SlideShare a Scribd company logo
1 of 32
Linear Algebra for Digital Filter
Design
Lecture Date: August 23
Presentation Assignment MIS3 5.3
for No:3 and 4 in each group.
Simply present these slides.
Matlab code for FIR filter design given in
Slide 17 will be appreciated
Date August 28 Evening
What is a filter?..
When an item of interest is passed through a structure/device
unwanted things are removed. That structure/device is called
Filter.
What is a Digital filter?..
When a discretized signal is passed through a structure
(consisting of delay , multiplier and summer elements)
unwanted frequency components are removed.
Generally the ordered sequence of multiplier elements
are called digital filter.
( )Cos t
t
t
t
0h
Nh
1h
2h

 ( )Cos t t  
 ( 2 )Cos t t  
 ( )Cos t N t  
   0 1( ) ( ) ( ) .... ( )new Nf t h Cos t hCos t t h Cos t N t          
( )RCos t   
= ?R
= ?
( ) 1. ( 0)f t Cos t  
Amplitude Phase Amplitude
multiplier
Phase
change
( )Cos t
t
t
t
0h
Nh
1h
2h

 ( )Cos t t  
 ( 2 )Cos t t  
 ( )Cos t N t  
   0 1( ) ( ) ( ) .... ( )new Nf t h Cos t hCos t t h Cos t N t          
( )RCos t   
= ?R
= ?
( ) 1. ( 0)f t Cos t  
Amplitude Phase Amplitude
multiplier
Phase
change
j t
e 
t
t
t
0h
Nh
1h
2h

 j t t
e  
 
Re j t  

= ?R
= ?
( 0)
( ) 1. j t
f t e  

Amplitude Phase Amplitude
multiplier
Phase
change
1
j t j t
h e e  
j t jN t
Nh e e  
 2j t t
e   
 j t N t
e   
0
j t
h e 
2
1
j t j t
h e e  
j t
e 
t
t
t
0h
Nh
1h
2h

j t j
e e  
 0 1( ) ....j t j jN
new Nf t e h he h e   
   
 
Rej t  

= ?R
= ?
( 0)
( ) 1. j t
f t e  

Amplitude Phase Amplitude
multiplier
Phase
change
2j t j
e e  
j t jN
e e  
ej t j
e R 

 j t
Re  

DTFT
0 1 .... ej jN j
Nh h e h e R   
   
Why we call it as DTFT?.
Consider a non periodic function h(t)
that exist for a short interval.
0
0 0
the domain of function h(.) be time 0 to T.
FT is
( ) ( ) ( )
on discretization of of time t in to n t, n=0,1,..,N
( t) ( )
t T
i t i t
t t
N N
i n t i
n n
Let
Its
H h t e dt h t e dt
h n e h n e

   
 
    
 
  
 

 
 @
2
2
0 1 2
= ( ), ,
(0) (1) (2) .... ( )
, equivalently H( )= ....
n
i i iN
i i iN
N
H t
h h e h e h N e
Or h h e h e h e

  
  
 

  
  
 
    
   
( )Cos t
t
t
t
0h
Nh
1h
2h

 ( )Cos t t  
 ( 2 )Cos t t  
 ( )Cos t N t  
( )RCos t   
= ?R
= ?
( ) 1. ( 0)f t Cos t  
Amplitude Phase Amplitude
multiplier
Phase
change
IIR Filter
t
1a
2a t
   
   
0 1
1
( ) ( ) .... ( )
( ) .... ( )
N
m
h Cos t hCos t t h Cos t N t
a RCos t t a RCos t m t 
         
           
FIR Filter Design
0 1 2
0 0
1 1
M M
t
t
t



  
  
    
  
0 0 0 0
1 1 1 1
( ) ( )
( ) ( )
( ) ( )M M M M
Cos t R Cos t
Cos t R Cos t
Cos t R Cos t



   
   
       
   
1
frequency =Sampling t Sampling
t
 

   H H  
 H 
 
 
 H 
Filter Design
   0 1( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t          ( )RCos t  
   0 1 1 1 1( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t          1 1 1( )R Cos t  
   0 0 1 0 0( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t          0 0 0( )R Cos t  
   0 1( ) ( ) .... ( )M M N Mh Cos t hCos t t h Cos t N t          ( )M M MR Cos t  
 0Cos t 
 1Cos t 
 MCos t 
 Cos t 
FIR Filter Design
 Cos t     0 1( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t           ( )RCos t  
0 1 2cos cos2 ... cos cosNh h h h N R      
00 0 0 0 0
11 1 1 1 1
22 2 2 2 2
1 cos cos2 . . cos cos
1 cos cos2 . . cos cos
1 cos cos2 . . cos cos
.. . . . . . .
.. . . . . . .
1 cos cos2 . . cos cosNM M M M M
hN R
hN R
hN R
hN R
   
   
   
   
    
    
    
    
    
    
    
    
    
Ax e b 
 
1T T
x A A A b


IIR Filter design
 Cos t 
   
   
0 1
1
( ) ( ) .... ( )
( ) .... ( )
N
m
h Cos t hCos t t h Cos t N t
a RCos t t a RCos t m t 
         
            ( )RCos t  
0 1 2 1cos cos2 ... cos cos( 1 )... cos( ) cosN mh h h h N a R a R m R                
Ax e b 
 
1T T
x A A A b


0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
1 cos cos2 . cos os( ) . cos( )
1 cos cos2 . cos cos( ) . cos( )
1 cos cos2 . cos cos( ) . cos( )
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
1 cos cos2 . cosM M M
N R c R m
N R R m
N R R m
N R
      
      
      
  
     
     
     
 cos( ) . cos( )M M M M M MR m   
 
 
 
 
 
 
 
 
 
 
 
      
0
1
2
1
.
.
N
m
h
h
h
h
a
a
 
 
 
 
 
 
 
 
 
 
 
  
0 0
1 1
2 2
cos
cos
cos
.
.
.
.
cosM M
R
R
R
R




 
 
 
 
 
 
 
 
 
 
 
  
IIR Filter Design
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
1 cos cos2 . cos os( ) . cos( )
1 cos cos2 . cos cos( ) . cos( )
1 cos cos2 . cos cos( ) . cos( )
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
1 cos cos2 . cosM M M
N R c R m
N R R m
N R R m
N R
      
      
      
  
     
     
     
 cos( ) . cos( )M M M M M MR m   
 
 
 
 
 
 
 
 
 
 
 
      
0
1
2
1
.
.
N
m
h
h
h
h
a
a
 
 
 
 
 
 
 
 
 
 
 
  
0 0
1 1
2 2
cos
cos
cos
.
.
.
.
cosM M
R
R
R
R




 
 
 
 
 
 
 
 
 
 
 
  
Notch Filter Design
3
10 sect 
 
Lecture over.
Remaining slides are for
Reference and for your
presentation
Everything you need to know
About Fourier family
FS FT
DTFT
DFT
Fourier Family
21
LA Visualization Signal x(t)
Base1
Base2
Base3
Base4
Base..
Base..
Base..
Express periodic signal x(t) as a linear
Combination of orthogonal Basis functions
2
1 1
2
0
2 21 1
0 0
2
( ) ,0 or ,
1
( )
on discretization of of time t in to n t, n=0,1,..(N-1)
( ) ( ) ( ) ( )
k i k t
T
k
k
T
i k t
T
k
t
N Ni k n t i k n
N t N
n n
x t X e t T t t t T
T
X x t e dt
T
X k x n e x n e x n


 
 

 

     

 
       

 
  


 
1
0
N
kn
N
n
W



FS
DFT
From Fourier series to DFT
k=0,1,2,…,N-1 Any N consecutive bases will do. Why?.
Not same.
Differ by a
scaling factor
From Fourier Transform to DTFT
1 1
0 0
( ) ( ) ( ) ; assume x is defined over 0 to T
on discretization of of time t in to n t, n=0,1,..(N-1)
( ) ( ) ( ) ,
(
t
i t i t
t t
N N
i n t i n
n n
X x t e dt x t e dt
X x n e x n e t
X

 


   

 
     
 
  
 
   
 
 
1 1
( 2 )
0 0
) is a continous function of but it is periodic with periodicity 2
( 2 ) ( ) ( )
N N
i n i n
n n
X x n e x n e  
 
 
 
    
 
   
Not same.
Differ by a
scaling factor
Note: x(t) need to be a time limited function for FT to exist
From FT to DFT via DTFT
1 1
0 0
( ) ( ) ( )
on discretization of of time t in to n t, n=0,1,..(N-1)
( ) ( ) ( ) , ,
( ) is periodic with period 2
on
t
i t i t
t t
N N
i n t i n
n n
X x t e dt x t e dt
X x n e x n e t
X

 
 

   

 
    
 
  
 
   

 
 
221 1 1
0 0 0
2
discretization of of from 0 to 2 in to , k=0,1,..(N-1)
X(k)= ( ) ( ) ( )
N N Ni kni k n
knNN
N
n n n
k
N
x n e x n e x n W


 
        
 
  
   
FT
DFT
2
is evaluation of X( ) at =kAbove
N

 
Create DFT matrix for N=8
0
1
2
3
4
5
6
7
8 DFT
bases are
e
e
e
0
e
2
e
e
e
e
i t
i t
i t
i t
i t
i t
i t
i t
The
t T
T

 
 
 
 
 
 
 
 




 


 





0
1
2
3
4
5
6
7
8 DFT conjugated
bases are
e
e
e
e
e
e
e
e
i t
i t
i t
i t
i t
i t
i t
i t
The
 
  
  
  
  
  
  
  
2 2
0 0
2
1
2
2
2
3
2
4
2
5
6
8 DFT conjugated
bases on sampling are
e e , 0,1, 2,.., 7
e , 0,1, 2,.., 7
e , 0,1, 2,.., 7
e , 0,1, 2,.., 7
e , 0,1, 2,.., 7
e , 0,1, 2,.., 7
e
n
i n t i
N t N
n
i
N
n
i
N
n
i
N
n
i
N
n
i
N
i
The
n
n
n
n
n
n
 





     

  
  
  
  
  
  
 





2
2
7
, 0,1, 2,.., 7
e , 0,1, 2,.., 7
n
N
n
i
N
n
n


  


2
Term for kth basis (starting from 0) is
, n=0,1,2,...,7
i
nk
nkN
N
Generic
e W



?.
N property
Why
Mod
2 2
0 0
2
1
2
2
2
3
2
4
2
3
2
2
8 DFT conjugated
bases on sampling are
e e , 0,1, 2,..,7
e , 0,1, 2,..,7
e , 0,1, 2,..,7
e , 0,1, 2,..,7
e , 0,1, 2,..,7
e , 0,1, 2,..,7
e
n
i n t i
N t N
n
i
N
n
i
N
n
i
N
n
i
N
n
i
N
i
The
n
n
n
n
n
n
 






     

  
  
  
  
 
 
 





2
1
, 0,1, 2,..,7
e , 0,1, 2,..,7
n
N
n
i
N
n
n

 


5 3
8 8W W , for int nn n
Why eger  
 
        mod N mod N k mod N n mod N mod
5 ( 5 mod 8) 3
8 8 8
Proof: We have the relation
W W W W W
W W =W , for int n
k n n k kn Nkn
N N N N N
n n n
eger    
   
 
6 2
8 8
7 1
8 8
W W , for int n
W W , for int n
n n
n n
Similarly
eger
eger
  
  
 
 
 
Angular Frequency is .
2
, T is the periodicity of the signal
If t from 0 to T is discretized to have N values, like
t=(0:N-1) t, t
t is now n t with n=0,1,2,..., N-1
T=N t
Fundamental
T
T
N
Generic


 
   


Details of Sampling
Signal is assumed to be periodic with period T
So, we sample signal from 0 to T
interval is t=Sampling
N


0
T0 t 3 t2 t1 t
 1N t 
 2N t 
Sampling Instances
t 
Discretization: t=n t, n=0,1,2,3...,N-1After 
Generally index n is used for time
n varies from 0 to N-1
Index k is used for indexing the basis vector
k varies from 0 to N-1
2 2
Term for kth basis (starting from 0) is
, n=0,1,2,...,7
i i
nk kn
knN N
N
Generic
e e W
  
 
 
k
0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7
1 0 1 1 1 1 1 3 1 4 1 5 1 6 1 7
2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7
3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7
4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7
N N N N N N N N
N N N N N N N N
N N N N N N N N
N N N N N N N N
N N N N N N N N
W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
       
       
       
       
       
5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7
6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7
7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7
N N N N N N N N
N N N N N N N N
N N N N N N N N
W W W W W W W W
W W W W W W W W
W W W W W W W W
       
       
       
 
 
 
 
 
 
 
 
 
 
  
 
Circular and Linear Convolution
     1 2
1 2
( ) ( ) ( ) , 0,1,2,.., 1
( ) ( ) ( ), 0,1,2,.., 1
y n x n x n n N
Y k X k X k k N
   
    
 
 
1
2
1 2
( ) is a long signal sequence of length N
( ) is a very short filter sequence padded with zeros up to N,
so that convolution is a linear convolution. Then
( ) ( ) ( ),
Suppose
x n
x n
Y k X k X k 
2
imply that filter sequence modify the
frequency content of the input signal upon convolution
( ) can be interpreted as filter response.
2
Corresponding to each k, there is a frequency, k
X k
T


Applications
1. Signal processing
2. Communication Engineering
3. Feature Extraction in ML

More Related Content

What's hot

DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
Chapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformChapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformAttaporn Ninsuwan
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier seriesUmang Gupta
 
Fourier Transform
Fourier TransformFourier Transform
Fourier TransformAamir Saeed
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformAmr E. Mohamed
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesFrédéric Morain-Nicolier
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systemsSugeng Widodo
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Iidiarmseven
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal ProcessingSandip Ladi
 
fourier transforms
fourier transformsfourier transforms
fourier transformsUmang Gupta
 

What's hot (20)

DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
Chapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformChapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier Transform
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systems
 
DSP 08 _ Sheet Eight
DSP 08 _ Sheet EightDSP 08 _ Sheet Eight
DSP 08 _ Sheet Eight
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 
fourier transforms
fourier transformsfourier transforms
fourier transforms
 
spectralmethod
spectralmethodspectralmethod
spectralmethod
 
Hw4sol
Hw4solHw4sol
Hw4sol
 
Introduction to fourier analysis
Introduction to fourier analysisIntroduction to fourier analysis
Introduction to fourier analysis
 

Similar to Linear Algebra for Digital Filter Design

Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfarihantelectronics
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Prateek Omer
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
 
signal homework
signal homeworksignal homework
signal homeworksokok22867
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfRayRabara
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisChandrashekhar Padole
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)ronald sanchez
 
디지털통신 9
디지털통신 9디지털통신 9
디지털통신 9KengTe Liao
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slidesNguyen Mina
 

Similar to Linear Algebra for Digital Filter Design (20)

rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
M6.pdf
M6.pdfM6.pdf
M6.pdf
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
 
Signal & system
Signal & systemSignal & system
Signal & system
 
4945427.ppt
4945427.ppt4945427.ppt
4945427.ppt
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
signal homework
signal homeworksignal homework
signal homework
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
 
residue
residueresidue
residue
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
디지털통신 9
디지털통신 9디지털통신 9
디지털통신 9
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
 
5th Semester Electronic and Communication Engineering (2013-June) Question Pa...
5th Semester Electronic and Communication Engineering (2013-June) Question Pa...5th Semester Electronic and Communication Engineering (2013-June) Question Pa...
5th Semester Electronic and Communication Engineering (2013-June) Question Pa...
 

Recently uploaded

Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 

Recently uploaded (20)

Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 

Linear Algebra for Digital Filter Design

  • 1. Linear Algebra for Digital Filter Design Lecture Date: August 23 Presentation Assignment MIS3 5.3 for No:3 and 4 in each group. Simply present these slides. Matlab code for FIR filter design given in Slide 17 will be appreciated Date August 28 Evening
  • 2. What is a filter?.. When an item of interest is passed through a structure/device unwanted things are removed. That structure/device is called Filter.
  • 3. What is a Digital filter?.. When a discretized signal is passed through a structure (consisting of delay , multiplier and summer elements) unwanted frequency components are removed. Generally the ordered sequence of multiplier elements are called digital filter.
  • 4. ( )Cos t t t t 0h Nh 1h 2h   ( )Cos t t    ( 2 )Cos t t    ( )Cos t N t      0 1( ) ( ) ( ) .... ( )new Nf t h Cos t hCos t t h Cos t N t           ( )RCos t    = ?R = ? ( ) 1. ( 0)f t Cos t   Amplitude Phase Amplitude multiplier Phase change
  • 5. ( )Cos t t t t 0h Nh 1h 2h   ( )Cos t t    ( 2 )Cos t t    ( )Cos t N t      0 1( ) ( ) ( ) .... ( )new Nf t h Cos t hCos t t h Cos t N t           ( )RCos t    = ?R = ? ( ) 1. ( 0)f t Cos t   Amplitude Phase Amplitude multiplier Phase change
  • 6. j t e  t t t 0h Nh 1h 2h   j t t e     Re j t    = ?R = ? ( 0) ( ) 1. j t f t e    Amplitude Phase Amplitude multiplier Phase change 1 j t j t h e e   j t jN t Nh e e    2j t t e     j t N t e    0 j t h e  2 1 j t j t h e e  
  • 7. j t e  t t t 0h Nh 1h 2h  j t j e e    0 1( ) ....j t j jN new Nf t e h he h e          Rej t    = ?R = ? ( 0) ( ) 1. j t f t e    Amplitude Phase Amplitude multiplier Phase change 2j t j e e   j t jN e e   ej t j e R    j t Re   
  • 8. DTFT 0 1 .... ej jN j Nh h e h e R        Why we call it as DTFT?.
  • 9. Consider a non periodic function h(t) that exist for a short interval. 0 0 0 the domain of function h(.) be time 0 to T. FT is ( ) ( ) ( ) on discretization of of time t in to n t, n=0,1,..,N ( t) ( ) t T i t i t t t N N i n t i n n Let Its H h t e dt h t e dt h n e h n e                        @ 2 2 0 1 2 = ( ), , (0) (1) (2) .... ( ) , equivalently H( )= .... n i i iN i i iN N H t h h e h e h N e Or h h e h e h e                           
  • 10. ( )Cos t t t t 0h Nh 1h 2h   ( )Cos t t    ( 2 )Cos t t    ( )Cos t N t   ( )RCos t    = ?R = ? ( ) 1. ( 0)f t Cos t   Amplitude Phase Amplitude multiplier Phase change IIR Filter t 1a 2a t         0 1 1 ( ) ( ) .... ( ) ( ) .... ( ) N m h Cos t hCos t t h Cos t N t a RCos t t a RCos t m t                       
  • 11. FIR Filter Design 0 1 2 0 0 1 1 M M t t t                  0 0 0 0 1 1 1 1 ( ) ( ) ( ) ( ) ( ) ( )M M M M Cos t R Cos t Cos t R Cos t Cos t R Cos t                        1 frequency =Sampling t Sampling t       H H    H       H 
  • 12. Filter Design    0 1( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t          ( )RCos t      0 1 1 1 1( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t          1 1 1( )R Cos t      0 0 1 0 0( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t          0 0 0( )R Cos t      0 1( ) ( ) .... ( )M M N Mh Cos t hCos t t h Cos t N t          ( )M M MR Cos t    0Cos t   1Cos t   MCos t   Cos t 
  • 13. FIR Filter Design  Cos t     0 1( ) ( ) .... ( )Nh Cos t hCos t t h Cos t N t           ( )RCos t   0 1 2cos cos2 ... cos cosNh h h h N R       00 0 0 0 0 11 1 1 1 1 22 2 2 2 2 1 cos cos2 . . cos cos 1 cos cos2 . . cos cos 1 cos cos2 . . cos cos .. . . . . . . .. . . . . . . 1 cos cos2 . . cos cosNM M M M M hN R hN R hN R hN R                                                              Ax e b    1T T x A A A b  
  • 15.  Cos t          0 1 1 ( ) ( ) .... ( ) ( ) .... ( ) N m h Cos t hCos t t h Cos t N t a RCos t t a RCos t m t                        ( )RCos t   0 1 2 1cos cos2 ... cos cos( 1 )... cos( ) cosN mh h h h N a R a R m R                 Ax e b    1T T x A A A b   0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 cos cos2 . cos os( ) . cos( ) 1 cos cos2 . cos cos( ) . cos( ) 1 cos cos2 . cos cos( ) . cos( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 cos cos2 . cosM M M N R c R m N R R m N R R m N R                                            cos( ) . cos( )M M M M M MR m                                 0 1 2 1 . . N m h h h h a a                          0 0 1 1 2 2 cos cos cos . . . . cosM M R R R R                             
  • 16. IIR Filter Design 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 cos cos2 . cos os( ) . cos( ) 1 cos cos2 . cos cos( ) . cos( ) 1 cos cos2 . cos cos( ) . cos( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 cos cos2 . cosM M M N R c R m N R R m N R R m N R                                            cos( ) . cos( )M M M M M MR m                                 0 1 2 1 . . N m h h h h a a                          0 0 1 1 2 2 cos cos cos . . . . cosM M R R R R                             
  • 17. Notch Filter Design 3 10 sect   
  • 18. Lecture over. Remaining slides are for Reference and for your presentation
  • 19. Everything you need to know About Fourier family
  • 21. 21 LA Visualization Signal x(t) Base1 Base2 Base3 Base4 Base.. Base.. Base.. Express periodic signal x(t) as a linear Combination of orthogonal Basis functions
  • 22. 2 1 1 2 0 2 21 1 0 0 2 ( ) ,0 or , 1 ( ) on discretization of of time t in to n t, n=0,1,..(N-1) ( ) ( ) ( ) ( ) k i k t T k k T i k t T k t N Ni k n t i k n N t N n n x t X e t T t t t T T X x t e dt T X k x n e x n e x n                                      1 0 N kn N n W    FS DFT From Fourier series to DFT k=0,1,2,…,N-1 Any N consecutive bases will do. Why?. Not same. Differ by a scaling factor
  • 23. From Fourier Transform to DTFT 1 1 0 0 ( ) ( ) ( ) ; assume x is defined over 0 to T on discretization of of time t in to n t, n=0,1,..(N-1) ( ) ( ) ( ) , ( t i t i t t t N N i n t i n n n X x t e dt x t e dt X x n e x n e t X                                  1 1 ( 2 ) 0 0 ) is a continous function of but it is periodic with periodicity 2 ( 2 ) ( ) ( ) N N i n i n n n X x n e x n e                    Not same. Differ by a scaling factor Note: x(t) need to be a time limited function for FT to exist
  • 24. From FT to DFT via DTFT 1 1 0 0 ( ) ( ) ( ) on discretization of of time t in to n t, n=0,1,..(N-1) ( ) ( ) ( ) , , ( ) is periodic with period 2 on t i t i t t t N N i n t i n n n X x t e dt x t e dt X x n e x n e t X                                   221 1 1 0 0 0 2 discretization of of from 0 to 2 in to , k=0,1,..(N-1) X(k)= ( ) ( ) ( ) N N Ni kni k n knNN N n n n k N x n e x n e x n W                       FT DFT 2 is evaluation of X( ) at =kAbove N   
  • 25. Create DFT matrix for N=8 0 1 2 3 4 5 6 7 8 DFT bases are e e e 0 e 2 e e e e i t i t i t i t i t i t i t i t The t T T                                 0 1 2 3 4 5 6 7 8 DFT conjugated bases are e e e e e e e e i t i t i t i t i t i t i t i t The                        2 2 0 0 2 1 2 2 2 3 2 4 2 5 6 8 DFT conjugated bases on sampling are e e , 0,1, 2,.., 7 e , 0,1, 2,.., 7 e , 0,1, 2,.., 7 e , 0,1, 2,.., 7 e , 0,1, 2,.., 7 e , 0,1, 2,.., 7 e n i n t i N t N n i N n i N n i N n i N n i N i The n n n n n n                                        2 2 7 , 0,1, 2,.., 7 e , 0,1, 2,.., 7 n N n i N n n        2 Term for kth basis (starting from 0) is , n=0,1,2,...,7 i nk nkN N Generic e W   
  • 26. ?. N property Why Mod 2 2 0 0 2 1 2 2 2 3 2 4 2 3 2 2 8 DFT conjugated bases on sampling are e e , 0,1, 2,..,7 e , 0,1, 2,..,7 e , 0,1, 2,..,7 e , 0,1, 2,..,7 e , 0,1, 2,..,7 e , 0,1, 2,..,7 e n i n t i N t N n i N n i N n i N n i N n i N i The n n n n n n                                       2 1 , 0,1, 2,..,7 e , 0,1, 2,..,7 n N n i N n n     
  • 27. 5 3 8 8W W , for int nn n Why eger             mod N mod N k mod N n mod N mod 5 ( 5 mod 8) 3 8 8 8 Proof: We have the relation W W W W W W W =W , for int n k n n k kn Nkn N N N N N n n n eger           6 2 8 8 7 1 8 8 W W , for int n W W , for int n n n n n Similarly eger eger          
  • 28.   Angular Frequency is . 2 , T is the periodicity of the signal If t from 0 to T is discretized to have N values, like t=(0:N-1) t, t t is now n t with n=0,1,2,..., N-1 T=N t Fundamental T T N Generic           Details of Sampling Signal is assumed to be periodic with period T So, we sample signal from 0 to T interval is t=Sampling N  
  • 29. 0 T0 t 3 t2 t1 t  1N t   2N t  Sampling Instances t  Discretization: t=n t, n=0,1,2,3...,N-1After  Generally index n is used for time n varies from 0 to N-1 Index k is used for indexing the basis vector k varies from 0 to N-1
  • 30. 2 2 Term for kth basis (starting from 0) is , n=0,1,2,...,7 i i nk kn knN N N Generic e e W        k 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 1 0 1 1 1 1 1 3 1 4 1 5 1 6 1 7 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W                                         5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 N N N N N N N N N N N N N N N N N N N N N N N N W W W W W W W W W W W W W W W W W W W W W W W W                                                 
  • 31. Circular and Linear Convolution      1 2 1 2 ( ) ( ) ( ) , 0,1,2,.., 1 ( ) ( ) ( ), 0,1,2,.., 1 y n x n x n n N Y k X k X k k N              1 2 1 2 ( ) is a long signal sequence of length N ( ) is a very short filter sequence padded with zeros up to N, so that convolution is a linear convolution. Then ( ) ( ) ( ), Suppose x n x n Y k X k X k  2 imply that filter sequence modify the frequency content of the input signal upon convolution ( ) can be interpreted as filter response. 2 Corresponding to each k, there is a frequency, k X k T  
  • 32. Applications 1. Signal processing 2. Communication Engineering 3. Feature Extraction in ML