SlideShare a Scribd company logo
1 of 46
Download to read offline
Experiments on Quantum and Classical
magnetization reversal process
in nanomagnets
MADRID 2018
Professor Javier Tejada.
Dept. Física Fonamental, Universitat de Barcelona.
Contenidos
Single Domain Particles
Molecular Magnets
Quantum magnetic deflagration
Superradiance
Nanospheres and Mg-12 acetate triclinic
Effects of SAW: Classical reversal
Conclusions
Content
TítuloMacroscopic solid to single domain particles
53
1010 −≈
an
ex
E
E
• Domains and domain walls:
• Tipically
• If the particle has then no domain
wall can be formed. This is a SDP:
• The probabilty of an individual spin flip is:
with
The exchange energy is so high that it is
difficult to do any non-uniform rotation of
the magnetization ( ).
Hence, at low T, the magnetic moment is
a vector of constant modulus:
Single domain particles (SDP)
• Classical description: energy barrier of height
• Blocking temperature is defined via the condition
which leads to:
Analogously, we can also define the Blocking
volume:
Anisotropy
constant
Volume
( )TVU
e /)(−
=Γ ν
U
mt/1=Γ
( )mB tKVT νln/=
( )mB t
K
T
V νln=
Microscopic attempt frequency
Important aspects of SDPs
• The particles relax toward the equilibrium state:
SDP: magnetic relaxation
Initial remanent magnetization
• The dependence of S on T shows two
different regimes:
1) Thermal regime: at high temperatures it
is easier to “jump” the barrier. In this
regime,
2) Quantum regime: at low temperatures,
magnetic relaxation is due to tunnel
effect. In this regime S is of
T.
( ) ( ) ( )( )tSMtM RR νln10 −=
Quantum
Classical
Empirically, the magnetic moment is considered to behave quantumly if
|M| ≤ 100μB holds.
Quantum magnetic entities
• Their magnetic moment M is a quantum operator: it verifies the
commutation relation
which yields
[ ] 0,ˆ
,ˆˆ
10Spin
2
≠
+−=
=
⊥
⊥
z
z
SH
HDSΗ
S
Molecular Magnets (MM): example
of Mn12 acetate
Quantum counterpart of a SDP.
Discrete projection of the spin
onto the easy axis.
-3/2
+2
-3/2-3/2
-3/2
+2
+2
+2
+2
+2
+2
+2
Magnetic bistability of Mn12 acetate
Degenerate ground states for the
Mn12 acetate molecule.
There exists an anisotropy energy
barrier between these two spin
orientations.
The effect of an external magnetic field applied along the easy axis.
Título
• Application of an external field: adds a Zeeman term
Longitudinal component of the field (H // easy axis) Shifts the levels.
Transverse component of the field (H easy axis) Allows tunnel effect.
• The tunnel effect is possible for certain values of the field: the resonant
fields.
Resonant spin tunneling on MM
-10
-9
-8
-7
-6
-5
-4
-3
-2-10 1 2
3
4
5
6
7
8
9
10
H=0
Magnetic field
Resonant spin tunneling on MM
-10
-9
-8
-7
-6
-5
-4
-3-2-10 1 2
3
4
5
6
7
8
9
10
H = 0.5HR
Magnetic field
Resonant spin tunneling on MM
H = HR
-10
-9
-8
-7
-6
-5
-4
-3-2 1 2
3
4
5
6
7
8
9
10
Magnetic field
Resonant spin tunneling on MM
-10
-9
-8
-7
-6
-5
-4
-3-2-10 1
2
3
4
5
6
7
8
9
10
H = 2HR
Magnetic field
Resonant spin tunneling on MM
• As we only have a single barrier height, relaxation goes
exponential.
Relaxation MM
Mn12 Ac relaxation measurements
from the remanent state at different
temperatures.
( ) ( ) ( )[ ]
( )tH
eq eTMtM Γ−
−= 1
• Peaks of the relaxation rate Γ(H) at the resonant fields
Relaxation MM
Relaxation rates of
Mn12 acetate at
different fields
Landau-Zener effect
m 'm
tW
EEW mm
ν=
−= '
m m
m'm 'm
'm 'm
m
+E
−E
22
∆+=− −+ WEE
Permanence probability
Size of magnetization step
νπ h2/2
∆−
= eP
P−∝1
TítuloResonant spin tunneling on MM
19
Energy released  ∆E
Ignition (barrier overcoming)  ∆U
Thermal diffusion  k
Characteristic length of propagation  δ
Two important characteristic timescales:
• Thermal diffusion
• Burning timescale
Metastable
State
∆ U
Deflagration is a technical term describing subsonic combustion that usually
propagates through thermal conductivity
∆ E
Stable
State
19
τb= τd Deflagration Flame width
What is a deflagration?
20
Molecule magnets
Field jumps 1999
Deflagration-like description 2005
20
From magnetization jumps to magnetic
Deflagration (MD)
Magnetic deflagration:
Propagation of a front of reversing spins
at constant velocity along the crystal
Problem: Sweeping H we cannot
control the magnetic field at
which it occurs.
Y. Suzuki et. al. PRL 95, 147201 (2005)
A. Hernández-Mínguez et. al. PRL 95 17205 (2005)
H
ΔE
First evidences of MD
Avalanche ignition produced by SAW:
IDT
LiNbO3
substrate
Conducting
stripes
Coaxial cable
Mn12 crystal
c-axis
Hz
Coaxial cable connected to an Agilent microwave signal generator
Change in magnetic moment registered in a rf-SQUID magnetometer
Surface Acoustic Waves (SAW) are low frequency acoustic phonons
(below 1 GHz)
Quantum magnetic deflagration
• The speed of the avalanche
increases with the applied
magnetic field
• At resonant fields the
velocity of the flame front
presents peaks.
• The ignition time shows peaks at
the magnetic fields at which spin
levels become resonant.








−=
fB0 T2k
U(H)
exp
τ
κ
v
This velocity is well fitted:
κ = 0.8·10-5 m2/s
Tf (H = 4600 Oe) = 6.8 K
Tf (H = 9200 Oe) = 10.9 K
Quantum magnetic deflagration
Quantum Magnetic Deflagration
Quantum Magnetic Deflagration
I
t
τ1
Luminescence
Superradiance
I
t
τSR
This kind of emission (SR) has characteristic properties that make it
different from other more common phenomena like luminescence
L
λL ~ λ
Superradiance
Proposed by Robert H. Dicke in 1954.
NI ∝
2
NI ∝
N is the number of dipoles
All spins decay to the fundamental level coherently, with the
emission of photons.
-10
-9
-8
-7
-6
-5
-4-3-2-1012
3
4
5
6
7
8
9
10
B = 2B0
Superradiance
Superradiance??
Sharp peak shows a signal which is
equivalent to the sample being at 20 K
(the expected self heating is about 3 K).
Magnetic deflagration in pulsed fields
Δt
dB/dt (kT/s)
1.61.92.53.23.74.87.0
200 400
0
2
4
6
dM/dt
t (s)
coil 1
coil 2
1000 2000 3000 4000 5000 6000 7000
-2
0
2
4
6
8
10
12
14
16
Time-difference between the observation of a
magnetisation-reversal in a coil on the left
and on the right of a Mn12Ac-sample in function
of (high) magnetic field-sweeprates.
All observations were done in pulsed fields
at a temperature of about 500mK (in liquid 3He).
∆t(µs)
dHz
/dt (T/s)
Quantum magnetic detonation
t∆
S. Lendínez et al., PRB 91, 024404
(2015)
Resonant spin tunneling in Mn12-acetate
nanospheres
Randomly oriented nanospheres
(nanospheres)
Resonant spin tunneling in Mn12-acetate
S. Lendínez et al., PRB 91, 024404
(2015)
Randomly oriented powder
Derivatives along descending
branches
1/H2 scaling
Derivatives vs. 1/H2 along
descending branches
S. Lendínez et al., PRB 91, 024404
(2015)
Resonant spin tunneling in Mn12-acetate
Randomly oriented powder
FE-SEM image
average length = 3.2
± 1.9 µm
average width = 0.8
± 0.3 µm
triclinic
crystallographic
structure
(ALBA synchrotron
beamline)
Resonant spin tunneling in Mn12-acetate
Ribbon-shaped particles
J.Espin et al.,JACS (2016)
Resonant spin tunneling in Mn12-acetate
Ribbon-shaped particles
The magnetic moments (arrows) do not form chains along a single magnetic
anisotropy axis
Resonant spin tunneling in Mn12-acetate
Ribbon-shaped particles
I. Imaz et al. JACS (2016),
Resonant spin tunneling in Mn12-acetate
Ribbon-shaped particles
I. Imaz et al.,JACS (2016)
m 'm
tW
EEW mm
ν=
−= '
m m
m'm 'm
'm 'm
m
+E
−E
22
∆+=− −+ WEE
Staying probability
Size of magnetization step
νπ h2/2
∆−
= eP
P−∝1
Resonant spin tunneling in Mn12-acetate
Ribbon-shaped particles
Landau-Zener
effect
Resonant spin tunneling in Mn12-acetate
Ribbon-shaped particles
J.Espin et al.,JACS(2016)
Landau-Zener
effect
EFFECTS OF SAW: CLASSICAL
REVERSAL
Fe3O4 nanoparticles
ZFC TEM
EFFECTS OF SAW: CLASSICAL
REVERSAL
EFFECTS OF SAW: CLASSICAL
REVERSAL
EFFECTS OF SAW: CLASSICAL
REVERSAL
• Energy barrier between opposite orientations of the magnetic moment is
formed by weak relativistic interactions whether stable molecular
magnets can ever break liquid nitrogen temperature of 77K.
• Making identical molecules comparable to mesoscopic magnetic particles will
be a challenging task for chemists.
• Another challenging question would be whether magnetic molecules can ever
become ultimate memory units of conventional computers or even elements
of quantum computers.
• We have demonstrated experimentally that surface acoustic waves accelerate
transitions between magnetic states of magnetite nanoparticles.
• The Einstein–de Haas mechanism of the magnetization reversal by SAWs
comes from the shear deformation of the substrate and the resulting rotation
of the particle as a whole when its size is small compared to the SAW
wavelength.
• I hope to see answers to these questions in the near future!!
Future
References
[1] E. M. Chudnovsky, J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment
(Cambridge Univ. Press, 1998).
[2] E. M. Chudnovsky, J. Tejada, Lectures on Magnetism (Rinton Press, 2006).
[3] J.R. Friedman, M.P. Sarachik, J. Tejada and R. Ziolo. Phys. Rev. Lett. 76, 3830–3833 (1996).
[4] A. Hernández-Mínguez et al. Phys. Rev. Lett. 95, 217205 (2005).
[5] Macià et al. Phys. Rev. B 76, 174424 (2007).
[6] Macià et al. Phys. Rev. B 77, 012403 (2008).
[7] F. Macià et al. Phys. Rev. B 79, 092403 (2009).
[8] S. Vélez et al. Phys. Rev. B 81, 064437 (2010).
[9] W. Decelle et al. Phys. Rev. Lett. 102, 027203 (2009).
[10] P. Subedi et al. Phys. Rev. Lett. 110, 207203 (2013). Physics 6, 55 (2013).
[11] R. Zarzuela, S. Vélez, J.M. Hernandez, J. Tejada and V. Novosad. Phys. Rev. B 85, 180401(R)
(2012).
[12] R. Zarzuela, E. M. Chudnovsky, and J. Tejada. Phys. Rev. B 87, 014413 (2013).
[13] R. Zarzuela, E. M. Chudnovsky, J. M. Hernandez, and J. Tejada. Phys. Rev. B 87, 144420 (2013).
[14] E.M. Chudnovsky, S. Vélez, A. García-Santiago, J.M. Hernandez and J. Tejada. Phys. Rev. B 83,
064507 (2011).
[15] J. Tejada, E. M. Chudnovsky, R. Zarzuela, N. Statuto, J. Calvo-de la Rosa, P. V. Santos and A.
Hernández-Mínguez. EPL, 118, 37005 (2017)
2018.06.12 javier tejada ub NanoFrontMag

More Related Content

What's hot

Topic 5 longitudinal wave
Topic 5 longitudinal waveTopic 5 longitudinal wave
Topic 5 longitudinal waveGabriel O'Brien
 
Group velocity and phase velocity
Group velocity and phase velocityGroup velocity and phase velocity
Group velocity and phase velocityrameshthombre1
 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motionsaba majeed
 
Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...
Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...
Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...Dr. Sanjana Ravindra
 
04 Oscillations, Waves After Class
04 Oscillations, Waves After Class04 Oscillations, Waves After Class
04 Oscillations, Waves After ClassSteve Koch
 
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorThe Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorConcettina Sfienti
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Miguel D Bustamante
 
Damped Oscillations
Damped OscillationsDamped Oscillations
Damped Oscillationskatieliw
 
One armed spiral_waves_in_galaxy_simulations_with_computer_rotating_stars
One armed spiral_waves_in_galaxy_simulations_with_computer_rotating_starsOne armed spiral_waves_in_galaxy_simulations_with_computer_rotating_stars
One armed spiral_waves_in_galaxy_simulations_with_computer_rotating_starsSérgio Sacani
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 
Simple harmonic motion and elasticity
Simple harmonic motion and elasticitySimple harmonic motion and elasticity
Simple harmonic motion and elasticityMenelisi Mthethwa
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1Deepak Garg
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLake Como School of Advanced Studies
 
Presentation Gabriel Molina-Terriza
Presentation Gabriel Molina-TerrizaPresentation Gabriel Molina-Terriza
Presentation Gabriel Molina-Terrizaguesta7b31
 
Damped Oscillations
Damped Oscillations Damped Oscillations
Damped Oscillations Hantao Mai
 

What's hot (20)

Topic 5 longitudinal wave
Topic 5 longitudinal waveTopic 5 longitudinal wave
Topic 5 longitudinal wave
 
Group velocity and phase velocity
Group velocity and phase velocityGroup velocity and phase velocity
Group velocity and phase velocity
 
Rigid rotators
Rigid rotatorsRigid rotators
Rigid rotators
 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motion
 
Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...
Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...
Basic principles of magnetic resonance imaging for beginner - Dr Sanjana Ravi...
 
Oscillation & Oscillatory Motion
Oscillation & Oscillatory MotionOscillation & Oscillatory Motion
Oscillation & Oscillatory Motion
 
04 Oscillations, Waves After Class
04 Oscillations, Waves After Class04 Oscillations, Waves After Class
04 Oscillations, Waves After Class
 
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorThe Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016
 
Damped Oscillations
Damped OscillationsDamped Oscillations
Damped Oscillations
 
One armed spiral_waves_in_galaxy_simulations_with_computer_rotating_stars
One armed spiral_waves_in_galaxy_simulations_with_computer_rotating_starsOne armed spiral_waves_in_galaxy_simulations_with_computer_rotating_stars
One armed spiral_waves_in_galaxy_simulations_with_computer_rotating_stars
 
Electron spin resonance
Electron spin resonanceElectron spin resonance
Electron spin resonance
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Simple harmonic motion and elasticity
Simple harmonic motion and elasticitySimple harmonic motion and elasticity
Simple harmonic motion and elasticity
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1
 
Electromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena Pian
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
 
Damp oscillation
Damp oscillationDamp oscillation
Damp oscillation
 
Presentation Gabriel Molina-Terriza
Presentation Gabriel Molina-TerrizaPresentation Gabriel Molina-Terriza
Presentation Gabriel Molina-Terriza
 
Damped Oscillations
Damped Oscillations Damped Oscillations
Damped Oscillations
 

Similar to 2018.06.12 javier tejada ub NanoFrontMag

Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013oriolespinal
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
52910793-Spintronics.pptx
52910793-Spintronics.pptx52910793-Spintronics.pptx
52910793-Spintronics.pptx0442TARUN
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.ABDERRAHMANE REGGAD
 
Angular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAngular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAmélia Moreira
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentationsrajece
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...ABDERRAHMANE REGGAD
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismRiccardo Di Stefano
 
Nanophotonics Plasmonics_Lecture-09 deta
Nanophotonics Plasmonics_Lecture-09 detaNanophotonics Plasmonics_Lecture-09 deta
Nanophotonics Plasmonics_Lecture-09 detaAwnishTripathi4
 
Spiral magnet grad radial mags 2014
Spiral magnet grad   radial mags 2014Spiral magnet grad   radial mags 2014
Spiral magnet grad radial mags 2014Thomas Valone
 

Similar to 2018.06.12 javier tejada ub NanoFrontMag (20)

Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Sebastian
SebastianSebastian
Sebastian
 
52910793-Spintronics.pptx
52910793-Spintronics.pptx52910793-Spintronics.pptx
52910793-Spintronics.pptx
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
 
Presentation on Magnetic Fluids
Presentation on Magnetic FluidsPresentation on Magnetic Fluids
Presentation on Magnetic Fluids
 
Magnonics
MagnonicsMagnonics
Magnonics
 
Nmr
NmrNmr
Nmr
 
Angular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAngular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezers
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentation
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
Fl3410191025
Fl3410191025Fl3410191025
Fl3410191025
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular Dichroism
 
Nanophotonics Plasmonics_Lecture-09 deta
Nanophotonics Plasmonics_Lecture-09 detaNanophotonics Plasmonics_Lecture-09 deta
Nanophotonics Plasmonics_Lecture-09 deta
 
Spiral magnet grad radial mags 2014
Spiral magnet grad   radial mags 2014Spiral magnet grad   radial mags 2014
Spiral magnet grad radial mags 2014
 
The plasmamagnet
The plasmamagnetThe plasmamagnet
The plasmamagnet
 

More from NanoFrontMag-cm

2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uamNanoFrontMag-cm
 
2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jgu2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jguNanoFrontMag-cm
 
2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintec2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintecNanoFrontMag-cm
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMagNanoFrontMag-cm
 
2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMag2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMagNanoFrontMag-cm
 
2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMagNanoFrontMag-cm
 
2016.06.21 ima NanoFrontMag
2016.06.21 ima NanoFrontMag2016.06.21 ima NanoFrontMag
2016.06.21 ima NanoFrontMagNanoFrontMag-cm
 
2016.06.21 gqt uam NanoFrontMag
2016.06.21 gqt uam NanoFrontMag2016.06.21 gqt uam NanoFrontMag
2016.06.21 gqt uam NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMagNanoFrontMag-cm
 
2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag 2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag NanoFrontMag-cm
 
2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag 2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag NanoFrontMag-cm
 
2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMag2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMagNanoFrontMag-cm
 
2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMag2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lab287 NanoFrontMag NanoFrontMag
2016.06.21 lab287 NanoFrontMag NanoFrontMag2016.06.21 lab287 NanoFrontMag NanoFrontMag
2016.06.21 lab287 NanoFrontMag NanoFrontMagNanoFrontMag-cm
 
2016.06.21 gmm csic NanoFrontMag
2016.06.21 gmm csic NanoFrontMag2016.06.21 gmm csic NanoFrontMag
2016.06.21 gmm csic NanoFrontMagNanoFrontMag-cm
 
2016.06.21 gbe csic NanoFrontMag
2016.06.21 gbe csic NanoFrontMag2016.06.21 gbe csic NanoFrontMag
2016.06.21 gbe csic NanoFrontMagNanoFrontMag-cm
 

More from NanoFrontMag-cm (18)

2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam
 
2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jgu2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jgu
 
2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintec2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintec
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag
 
2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMag2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMag
 
2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag
 
2016.06.21 ima NanoFrontMag
2016.06.21 ima NanoFrontMag2016.06.21 ima NanoFrontMag
2016.06.21 ima NanoFrontMag
 
2016.06.21 gqt uam NanoFrontMag
2016.06.21 gqt uam NanoFrontMag2016.06.21 gqt uam NanoFrontMag
2016.06.21 gqt uam NanoFrontMag
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag
 
2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag
 
2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag 2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag
 
2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag 2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag
 
2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag
 
2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMag2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMag
 
2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMag2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMag
 
2016.06.21 lab287 NanoFrontMag NanoFrontMag
2016.06.21 lab287 NanoFrontMag NanoFrontMag2016.06.21 lab287 NanoFrontMag NanoFrontMag
2016.06.21 lab287 NanoFrontMag NanoFrontMag
 
2016.06.21 gmm csic NanoFrontMag
2016.06.21 gmm csic NanoFrontMag2016.06.21 gmm csic NanoFrontMag
2016.06.21 gmm csic NanoFrontMag
 
2016.06.21 gbe csic NanoFrontMag
2016.06.21 gbe csic NanoFrontMag2016.06.21 gbe csic NanoFrontMag
2016.06.21 gbe csic NanoFrontMag
 

Recently uploaded

Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 

Recently uploaded (20)

Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 

2018.06.12 javier tejada ub NanoFrontMag

  • 1. Experiments on Quantum and Classical magnetization reversal process in nanomagnets MADRID 2018 Professor Javier Tejada. Dept. Física Fonamental, Universitat de Barcelona.
  • 2. Contenidos Single Domain Particles Molecular Magnets Quantum magnetic deflagration Superradiance Nanospheres and Mg-12 acetate triclinic Effects of SAW: Classical reversal Conclusions Content
  • 3. TítuloMacroscopic solid to single domain particles 53 1010 −≈ an ex E E • Domains and domain walls: • Tipically • If the particle has then no domain wall can be formed. This is a SDP: • The probabilty of an individual spin flip is: with The exchange energy is so high that it is difficult to do any non-uniform rotation of the magnetization ( ). Hence, at low T, the magnetic moment is a vector of constant modulus:
  • 4. Single domain particles (SDP) • Classical description: energy barrier of height • Blocking temperature is defined via the condition which leads to: Analogously, we can also define the Blocking volume: Anisotropy constant Volume ( )TVU e /)(− =Γ ν U mt/1=Γ ( )mB tKVT νln/= ( )mB t K T V νln= Microscopic attempt frequency
  • 6. • The particles relax toward the equilibrium state: SDP: magnetic relaxation Initial remanent magnetization • The dependence of S on T shows two different regimes: 1) Thermal regime: at high temperatures it is easier to “jump” the barrier. In this regime, 2) Quantum regime: at low temperatures, magnetic relaxation is due to tunnel effect. In this regime S is of T. ( ) ( ) ( )( )tSMtM RR νln10 −=
  • 7. Quantum Classical Empirically, the magnetic moment is considered to behave quantumly if |M| ≤ 100μB holds. Quantum magnetic entities • Their magnetic moment M is a quantum operator: it verifies the commutation relation which yields
  • 8. [ ] 0,ˆ ,ˆˆ 10Spin 2 ≠ +−= = ⊥ ⊥ z z SH HDSΗ S Molecular Magnets (MM): example of Mn12 acetate Quantum counterpart of a SDP. Discrete projection of the spin onto the easy axis. -3/2 +2 -3/2-3/2 -3/2 +2 +2 +2 +2 +2 +2 +2
  • 9. Magnetic bistability of Mn12 acetate Degenerate ground states for the Mn12 acetate molecule. There exists an anisotropy energy barrier between these two spin orientations. The effect of an external magnetic field applied along the easy axis.
  • 10. Título • Application of an external field: adds a Zeeman term Longitudinal component of the field (H // easy axis) Shifts the levels. Transverse component of the field (H easy axis) Allows tunnel effect. • The tunnel effect is possible for certain values of the field: the resonant fields. Resonant spin tunneling on MM
  • 12. -10 -9 -8 -7 -6 -5 -4 -3-2-10 1 2 3 4 5 6 7 8 9 10 H = 0.5HR Magnetic field Resonant spin tunneling on MM
  • 13. H = HR -10 -9 -8 -7 -6 -5 -4 -3-2 1 2 3 4 5 6 7 8 9 10 Magnetic field Resonant spin tunneling on MM
  • 14. -10 -9 -8 -7 -6 -5 -4 -3-2-10 1 2 3 4 5 6 7 8 9 10 H = 2HR Magnetic field Resonant spin tunneling on MM
  • 15. • As we only have a single barrier height, relaxation goes exponential. Relaxation MM Mn12 Ac relaxation measurements from the remanent state at different temperatures. ( ) ( ) ( )[ ] ( )tH eq eTMtM Γ− −= 1
  • 16. • Peaks of the relaxation rate Γ(H) at the resonant fields Relaxation MM Relaxation rates of Mn12 acetate at different fields
  • 17. Landau-Zener effect m 'm tW EEW mm ν= −= ' m m m'm 'm 'm 'm m +E −E 22 ∆+=− −+ WEE Permanence probability Size of magnetization step νπ h2/2 ∆− = eP P−∝1
  • 19. 19 Energy released  ∆E Ignition (barrier overcoming)  ∆U Thermal diffusion  k Characteristic length of propagation  δ Two important characteristic timescales: • Thermal diffusion • Burning timescale Metastable State ∆ U Deflagration is a technical term describing subsonic combustion that usually propagates through thermal conductivity ∆ E Stable State 19 τb= τd Deflagration Flame width What is a deflagration?
  • 20. 20 Molecule magnets Field jumps 1999 Deflagration-like description 2005 20 From magnetization jumps to magnetic Deflagration (MD)
  • 21. Magnetic deflagration: Propagation of a front of reversing spins at constant velocity along the crystal Problem: Sweeping H we cannot control the magnetic field at which it occurs. Y. Suzuki et. al. PRL 95, 147201 (2005) A. Hernández-Mínguez et. al. PRL 95 17205 (2005) H ΔE First evidences of MD
  • 22. Avalanche ignition produced by SAW: IDT LiNbO3 substrate Conducting stripes Coaxial cable Mn12 crystal c-axis Hz Coaxial cable connected to an Agilent microwave signal generator Change in magnetic moment registered in a rf-SQUID magnetometer Surface Acoustic Waves (SAW) are low frequency acoustic phonons (below 1 GHz) Quantum magnetic deflagration
  • 23. • The speed of the avalanche increases with the applied magnetic field • At resonant fields the velocity of the flame front presents peaks. • The ignition time shows peaks at the magnetic fields at which spin levels become resonant.         −= fB0 T2k U(H) exp τ κ v This velocity is well fitted: κ = 0.8·10-5 m2/s Tf (H = 4600 Oe) = 6.8 K Tf (H = 9200 Oe) = 10.9 K Quantum magnetic deflagration
  • 26. I t τ1 Luminescence Superradiance I t τSR This kind of emission (SR) has characteristic properties that make it different from other more common phenomena like luminescence L λL ~ λ Superradiance Proposed by Robert H. Dicke in 1954. NI ∝ 2 NI ∝ N is the number of dipoles
  • 27. All spins decay to the fundamental level coherently, with the emission of photons. -10 -9 -8 -7 -6 -5 -4-3-2-1012 3 4 5 6 7 8 9 10 B = 2B0 Superradiance
  • 28. Superradiance?? Sharp peak shows a signal which is equivalent to the sample being at 20 K (the expected self heating is about 3 K).
  • 29. Magnetic deflagration in pulsed fields Δt dB/dt (kT/s) 1.61.92.53.23.74.87.0 200 400 0 2 4 6 dM/dt t (s) coil 1 coil 2
  • 30. 1000 2000 3000 4000 5000 6000 7000 -2 0 2 4 6 8 10 12 14 16 Time-difference between the observation of a magnetisation-reversal in a coil on the left and on the right of a Mn12Ac-sample in function of (high) magnetic field-sweeprates. All observations were done in pulsed fields at a temperature of about 500mK (in liquid 3He). ∆t(µs) dHz /dt (T/s) Quantum magnetic detonation t∆
  • 31. S. Lendínez et al., PRB 91, 024404 (2015) Resonant spin tunneling in Mn12-acetate nanospheres Randomly oriented nanospheres (nanospheres)
  • 32. Resonant spin tunneling in Mn12-acetate S. Lendínez et al., PRB 91, 024404 (2015) Randomly oriented powder
  • 33. Derivatives along descending branches 1/H2 scaling Derivatives vs. 1/H2 along descending branches S. Lendínez et al., PRB 91, 024404 (2015) Resonant spin tunneling in Mn12-acetate Randomly oriented powder
  • 34. FE-SEM image average length = 3.2 ± 1.9 µm average width = 0.8 ± 0.3 µm triclinic crystallographic structure (ALBA synchrotron beamline) Resonant spin tunneling in Mn12-acetate Ribbon-shaped particles J.Espin et al.,JACS (2016)
  • 35. Resonant spin tunneling in Mn12-acetate Ribbon-shaped particles The magnetic moments (arrows) do not form chains along a single magnetic anisotropy axis
  • 36. Resonant spin tunneling in Mn12-acetate Ribbon-shaped particles I. Imaz et al. JACS (2016),
  • 37. Resonant spin tunneling in Mn12-acetate Ribbon-shaped particles I. Imaz et al.,JACS (2016)
  • 38. m 'm tW EEW mm ν= −= ' m m m'm 'm 'm 'm m +E −E 22 ∆+=− −+ WEE Staying probability Size of magnetization step νπ h2/2 ∆− = eP P−∝1 Resonant spin tunneling in Mn12-acetate Ribbon-shaped particles Landau-Zener effect
  • 39. Resonant spin tunneling in Mn12-acetate Ribbon-shaped particles J.Espin et al.,JACS(2016) Landau-Zener effect
  • 40. EFFECTS OF SAW: CLASSICAL REVERSAL Fe3O4 nanoparticles ZFC TEM
  • 41. EFFECTS OF SAW: CLASSICAL REVERSAL
  • 42. EFFECTS OF SAW: CLASSICAL REVERSAL
  • 43. EFFECTS OF SAW: CLASSICAL REVERSAL
  • 44. • Energy barrier between opposite orientations of the magnetic moment is formed by weak relativistic interactions whether stable molecular magnets can ever break liquid nitrogen temperature of 77K. • Making identical molecules comparable to mesoscopic magnetic particles will be a challenging task for chemists. • Another challenging question would be whether magnetic molecules can ever become ultimate memory units of conventional computers or even elements of quantum computers. • We have demonstrated experimentally that surface acoustic waves accelerate transitions between magnetic states of magnetite nanoparticles. • The Einstein–de Haas mechanism of the magnetization reversal by SAWs comes from the shear deformation of the substrate and the resulting rotation of the particle as a whole when its size is small compared to the SAW wavelength. • I hope to see answers to these questions in the near future!! Future
  • 45. References [1] E. M. Chudnovsky, J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge Univ. Press, 1998). [2] E. M. Chudnovsky, J. Tejada, Lectures on Magnetism (Rinton Press, 2006). [3] J.R. Friedman, M.P. Sarachik, J. Tejada and R. Ziolo. Phys. Rev. Lett. 76, 3830–3833 (1996). [4] A. Hernández-Mínguez et al. Phys. Rev. Lett. 95, 217205 (2005). [5] Macià et al. Phys. Rev. B 76, 174424 (2007). [6] Macià et al. Phys. Rev. B 77, 012403 (2008). [7] F. Macià et al. Phys. Rev. B 79, 092403 (2009). [8] S. Vélez et al. Phys. Rev. B 81, 064437 (2010). [9] W. Decelle et al. Phys. Rev. Lett. 102, 027203 (2009). [10] P. Subedi et al. Phys. Rev. Lett. 110, 207203 (2013). Physics 6, 55 (2013). [11] R. Zarzuela, S. Vélez, J.M. Hernandez, J. Tejada and V. Novosad. Phys. Rev. B 85, 180401(R) (2012). [12] R. Zarzuela, E. M. Chudnovsky, and J. Tejada. Phys. Rev. B 87, 014413 (2013). [13] R. Zarzuela, E. M. Chudnovsky, J. M. Hernandez, and J. Tejada. Phys. Rev. B 87, 144420 (2013). [14] E.M. Chudnovsky, S. Vélez, A. García-Santiago, J.M. Hernandez and J. Tejada. Phys. Rev. B 83, 064507 (2011). [15] J. Tejada, E. M. Chudnovsky, R. Zarzuela, N. Statuto, J. Calvo-de la Rosa, P. V. Santos and A. Hernández-Mínguez. EPL, 118, 37005 (2017)