: ยจ ๐‘‘ ห† ๐‘Š ! = ๐‘‘๐‘Š ! ยจ ๐‘‘ ห† ๐‘Š " = $E+ *)f! โˆ’ ๐œŒ. $E) *)f! 97
  • 98. Luc_Faucheux_2021 Recasting the correlation - IV ยจ When we had: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š ! ยจ We had for the solution: ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ยจ Which was normally distributed with moments: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' 98
  • 99. Luc_Faucheux_2021 Recasting the correlation - V ยจ Similarly we had for ๐‘Œ(๐‘ก): ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š " ยจ We had for the solution: ยจ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+.(8)8') + โˆซ J=8' J=8 ๐‘’)0+. 8)J . ๐œŽ". ([). ๐‘‘๐‘Š " ๐‘ข ยจ Which was normally distributed with moments: ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ(๐‘กA). ๐‘’)0+.(8)8') ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . 1 โˆ’ ๐‘’).0+. 8)8' 99
  • 100. Luc_Faucheux_2021 Recasting the correlation - VI ยจ We are now concerning ourselves with the Covariance: ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘๐‘Š ! ๐‘ข ). (โˆซ J=8' J=8 ๐‘’)0+. 8)J . ๐œŽ". ([). ๐‘‘๐‘Š " ๐‘ข ) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ๐‘‘๐‘Š ! ๐‘ข ). (โˆซ J=8' J=8 ๐‘’)0+. 8)J . ๐œŽ". ๐‘‘๐‘Š " ๐‘ข ) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". ๐”ผ โˆซ J=8' J=8 ๐‘‘๐‘Š ! ๐‘ข โˆซ J=8' J=8 ๐‘‘๐‘Š " ๐‘ข ๐‘’)0+. 8)J . ๐‘’)0). 8)J ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". ๐”ผ โˆซ J=8' J=8 โˆซ J=8' J=8 ๐‘’)0+. 8)J . ๐‘’)0). 8)J . ๐‘‘๐‘Š ! ๐‘ข . ๐‘‘๐‘Š " ๐‘ข ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". โˆซ J=8' J=8 ๐‘’)0+. 8)J . ๐‘’)0). 8)J . ๐œŒ. ๐‘‘๐‘ข ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". โˆซ J=8' J=8 ๐‘’)(0)Q0+). 8)J . ๐œŒ. ๐‘‘๐‘ข 100
  • 101. Luc_Faucheux_2021 Recasting the correlation - VII ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŽ!. ๐œŽ". โˆซ J=8' J=8 ๐‘’)(0)Q0+). 8)J . ๐œŒ. ๐‘‘๐‘ข ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐œŒ. ๐œŽ!. ๐œŽ". [ B#($)/$+). &#0 (0)Q0+) ]J=8' J=8 ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ (0)Q0+) [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ] 101
  • 102. Luc_Faucheux_2021 Recasting the correlation - VIII ยจ All right so now letโ€™s redo that exercise starting from: ยจ ๐‘‘๐‘ฅ = โˆ’๐‘˜!. ๐‘ฅ. ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห† ๐‘Š ! ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š ! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "} ยจ With: < ๐‘‘ ห† ๐‘Š !. ๐‘‘ ห† ๐‘Š " > = 0 ยจ The first one for ๐‘‹(๐‘ก) is formally the same as before: ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข ยจ Which was normally distributed with moments: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' 102
  • 103. Luc_Faucheux_2021 Recasting the correlation - IX ยจ The second one for ๐‘Œ ๐‘ก is slightly more complicated: ยจ ๐‘‘๐‘ฆ = โˆ’๐‘˜". ๐‘ฆ. ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š ! + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "} ยจ Again now letโ€™s try to be consistent in our notations (again, this is a promise, once I get that book deal the notation will be nicely consistent throughout the book) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ Again as before we are going to use ITO lemma on : ยจ j ๐‘Œ ๐‘ก = exp ๐‘˜". ๐‘ก . ๐‘Œ(๐‘ก) ยจ ๐‘‘ j ๐‘Œ = ? F D ?D . [ . ๐‘‘๐‘Œ + * . . ?! F D ?D! . ๐‘‘๐‘Œ. + ? F D ?8 . [ . ๐‘‘๐‘ก 103
  • 104. Luc_Faucheux_2021 Recasting the correlation - XI ยจ Again, remember that we used the notation for ITO lemma for sake of ease, what you really have is a regular function ยจ j ๐‘Œ = ๐‘“ ๐‘Œ Stochastic Variable ยจ l ๐‘ฆ = ๐‘“ ๐‘ฆ Regular โ€œNewtonianโ€ variable with well defined partial derivatives ยจ ๐›ฟ๐‘“ = ?G ?" . ๐›ฟ๐‘Œ + * . . ?!G ?"! . (๐›ฟ๐‘Œ). + ?G ?8 . ๐‘‘๐‘ก ยจ ?G ?" = ?G ?" |"=D 8 ,8 ยจ ?!G ?"! = ?!G ?"! |"=D 8 ,8 ยจ ?G ?8 = ?G ?8 |"=D 8 ,8 104
  • 105. Luc_Faucheux_2021 Recasting the correlation - XII ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ j ๐‘Œ ๐‘ก = exp ๐‘˜". ๐‘ก . ๐‘Œ(๐‘ก) ยจ ๐‘‘ j ๐‘Œ = ? F D ?D . [ . ๐‘‘๐‘Œ + * . . ?! F D ?D! . ๐‘‘๐‘Œ. + ? F D ?8 . [ . ๐‘‘๐‘ก ยจ ? F D ?D = exp ๐‘˜". ๐‘ก ยจ ?! F D ?D! = 0 ยจ ? F D ?8 = ๐‘˜". exp ๐‘˜". ๐‘ก . ๐‘Œ ๐‘ก = ๐‘˜".j ๐‘Œ ๐‘ก ยจ ๐‘‘ j ๐‘Œ = exp ๐‘˜". ๐‘ก . [ . ๐‘‘๐‘Œ + * . . 0. ๐‘‘๐‘Œ. + ๐‘˜".j ๐‘Œ ๐‘ก . [ . ๐‘‘๐‘ก 105
  • 106. Luc_Faucheux_2021 Recasting the correlation - XIII ยจ ๐‘‘ j ๐‘Œ = exp ๐‘˜". ๐‘ก . [ . ๐‘‘๐‘Œ + * . . 0. ๐‘‘๐‘Œ. + ๐‘˜".j ๐‘Œ ๐‘ก . [ . ๐‘‘๐‘ก ยจ ๐‘‘ j ๐‘Œ = exp ๐‘˜". ๐‘ก . ๐‘‘๐‘Œ + ๐‘˜".j ๐‘Œ ๐‘ก . ๐‘‘๐‘ก ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ ๐‘‘ j ๐‘Œ = exp ๐‘˜". ๐‘ก . (โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}) + ๐‘˜".j ๐‘Œ ๐‘ก . ๐‘‘๐‘ก ยจ ๐‘‘ j ๐‘Œ = exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}) ยจ j ๐‘Œ ๐‘กI โˆ’ j ๐‘Œ ๐‘กA = โˆซ 8=8' 8=8, ๐‘‘ j ๐‘Œ ๐‘ก = โˆซ 8=8' 8=8, exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}) ยจ j ๐‘Œ ๐‘ก = exp ๐‘˜". ๐‘ก . ๐‘Œ(๐‘ก) ยจ j ๐‘Œ ๐‘กI = exp ๐‘˜". ๐‘กI . ๐‘Œ(๐‘กI) ยจ j ๐‘Œ ๐‘กA = exp ๐‘˜". ๐‘กA . ๐‘Œ(๐‘กA) 106
  • 107. Luc_Faucheux_2021 Recasting the correlation - XIV ยจ j ๐‘Œ ๐‘กI โˆ’ j ๐‘Œ ๐‘กA = โˆซ 8=8' 8=8, ๐‘‘ j ๐‘Œ ๐‘ก = โˆซ 8=8' 8=8, exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}) ยจ exp ๐‘˜". ๐‘กI . ๐‘Œ(๐‘กI) โˆ’ exp ๐‘˜". ๐‘กA . ๐‘Œ(๐‘กA) = โˆซ 8=8' 8=8, exp ๐‘˜". ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}) ยจ ๐‘Œ ๐‘กI = ๐‘’)0+ 8,)8' . ๐‘Œ ๐‘กA + โˆซ 8=8' 8=8, ๐‘’)0+ 8,)8 . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}) ยจ ๐‘Œ ๐‘ก = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA + โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)}) ยจ And we know apply the usual trick of: ยจ ITO integral is a martingale to compute the mean ยจ ITO integral exhibits the property of isometry to compute the variance 107
  • 108. Luc_Faucheux_2021 Recasting the correlation - XV ยจ ๐‘Œ ๐‘ก = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA + โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)}) ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐”ผ ๐‘Œ = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA as before ยจ The Variance is a little more tricky ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)}) ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = (โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)})). ยจ Where there again we are going to use the isometry property and the fact that: ยจ < ๐‘‘ ห† ๐‘Š !. ๐‘‘ ห† ๐‘Š " > = 0 108
  • 109. Luc_Faucheux_2021 Recasting the correlation - XVI ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = (โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)})). ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = ๐œŽ" .. (โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข + โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)). ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก . = ๐œŽ" .. (๐ด + ๐ต + ๐ถ) ยจ ๐ด = โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) ยจ ๐ต = 2. โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐ถ = โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข). โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ" .. ๐”ผ ๐ด + ๐ต + ๐ถ 109
  • 110. Luc_Faucheux_2021 Recasting the correlation - XVII ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ" .. ๐”ผ ๐ด + ๐ต + ๐ถ ยจ ๐ด = โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) ยจ ๐”ผ{๐ด} = ๐”ผ{โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข } ยจ ๐”ผ ๐ด = โˆซ J=8' J=8 ๐‘’).0+ 8)J . ๐œŒ.. ๐‘‘๐‘ข = ๐œŒ.. [ * .0+ . ๐‘’).0+ 8)J ]J=8' J=8 ยจ ๐”ผ ๐ด = f! .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] 110
  • 111. Luc_Faucheux_2021 Recasting the correlation - XVIII ยจ ๐ต = 2. โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐”ผ{๐ต} = ๐”ผ{2. โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š " ๐‘ข } ยจ Since < ๐‘‘ ห† ๐‘Š !. ๐‘‘ ห† ๐‘Š " > = 0 ยจ ๐”ผ ๐ต = 0 111
  • 112. Luc_Faucheux_2021 Recasting the correlation - XIX ยจ ๐ถ = โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข). โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐”ผ{๐ถ} = ๐”ผ{โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข). โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)} ยจ ๐”ผ{๐ถ} = {โˆซ J=8' J=8 ๐‘’)..0+ 8)J . (1 โˆ’ ๐œŒ.). ๐‘‘๐‘ข} ยจ ๐”ผ ๐ถ = โˆซ J=8' J=8 ๐‘’).0+ 8)J . (1 โˆ’ ๐œŒ.). ๐‘‘๐‘ข =. (1 โˆ’ ๐œŒ.). [ * .0+ . ๐‘’).0+ 8)J ]J=8' J=8 ยจ ๐”ผ ๐ถ = (*)f!) .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] 112
  • 113. Luc_Faucheux_2021 Recasting the correlation - XX ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ" .. ๐”ผ ๐ด + ๐ต + ๐ถ ยจ ๐”ผ ๐ด = f! .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] ยจ ๐”ผ ๐ต = 0 ยจ ๐”ผ ๐ถ = (*)f!) .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐”ผ (๐‘Œ(๐‘ก) โˆ’ ๐‘€ ๐‘Œ ๐‘ก ). = ๐œŽ" .. ๐”ผ ๐ด + ๐ต + ๐ถ ยจ ๐‘‰ ๐‘Œ ๐‘ก = ๐œŽ" .. (*)f!Qf!) .0+ . 1 โˆ’ ๐‘’).0+ 8)8' = -+ ! .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] 113
  • 114. Luc_Faucheux_2021 Recasting the correlation - XXI ยจ So far we have recovered the same expression for the mean and Variance for both ๐‘‹ ๐‘ก and also ๐‘Œ(๐‘ก) ยจ We are now left with the Covariance ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ All right we are almost there, and since we know that both ๐‘‹ ๐‘ก and ๐‘Œ(๐‘ก) are normally distributed, if we can prove that we also recover the Covariance then both descriptions are identical. That will be quite an achievement (again might seem obvious if you are not too concerned about being somewhat rigorous, or at least trying to be). 114
  • 115. Luc_Faucheux_2021 Recasting the correlation - XXII ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐‘‹ ๐‘ก = ๐‘‹ ๐‘กA . ๐‘’)0).(8)8') + โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข ยจ Which was normally distributed with moments: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข 115
  • 116. Luc_Faucheux_2021 Recasting the correlation - XXIII ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐‘Œ ๐‘ก = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA + โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)}) ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐”ผ ๐‘Œ = ๐‘’)0+ 8)8' . ๐‘Œ ๐‘กA ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0+ 8)J . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ข) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข)}) ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŽ". ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข + โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) 116
  • 117. Luc_Faucheux_2021 Recasting the correlation - XXIV ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข ยจ ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŽ". ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข + โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก . ๐‘Œ ๐‘ก โˆ’ ๐‘€ ๐‘Œ ๐‘ก = ๐ด + ๐ต ยจ ๐ด = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŽ". ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข ยจ ๐ต = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ (๐‘‹ ๐‘ก โˆ’ ๐‘€ ๐‘‹ ๐‘ก ). (๐‘Œ ๐‘ก โˆ’ ๐‘€[๐‘Œ(๐‘ก)]) ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ ๐ด + ๐ต = ๐”ผ ๐ด + ๐”ผ ๐ต 117
  • 118. Luc_Faucheux_2021 Recasting the correlation - XXV ยจ ๐ด = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŽ". ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข ยจ ๐”ผ{๐ด} = ๐”ผ{โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . ๐œŽ". ๐œŒ. ๐‘‘ ห† ๐‘Š ! ๐‘ข } ยจ ๐”ผ{๐ด} = {โˆซ J=8' J=8 ๐‘’)(0)Q0+). 8)J . ๐œŽ!. ๐œŽ". ๐œŒ. ๐‘‘๐‘ข} ยจ ๐”ผ ๐ด = ๐œŒ. ๐œŽ!. ๐œŽ". โˆซ J=8' J=8 ๐‘’)(0)Q0+). 8)J ๐‘‘๐‘ข = ๐œŒ. ๐œŽ!. ๐œŽ". [ * 0)Q0+ . ๐‘’)(0)Q0+). 8)J ]J=8' J=8 ยจ ๐”ผ ๐ด = f.-).-+ 0)Q0+ . [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ] 118
  • 119. Luc_Faucheux_2021 Recasting the correlation - XXVI ยจ ๐ต = โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ข) ยจ ๐”ผ{๐ต} = ๐”ผ{โˆซ J=8' J=8 ๐‘’)0). 8)J . ๐œŽ!. ([). ๐‘‘ ห† ๐‘Š ! ๐‘ข . โˆซ J=8' J=8 ๐‘’)0+ 8)J . 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š " ๐‘ข } ยจ ๐”ผ ๐ต = 0 ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = ๐”ผ ๐ด + ๐ต = ๐”ผ ๐ด + ๐”ผ ๐ต ยจ ๐”ผ ๐ด = f.-).-+ 0)Q0+ . [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ] ยจ ๐”ผ ๐ต = 0 ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ 0)Q0+ . [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ] ยจ We recover indeed the same formula for the Covariance 119
  • 120. Luc_Faucheux_2021 Recasting the correlation - XXVII ยจ This is actually seen quite often in the literature (Mercurio p.134 for example), and is usually useful when you want to deal with independent Brownian motions, and do not want to have to deal with the correlation when โ€œpickingโ€ the stochastic process out of the distribution. 120
  • 121. Luc_Faucheux_2021 Recasting the correlation - XXVIII ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š "(๐‘ก) ยจ With: < ๐‘‘๐‘Š !(๐‘ก). ๐‘‘๐‘Š "(๐‘ก) >= ๐œŒ. ๐‘‘๐‘ก ยจ Is equivalent to: ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห† ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ With: < ๐‘‘ ห† ๐‘Š !(๐‘ก). ๐‘‘ ห† ๐‘Š "(๐‘ก) > = 0 121
  • 122. Luc_Faucheux_2021 Recasting the correlation - XXIX ยจ In both formulation we have: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ 0)Q0+ . [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ] 122
  • 123. Luc_Faucheux_2021 Recasting the correlation - XXX ยจ It pays to look at the small time approximation: (๐‘ก โ†’ ๐‘กA) ยจ This would be also the weak mean reversion regime ๐‘˜! โ†’ 0 and ๐‘˜" โ†’ 0 (diffusive regime) ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') โ†’ ๐‘‹(๐‘กA) ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' โ†’ -) ! .0) . 1 โˆ’ 1 + 2๐‘˜!. ๐‘ก โˆ’ ๐‘กA = ๐œŽ! .. ๐‘ก โˆ’ ๐‘กA ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' โ†’ ๐‘Œ(๐‘กA) ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . 1 โˆ’ ๐‘’).0+ 8)8' โ†’ ๐œŽ" .. ๐‘ก โˆ’ ๐‘กA ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ 0)Q0+ . 1 โˆ’ ๐‘’) 0)Q0+ . 8)8' โ†’ f.-).-+ 0)Q0+ . 1 โˆ’ 1 + ๐‘˜! + ๐‘˜" . ๐‘ก โˆ’ ๐‘กA ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก โ†’ ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘ก โˆ’ ๐‘กA 123
  • 124. Luc_Faucheux_2021 Recasting the correlation - XXXI ยจ In the strong mean reversion regime, ๐‘˜! โ†’ โˆž and ๐‘˜" โ†’ โˆž ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') โ†’ 0 ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' โ†’ -) ! .0) . 1 โˆ’ 0 โ†’ 0 ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' โ†’ 0 ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . 1 โˆ’ ๐‘’).0+ 8)8' โ†’ 0 ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ 0)Q0+ . 1 โˆ’ ๐‘’) 0)Q0+ . 8)8' โ†’ f.-).-+ 0)Q0+ . 1 โˆ’ 0 โ†’ 0 ยจ Looks boring, but we saw that this is a nice limit of the IRMA formalism for ๐‘(๐‘ก) 124
  • 125. Luc_Faucheux_2021 Recasting the correlation - XXXII ยจ And just because physicists loooove steady state (equilibrium or ๐‘ก โ†’ โˆž) solutions ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') โ†’ 0 ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' โ†’ -) ! .0) ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' โ†’ 0 ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . 1 โˆ’ ๐‘’).0+ 8)8' โ†’ -+ ! .0+ ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ 0)Q0+ . 1 โˆ’ ๐‘’) 0)Q0+ . 8)8' โ†’ f.-).-+ 0)Q0+ ยจ So the distributions are bounded, which is quite nice, which was one of the original attraction about the Langevin equation 125
  • 126. Luc_Faucheux_2021 Re-casting the correlation for the instantaneous variables 126
  • 127. Luc_Faucheux_2021 Recasting the correlation instantaneous - I ยจ Instead of looking at the exact solutions: ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐‘‹(๐‘กA). ๐‘’)0).(8)8') ยจ ๐‘‰ ๐‘‹ ๐‘ก = -) ! .0) . 1 โˆ’ ๐‘’).0). 8)8' ยจ ๐‘€ ๐‘Œ ๐‘ก = ๐‘Œ ๐‘กA . ๐‘’)0+. 8)8' ยจ ๐‘‰ ๐‘Œ ๐‘ก = -+ ! .0+ . [1 โˆ’ ๐‘’).0+ 8)8' ] ยจ ๐ถ๐‘‚๐‘‰ ๐‘‹ ๐‘ก , ๐‘Œ ๐‘ก = f.-).-+ 0)Q0+ . [1 โˆ’ ๐‘’)(0)Q0+). 8)8' ] ยจ We could have also only looked like Tuckman does p. 288 at the instantaneous quantities ๐‘€ ๐‘‘๐‘‹ ๐‘ก , ๐‘‰ ๐‘‘๐‘‹ ๐‘ก , ๐‘€ ๐‘‘๐‘Œ ๐‘ก , ๐‘‰ ๐‘‘๐‘Œ ๐‘ก , ๐ถ๐‘‚๐‘‰ ๐‘‘๐‘‹ ๐‘ก , ๐‘‘๐‘Œ ๐‘ก ยจ Letโ€™s do that to gain some intuition 127
  • 128. Luc_Faucheux_2021 Recasting the correlation instantaneous - II ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š "(๐‘ก) ยจ With: < ๐‘‘๐‘Š !(๐‘ก). ๐‘‘๐‘Š "(๐‘ก) >= ๐œŒ. ๐‘‘๐‘ก ยจ Is equivalent to: ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห† ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ With: < ๐‘‘ ห† ๐‘Š !(๐‘ก). ๐‘‘ ห† ๐‘Š "(๐‘ก) > = 0 128
  • 129. Luc_Faucheux_2021 Recasting the correlation instantaneous - III ยจ Letโ€™s look at : ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ Using the notation: ยจ < ๐‘‘๐‘‹ ๐‘ก > to denote the usual quantity ๐”ผ ๐‘‘๐‘‹ = ๐”ผ8Q$8 E) {๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก) ๐”‰ ๐‘ก that we have been using the deck II of the stochastic calculus decks ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐”ผ ๐‘‘๐‘‹ = ๐”ผ8Q$8 E) {๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก) ๐”‰ ๐‘ก ยจ < ๐‘‘๐‘‹ ๐‘ก > = ๐”ผ ๐‘‘๐‘‹ = ๐”ผ โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก ยจ That is the usual drift / advection term ยจ Letโ€™s now look at the higher moment (diffusion) 129
  • 130. Luc_Faucheux_2021 Recasting the correlation instantaneous - IV ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐”ผ ๐‘‘๐‘‹. = ๐”ผ8Q$8 E) {(๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹(๐‘ก)). ๐”‰ ๐‘ก ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐”ผ ๐‘‘๐‘‹. ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐”ผ (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ). ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐œŽ! .. ๐‘‘๐‘ก ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ < ๐‘‘๐‘‹ ๐‘ก > = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐œŽ! .. ๐‘‘๐‘ก ยจ Same for the process ๐‘Œ(๐‘ก) 130
  • 131. Luc_Faucheux_2021 Recasting the correlation instantaneous - V ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ = ๐”ผ8Q$8 E) { ๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹ ๐‘ก . (๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘Œ(๐‘ก)) ๐”‰ ๐‘ก ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". ([). ๐‘‘๐‘Š "(๐‘ก) ยจ With: < ๐‘‘๐‘Š !(๐‘ก). ๐‘‘๐‘Š "(๐‘ก) >= ๐œŒ. ๐‘‘๐‘ก ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ). (โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ([). ๐‘‘๐‘Š !(๐‘ก) ) ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ (๐œŽ!. ๐‘‘๐‘Š !(๐‘ก) ). (๐œŽ!. ๐‘‘๐‘Š !(๐‘ก) ) ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŽ!. ๐œŽ". ๐”ผ ๐‘‘๐‘Š ! ๐‘ก . ๐‘‘๐‘Š "(๐‘ก) ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘‘๐‘ก 131
  • 132. Luc_Faucheux_2021 Recasting the correlation instantaneous - VI ยจ Starting from: ยจ ๐‘‘๐‘‹(๐‘ก) = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ ห† ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ With: < ๐‘‘ ห† ๐‘Š !(๐‘ก). ๐‘‘ ห† ๐‘Š "(๐‘ก) > = 0 ยจ < ๐‘‘๐‘‹ ๐‘ก > = โˆ’๐‘˜!. ๐‘‹(๐‘ก). ๐‘‘๐‘ก ยจ < ๐‘‘๐‘‹ ๐‘ก . > = ๐œŽ! .. ๐‘‘๐‘ก ยจ The term for the process ๐‘Œ(๐‘ก) is a little more complicated, but essentially the same derivation we had for the full explicit solution in the previous slides. 132
  • 133. Luc_Faucheux_2021 Recasting the correlation instantaneous - VII ยจ ๐‘‘๐‘Œ(๐‘ก) = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ ๐‘‘๐‘Œ = ๐”ผ8Q$8 g E), g E+ {๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘Œ(๐‘ก) ๐”‰ ๐‘ก ยจ < ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ ๐‘‘๐‘Œ = ๐”ผ โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ < ๐‘‘๐‘Œ ๐‘ก > = โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐”ผ ๐‘‘๐‘Œ. ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐”ผ (โˆ’๐‘˜". ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)}). ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ". ๐œŒ).๐”ผ (๐‘‘ ห† ๐‘Š !(๐‘ก)). + (๐œŽ". 1 โˆ’ ๐œŒ.).๐”ผ (๐‘‘ ห† ๐‘Š "(๐‘ก)). + ๐œŽ". ๐œŒ. ๐œŽ". 1 โˆ’ ๐œŒ.. ๐”ผ ๐‘‘ ห† ๐‘Š ! ๐‘ก . ๐‘‘ ห† ๐‘Š "(๐‘ก) 133
  • 134. Luc_Faucheux_2021 Recasting the correlation instantaneous - VIII ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ1. ๐œŒ). ๐”ผ (๐‘‘ 6 ๐‘Š 2(๐‘ก)). + (๐œŽ1. 1 โˆ’ ๐œŒ.). ๐”ผ (๐‘‘ 6 ๐‘Š 1(๐‘ก)). + ๐œŽ1. ๐œŒ. ๐œŽ1. 1 โˆ’ ๐œŒ.. ๐”ผ ๐‘‘ 6 ๐‘Š 2 ๐‘ก . ๐‘‘ 6 ๐‘Š 1(๐‘ก) ยจ < ๐‘‘ ห† ๐‘Š !(๐‘ก). ๐‘‘ ห† ๐‘Š "(๐‘ก) > = 0 ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ". ๐œŒ).๐”ผ (๐‘‘ ห† ๐‘Š !(๐‘ก)). + (๐œŽ". 1 โˆ’ ๐œŒ.).๐”ผ (๐‘‘ ห† ๐‘Š "(๐‘ก)). ยจ < ๐‘‘๐‘Œ ๐‘ก . > = (๐œŽ". ๐œŒ).. ๐‘‘๐‘ก + (๐œŽ". 1 โˆ’ ๐œŒ.).. ๐‘‘๐‘ก ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐œŽ" .. ๐‘‘๐‘ก. {๐œŒ. + 1 โˆ’ ๐œŒ. . } ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐œŽ" .. ๐‘‘๐‘ก. {๐œŒ. + 1 โˆ’ ๐œŒ.} ยจ < ๐‘‘๐‘Œ ๐‘ก . > = ๐œŽ" .. ๐‘‘๐‘ก 134
  • 135. Luc_Faucheux_2021 Recasting the correlation instantaneous - IX ยจ And now to finish with the cross term: ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ = ๐”ผ8Q$8 g E), g E+ { ๐‘‹ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘‹ ๐‘ก . (๐‘Œ ๐‘ก + ๐‘‘๐‘ก โˆ’ ๐‘Œ(๐‘ก)) ๐”‰ ๐‘ก ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ ๐‘‘๐‘‹. ๐‘‘๐‘Œ ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > = ๐”ผ (โˆ’๐‘˜2. ๐‘‹(๐‘ก). ๐‘‘๐‘ก + ๐œŽ2. ๐‘‘ 6 ๐‘Š 2(๐‘ก)). (โˆ’๐‘˜1. ๐‘Œ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ1. {๐œŒ. ๐‘‘ 6 ๐‘Š 2(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ 6 ๐‘Š 1(๐‘ก)}) ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐”ผ{๐œŽ!. ๐‘‘ ห† ๐‘Š ! ๐‘ก . (๐œŽ". {๐œŒ. ๐‘‘ ห† ๐‘Š !(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)})} ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐”ผ ๐‘‘ ห† ๐‘Š ! ๐‘ก . ๐‘‘ ห† ๐‘Š ! ๐‘ก + ๐”ผ{๐œŽ!. ๐‘‘ ห† ๐‘Š ! ๐‘ก . ๐œŽ". 1 โˆ’ ๐œŒ.. ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘‘๐‘ก + 1 โˆ’ ๐œŒ.. ๐œŽ!. ๐œŽ". ๐”ผ{๐‘‘ ห† ๐‘Š ! ๐‘ก . ๐‘‘ ห† ๐‘Š "(๐‘ก)} ยจ < ๐‘‘ ห† ๐‘Š !(๐‘ก). ๐‘‘ ห† ๐‘Š "(๐‘ก) > = 0 ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ ๐‘ก > = ๐œŒ. ๐œŽ!. ๐œŽ". ๐‘‘๐‘ก 135
  • 136. Luc_Faucheux_2021 Recasting the correlation instantaneous - X ยจ So we do recover the same expressions in both sets of equations for the quantities: ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > ยจ < ๐‘‘๐‘‹ ๐‘ก . ๐‘‘๐‘‹(๐‘ก) > ยจ < ๐‘‘๐‘Œ ๐‘ก . ๐‘‘๐‘Œ(๐‘ก) > ยจ < ๐‘‘๐‘‹ ๐‘ก > ยจ < ๐‘‘๐‘Œ(๐‘ก) > ยจ Following the logic of the deck on stochastic calculus, we will also recover the same PDE (Partial Differential equations) for the PDF (Probability Distribution Function) of the processes that we described through the SDE (stochastic Differential Equations). ยจ Hence the 2 descriptions are equivalent 136
  • 138. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ I 138
  • 139. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ II ยจ Bruce Tuckman worked at Salomon on the โ€2+ IRMAโ€ model with other intellectual giants like Craig Fithian, Francis Longstaff and other too numerous to name here. ยจ SO he knows what he is talking about. ยจ His book is awesome to read. ยจ He expresses the model on page 288 as: ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. (๐œŒ. ๐‘‘๐‘Š*(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘๐‘Š.(๐‘ก)) ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘๐‘Š*(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘๐‘Š*(๐‘ก). ๐‘‘๐‘Š.(๐‘ก) > = 0 ยจ Takes a little work to show that this can be casted into the 2+ IRMA formalism, but letโ€™s do it. ยจ Itโ€™s worth it, plus I got let go of my job at Natixis, so I need to get my bearings backโ€ฆ.J 139
  • 140. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ III ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. (๐œŒ. ๐‘‘๐‘Š*(๐‘ก) + 1 โˆ’ ๐œŒ.. ๐‘‘๐‘Š.(๐‘ก)) ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘๐‘Š*(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘๐‘Š*(๐‘ก). ๐‘‘๐‘Š.(๐‘ก) > = 0 ยจ So first of all we can recast the correlation as: ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. ๐‘‘ โ€ฆ ๐‘Š.(๐‘ก) ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘ โ€ฆ ๐‘Š*(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘ โ€ฆ ๐‘Š* ๐‘ก . ๐‘‘ โ€ฆ ๐‘Š. ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก 140
  • 141. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ IV ยจ ๐‘‘๐‘š(๐‘ก) = โˆ’๐›ผ;. (๐‘š(๐‘ก) โˆ’ ๐‘™(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ;. ๐‘‘ โ€ฆ ๐‘Š.(๐‘ก) ยจ ๐‘‘๐‘™(๐‘ก) = โˆ’๐›ผh. (๐‘™(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽh. ๐‘‘ โ€ฆ ๐‘Š*(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘š(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘ โ€ฆ ๐‘Š* ๐‘ก . ๐‘‘ โ€ฆ ๐‘Š. ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก ยจ Letโ€™s rename with ๐‘ฅ and ๐‘ฆ: ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ(๐‘ก) โˆ’ ๐‘ฅ(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ ๐‘Š "(๐‘ก) ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. (๐‘ฅ(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘ โ€ฆ ๐‘Š ! ๐‘ก . ๐‘‘ โ€ฆ ๐‘Š " ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก 141
  • 142. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ V ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ(๐‘ก) โˆ’ ๐‘ฅ(๐‘ก)). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ ๐‘Š "(๐‘ก) ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. (๐‘ฅ(๐‘ก) โˆ’ ๐œƒ). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘ โ€ฆ ๐‘Š ! ๐‘ก . ๐‘‘ โ€ฆ ๐‘Š " ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก ยจ Letโ€™s โ€œcascadeโ€ (this is a Bruce Tuckman term) l ๐‘ฅ ๐‘ก = ๐‘ฅ ๐‘ก โˆ’ ๐œƒ (remember that is a constant) ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ ๐‘ก โˆ’ l ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ ๐‘Š "(๐‘ก) ยจ ๐‘‘ l ๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. l ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘ โ€ฆ ๐‘Ši ! ๐‘ก . ๐‘‘ โ€ฆ ๐‘Š " ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก 142
  • 143. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ VI ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐›ผ". (๐‘ฆ ๐‘ก โˆ’ l ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘ โ€ฆ ๐‘Š "(๐‘ก) ยจ ๐‘‘ l ๐‘ฅ(๐‘ก) = โˆ’๐›ผ!. l ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘ โ€ฆ ๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘Ÿ(๐‘ก) = โˆ’๐›ผ,. (๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)). ๐‘‘๐‘ก ยจ With: < ๐‘‘ โ€ฆ ๐‘Ši ! ๐‘ก . ๐‘‘ โ€ฆ ๐‘Š " ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก ยจ Replacing l ๐‘ฅ by ๐‘ฅ, the ๐›ผ with ๐‘˜ and ๐‘Ÿ with ๐‘ง ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก) ยจ ๐‘‘๐‘ง ๐‘ก = โˆ’๐‘˜#. ๐‘ง ๐‘ก โˆ’ ๐‘ฆ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ#. ๐‘‘๐‘Š #(๐‘ก) with ๐œŽ# = 0 ยจ With: < ๐‘‘๐‘Š ! ๐‘ก . ๐‘‘๐‘Š " ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก ยจ ๐‘Ÿ(๐‘ก) = ๐‘ง(๐‘ก) 143
  • 144. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ VII ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก) ยจ ๐‘‘๐‘ง ๐‘ก = โˆ’๐‘˜#. ๐‘ง ๐‘ก โˆ’ ๐‘ฆ ๐‘ก . ๐‘‘๐‘ก + ๐œŽ#. ๐‘‘๐‘Š #(๐‘ก) ยจ With: < ๐‘‘๐‘Š ! ๐‘ก . ๐‘‘๐‘Š " ๐‘ก > = ๐œŒ. ๐‘‘๐‘ก ยจ ๐‘Ÿ(๐‘ก) = ๐‘ง(๐‘ก) ยจ This one has the โ€œcascadeโ€ form because first you have ๐‘ฅ, then (๐‘ฆ โˆ’ ๐‘ฅ) then (๐‘ง โˆ’ ๐‘ฆ) ยจ We can use matrices like Tuckman does in the appendix or just โ€œcascadeโ€ the change of variables ยจ l ๐‘ฅ = ๐‘ฅ ยจ l ๐‘ฆ = ๐‘˜!. ๐‘ฆ โˆ’ ๐‘˜". ๐‘ฅ 144
  • 145. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ VIII ยจ ๐‘‘๐‘ฅ(๐‘ก) = โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก) ยจ ๐‘‘๐‘ฆ(๐‘ก) = โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก) ยจ l ๐‘ฅ = ๐›ผ!,!. ๐‘ฅ + ๐›ผ!,". ๐‘ฆ ยจ l ๐‘ฆ = ๐›ผ",!. ๐‘ฅ + ๐›ผ",". ๐‘ฆ ยจ And then we will solve for the variables ๐›ผ!,! to reduce the mean reversion to be diagonal ยจ ๐‘‘ l ๐‘ฅ = ๐›ผ!,!. ๐‘‘๐‘ฅ + ๐›ผ!,". ๐‘‘๐‘ฆ ยจ ๐‘‘ l ๐‘ฆ = ๐›ผ",!. ๐‘‘๐‘ฅ + ๐›ผ",". ๐‘‘๐‘ฆ ยจ ๐‘‘ l ๐‘ฅ = ๐›ผ!,!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก)) + ๐›ผ!,". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก)) ยจ ๐‘‘ l ๐‘ฆ = ๐›ผ",!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก)) + ๐›ผ",". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก)) 145
  • 146. Luc_Faucheux_2021 IRMA โ€“ Tuckman โ€“ Gauss+ IX ยจ ๐‘‘ l ๐‘ฅ = ๐›ผ!,!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก)) + ๐›ผ!,". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก)) ยจ ๐‘‘ l ๐‘ฆ = ๐›ผ",!. (โˆ’๐‘˜!. ๐‘ฅ(๐‘ก). ๐‘‘๐‘ก + ๐œŽ!. ๐‘‘๐‘Š !(๐‘ก)) + ๐›ผ",". (โˆ’๐‘˜". (๐‘ฆ ๐‘ก โˆ’ ๐‘ฅ ๐‘ก + ๐œƒ). ๐‘‘๐‘ก + ๐œŽ". ๐‘‘๐‘Š "(๐‘ก)) ยจ And then we replace ๐‘ฅ and ๐‘ฆ by l ๐‘ฅ and l ๐‘ฆ, which is a matrix inversion. ยจ l ๐‘ฅ = ๐›ผ!,!. ๐‘ฅ + ๐›ผ!,". ๐‘ฆ ยจ l ๐‘ฆ = ๐›ผ",!. ๐‘ฅ + ๐›ผ",". ๐‘ฆ ยจ ๐›ผ",! . l ๐‘ฅ = ๐›ผ",!. ๐›ผ!,!. ๐‘ฅ + ๐›ผ",!. ๐›ผ!,". ๐‘ฆ ยจ ๐›ผ!,!. l ๐‘ฆ = ๐›ผ!,!. ๐›ผ",!. ๐‘ฅ + ๐›ผ!,!. ๐›ผ",". ๐‘ฆ ยจ ๐›ผ",! . l ๐‘ฅ โˆ’ ๐›ผ!,!. l ๐‘ฆ = ๐›ผ!,!. ๐›ผ",!. ๐‘ฅ โˆ’ ๐›ผ!,!. ๐›ผ",!. ๐‘ฅ + (๐›ผ",!. ๐›ผ!," โˆ’ ๐›ผ!,!. ๐›ผ","). ๐‘ฆ ยจ ๐›ผ",! . l ๐‘ฅ โˆ’ ๐›ผ!,!. l ๐‘ฆ = ๐›ผ",!. ๐›ผ!," โˆ’ ๐›ผ!,!. ๐›ผ","). ๐‘ฆ 146