SlideShare a Scribd company logo
1 of 209
Download to read offline
Vibration  Analysis
Dr./  Ahmed  Nagib
November  9,  2015
Vibration  Analysis  Lectures
Chapter  I   Vibration  Sources  and  Uses  
Chapter  II   Basic  Machinery  Vibrations  
Chapter  III   Data  Collection  and  Analysis  
Chapter  IV   Machine  Characteristics  
Chapter  V   Vibration  Instruments  
Chapter  VI   Vibration  Testing  
Chapter  VII             Basic  Analysis  
Chapter  VIII             Vibration  Severity  
Vibration
Q:  Will  structure  fail  before  the  human  body  in  
a  factory  or  vice  versa?
Vibration
Vibration
Sources  of  Vibration
Table	
  1.1.	
  	
  Sources	
  of	
  Vibration.
Function
Inadequate	
  Design
Manufacturing	
  Processes
Installation
Wear	
  and	
  Abuse
Faulty	
  Maintenance
Sources  of  Vibration  -­ Function
Vibration  by  imposed  motion
Sources  of  Vibration  -­ Function
The  two  causes  of  vibration  are  imposed  
motions  and  forces.  Imposed  motions  usually  
relate  to  the  function  of  the  machine.  Cams,  
slider  cranks  (reciprocating  compressors  and  
engines),  chain  and  sprocket  cogging,  and  
misalignment  are  examples  of  devices  and  
conditions  that  generate  vibrations  by  imposed  
motions.  The  imposed  motion  creates  internal  
forces  in  the  machine.  In  reality  all  vibration  is  
essentially  caused  by  forces  that  are  generated  
internally  or  applied  externally.  
Sources  of  Vibration  -­ Inadequate  
machine  design  
can  be  responsible  for  excessive  vibration  
because  the  machine  enhances  or  is  the  cause  
of  unnecessary  pulsating  or  vibratory  forces.  
For  example,  if  a  motor  stator  flexes  as  a  result  
of  electromagnetic  forces,  unnecessary  
vibration  results.
Sources  of  Vibration  – Manufacturing  
Process  and  Assembly  
poor  quality  machining  and  manufacturing  or  
assembly  errors.  These  conditions  enhance  
background  noise  and,  in  some  cases,  will  
produce  unacceptable  vibration.  
• Gears  cut  with  a  poor  hobbing tool  will  
produce  a  high-­frequency  gear-­mesh  like  
vibration.  
• Motors  assembled  with  rotors  that  are  not  
centered  in  the  stator  will  cause  unbalanced  
electromagnetic  forces  that  excite  vibration.
• Inadequate  balancing  causes  excessive  
forces  and  vibration
Sources  of  Vibration  – Manufacturing  
Process  
Table	
  1.3.	
  	
  Vibrating	
  Forces.
Poor	
  Quality	
  Machining	
  
Assembly	
  Errors	
  
Installation	
  
• misalignment	
  
• distortion	
  
• looseness	
  
Structural	
  and	
  Material	
  Defects	
  
Thermal	
  Distortion	
  
Lack	
  of	
  Lubrication	
  
Unbalance
Sources  of  Vibration  – Installation  Erroes
Misalignment,	
  distortion	
  (soft	
  foot),	
  and	
  looseness	
  
(bolts	
  not	
  tight)	
  are	
  examples	
  of	
  conditions	
  that	
  cause	
  
excessive	
  vibration;	
  Figure	
  1.4.	
  Normal	
  wear,	
  
structural	
  damage,	
  and	
  abuse	
  can	
  modify	
  the	
  function	
  
of	
  a	
  machine	
  and	
  so	
  cause	
  vibration.	
  
Sources  of  Vibration  – Installation  Erroes
Sources  of  Vibration  – Lack  or  Faulty  
maintinance
Machines  become  unbalanced,  need  
lubrication,  and  require  changing  of  worn  parts.  
Some  parts,  such  as  vibration  isolators,  
deteriorate  over  time,  depending  on  the  
environment.  Lack  of  or  excessive  lubrication  is  
detrimental  to  the  life  of  rolling  element  
bearings  as  well  as  gears.  Bolts  must  be  tight,  
and  properly  torqued.  Fits  and  clearances  are  
important  in  assembly.  Above  all  it  is  important  
to  keep  good  records.  Lack  of  good  
professional  maintenance  is  an  open  invitation  
to  machine  vibration.  
Harmonic Mass  Unbalance
Periodic Misalignment
Impulsive Rolling  Element  
Bearing,  Gears  tooth
Pulsating
Random Cavitation  in  
Pumps
Types  Vibration
Vibration  Effect
Table	
  1.4.	
  	
  Vibration	
  Effects.
Catastrophic	
  Failure
Fatigue	
  Failure
Loss	
  of	
  Product	
  Quality
Human	
  Annoyance
The	
  weakest	
  link	
  in	
  a	
  machine	
  exterior,	
  its	
  piping,	
  ductwork,	
  
or	
  supporting	
  structure,	
  can	
  fail	
  as	
  a	
  result	
  of	
  excessive	
  
vibration.	
  Coupling,	
  shaft	
  and	
  bearing	
  failures	
  occur	
  in	
  the	
  
rotating	
  elements.	
  Cracks,	
  prior	
  to	
  failure,	
  can	
  occur	
  in	
  
ductwork	
  and	
  foundations;	
  piping	
  can	
  become	
  overstressed	
  
and	
  fail.	
  
Uses  of  Vibration
Table	
  1.5.	
  	
  Uses	
  of	
  Vibration.
Acceptance	
  Testing
Predictive	
  Maintenance
Manufacturing
Predictive  Maintinance Procedure
Table	
  1.6.	
  	
  Predictive	
  Maintenance.
Monitoring
Fault	
  Diagnosis
Severity	
  Evaluation
Measurement  and  Analysis
Schematic	
  of	
  Data	
  Collection	
  Instrument.
Measurement  and  Analysis
Data	
  Acquisition
Measurement  and  Analysis
Data	
  Acquisition	
  with	
  two	
  sensors
Vibration  Data
Vibration
Monthly  Trend  Plot  of  a  Pump  Motor  for  
Peak  Velocity.
Periodic  Monitoring
data  are  acquired  sequentially  in  a  route  from  
bearing  to  bearing  and  machine  to  machine.  
The  data  collector  is  preprogrammed  and  
routes  are  uploaded  in  the  computer  to  accept  
and  store  the  data  acquired  from  the  machines  
in  the  route.  After  acquisition,  the  data  are  
downloaded  to  the  computer  for  trending  and  
analysis.  
Review
Sources of  vibration  include  function,  inadequate  
design,  manufacturing  processes,  installation,  
wear,  abuse  and  bad  maintenance  
Forces cause  vibration  
Types of  vibration  include  harmonic,  periodic,  
impulsive,  pulsating,  and  random
Effects of  vibration  are  component  failures,  loss  of  
product  quality,  and  human  annoyance  
Uses of  vibration  include  acceptance  testing,  
predictive  maintenance,  and  manufacturing  
Sensors are  used  to  detect  vibrations  
Analyzers are  used  to  quantify  the  amplitude  and  
frequency  of  vibrations  
Chapter  II  -­
Basic  Machinery  Vibrations  
Table	
  2.1.	
  Vibration	
  Units
The	
  basic	
  units	
  used	
  in	
  this	
  book	
  to	
  describe	
  vibratory	
  forces	
  
and	
  motions,	
  from	
  the	
  English	
  system,	
  are	
  pound	
  (lb),	
  inch	
  
(in.),	
  and	
  second	
  (see).
Amplitudes of	
  vibrating	
  motion	
  are	
  described	
  using	
  the	
  
following	
  units:
displacement,	
  mils-­‐peak	
  to	
  peak	
  (1,000	
  mils	
  =	
  1	
  inch)
velocity,	
  in./sec-­‐peak	
  or	
  rms (IPS-­‐peak	
  or	
  rms)
acceleration,	
  gs peak	
  or	
  rms (386.1	
  in./sec2	
  =	
  1	
  g)
Frequencies are	
  expressed	
  in	
  cycles/minute	
  (CPM)	
  or	
  
cycles/second	
  (Hertz,	
  Hz),	
  or	
  orders	
  (multiples	
  of	
  operating	
  
speed).
Speeds are	
  expressed	
  in	
  revolutions/minute	
  (RPM).
Vibration  cause  and  effect
Vibration  Measurement
Mechanical  vibration  is  measured  by  a  
transducer  (also  called  sensor)  that  converts  
vibratory  motion  to  an  electrical  signal.  The  
units  of  the  electrical  signal  are  volts  (v)  or,  
more  typically,  millivolts  (mv).  There  are  1,000  
millivolts  per  volt  (mv/v)
Vibration
Example	
  2.2.	
  Measurement	
  Units
400	
  mv-­‐pk to	
  pk was	
  measured	
  by	
  a	
  displacement	
  
transducer	
  that	
  has	
  a	
  scale	
  factor	
  of	
  200	
  mv/mil.	
  Then	
  the	
  
displacement	
  amplitude	
  equals	
  
400	
  mv − pk	
  to	
  pk
200	
  mv/mil
= 2	
  mils	
  pk − pk
Example	
  2.1.	
  Voltage	
  Units
Convert	
  253	
  millivolts	
  to	
  volts
123	
  45
6777	
  45/5
= 0.253	
  v
Convert	
  0.342	
  volts	
  to	
  millivolts	
  
0.342	
  𝑣
6777	
  45
5
= 342	
  mv
Proximity  Probe
Proximity  probes,  also  termed  noncontacting
eddy  current  displacement  transducers,  are  
attached  to  the  bearing  housing  and  measure  
shaft  vibration  relative  to  the  mounting  position  
of  the  probe.  Two  probes  are  usually  mounted  
at  a  90° angle  to  each  other  
Vibration
Magnetically	
  Mounted	
  Accelerometers	
  on	
  a	
  Fan	
  Pedestal.
Vibration  motion
Three  fundamental  properties  that  describe  vibration  
are  frequency,  amplitude,  and  phase.  Frequency  is  
defined  as  the  number  of  cycles  or  events  per  unit  
time.  It  is  expressed  as  cycles  per  second  (Hertz,  
Hz),  cycles  per  minute  (CPM),  or  orders  (multiples)  
of  operating  speed
Vibration  motion
Amplitude  is  the  maximum  value  of  vibration  at  a  
given  location  on  the  machine.  When  the  vibration  is  
displayed  as  displacement  and  measured  in  mils  (1  
mil  =1/  1,000  in.),  the  amplitude  measured  is  peak  
to  peak.  
Vibration  motion
For  example,  in  Figure  2.6,  one  cycle  of  vibration  is  
made  in  32.8  milliseconds  (mSec)  or  0.0328  sec.  
Therefore,  one  cycle  divided  by  0.0328  sec.  equals  
30.48  cycles  per  second.  ).  
Vibration  motion
Example	
  Period	
  and	
  Frequency
From	
  Figure	
  2.6,	
  Period	
  (τ)	
  =	
  32.8	
  mSec/cycle
τ =	
  
31.=	
  4>?@
6777	
  4>?@/A?@
	
  =	
  0.0328	
  sec/	
  cycle
Frequency	
  (f)	
  =	
  
6
B?CDEF	
  (H)
Then
f	
  =	
  
6
H
=
6
7.731=	
  A?@/@J@K?
=	
  30.49	
  Hz(cycles/sec)
f	
  =	
  30.49	
  Hz	
  x	
  60	
  sec/min	
  =	
  1,829	
  cycles/minute	
  (CPM)
Vibration  motion
For  example,  in  Figure  2.6,  Velocity  equals  0.6  IPS-­
Peak.
Vibration  motion
Also,  the  velocity  amplitude  can  be  reported  in  root-­
mean-­square  (RMS)  units.  If  the  data  are  harmonic  
(one-­frequency)  as  they  are  in  Figure  2.7,  then  the  
RMS  is  equal  to  0.707  times  the  peak  or  0.424  IPS-­
RMS.  If  the  data  are  not  harmonic,  no  simple  
mathematical  relationship  holds  between  RMS  and  
peak  and  an  electronic  circuit  must  be  used  to  get  
the  RMS.  The  advantage  of  the  peak  unit  is  that  it  
always  can  be  obtained  from  the  time  waveform.  
Vibration
Vibration  Measures.
Measure Units Description
displacement mils	
  p-­‐p*
motion	
  of	
  machine,	
  
structure,	
  or	
  rotor;	
  
relates	
  to	
  stress
velocity in./sec,	
  IPS
time	
  rate	
  of	
  motion;	
  
relates	
  to	
  
component	
  fatigue
acceleration gs**
relates	
  to	
  forces	
  
present	
  in	
  
components
*1	
  mil	
  =	
  0.001	
  inch;	
  p-­‐p	
  =	
  peak	
  to	
  peak	
  	
  	
  	
  	
  	
  **1	
  g	
  =	
  386.1	
  inches/sec2
Vibration
Displacement.  Displacement  (D)  is  the  
dominant  measure  at  low  frequencies  and  is  
related  to  stress  in  flexing  members.  It  is  
expressed  in  mils  peak  to  peak  because  the  
total  excursions  of  the  machine  motions  are  
measured.  It  is  normally  nonharmonic  but  
periodic  and  will  therefore  yield  different  
positive  and  negative  peaks.  Displacement  is  
used  as  the  measure  for  low-­frequency  
vibration  [less  than  600  CPM  (10  Hz)]  on  
bearing  caps  and  structures.  
Vibration
Displacement  is  also  commonly  used  to  determine  
the  relative  motion  between  a  bearing  and  its  
journal  or  between  the  machine  casing  and  its  shaft  
to  assess  whether  or  not  rubbing  may  occur.  Figure  
shows  vibration  data  plotted  in  the  displacement  
measure  that  is  symmetrical  originating  from  a  
harmonic  force  like  mass  unbalance.  
Vibration
Velocity  (V)  is  the  time  rate  of  change  of  displacement.  
Velocity  cannot  be  sensed  by  touch  -­ only  changes  in  it.  
Basically,  it  is  displacement  times  frequency  and  is  a  
measure  of  fatigue  in  machines.  The  greater  the  
displacement  and/or  frequency  of  vibration,  the  greater  is  
the  severity  of  machine  vibration  at  the  measured  location.
Velocity  is  used  to  evaluate  machine  condition  in  the  
frequency  range  from  600  CPM  (10  Hz)  to  60,000  CPM  
(1,000  Hz).
Vibration
Figure  2.8  is  a  plot  of  velocity  versus  time.  The  amplitude  is  
measured  in  peak  units  positive  or  negative,  whichever  is  
larger.  In  Figure  2.8  the  negative  peaks  are  larger;;  
therefore,  the  peak  velocity  is  0.42  inches  per  second,  IPS-­
peak.  
Vibration
Acceleration  is  the  dominant  measure  at  higher  
frequencies.  Because  it  is  related  to  force  it  can  be  
sensed  by  touch.  It  is  proportional  to  the  force  on  a  
machine  component  such  as  a  gear  and  is  used  to  
evaluate  machine  condition  when  frequencies  
exceed  1,000  Hz  (60,000  CPM)  in  gears  and  
bearings.  Acceleration  is  the  time  rate  of  change  in  
velocity.
Vibration
Figure  shows  acceleration  measured  on  a  gearbox;;  
the  peak  amplitude  is  10  gs.  
Vibration
If  the  vibration  is  harmonic  (one  frequency),  the  
amplitudes  of  the  velocity  and  acceleration  are  
directly  related  to  displacement  by  frequency.  If  the  
frequency  is  known  and,  the  measures-­
displacement,  velocity,  and  acceleration  -­ are  
related  by  frequency.  If  a  measure  and  the  
frequency  is  known,  the  two  other  measures  can  
be  calculated  using  the  formulas  provided  below.  
V  =  2𝜋fD and  A=2𝜋fV
Vibration
To  calculate  velocity,  displacement  must  be  changed  from  
mils-­peak  to  peak  to  inches-­peak.  This  requires  division  by  
two  (2)  and  by  one  thousand  (1,000  mils  =  1  inch).  To  obtain  
acceleration  in  gs,  divide  the  value  in  in/sec2 by  386.1  
in/sec2 per  g.  For  example,  a  vibration  displacement  of  5  
mils-­pk to  pk becomes  5/2000  =  0.0025  inches-­peak.  For  a  
frequency  of  100  Hz,  the  velocity  is  V  =  2  x  𝜋x  100  x  0.0025  
in/sec-­peak.  V  =  1.57  IPS-­pk.  The  acceleration  A  =  2  x  𝜋x  
100  x  1.57/386.1  =  2.55  gs-­peak.  A  displacement  of  6.4  
mils-­pk to  pk relates  to  a  velocity  of  0.2  IPS-­peak  at  10Hz  
whereas  the  acceleration  is  only  0.03  gs peak.
An  acceleration  of  3.2gs  at  1,000  Hz  relates  to  a  
displacement  of  0.064  mils-­pk to  pk.  Therefore,  
displacement  and  acceleration  measures  are  restricted  to  
low-­ and  high-­frequency  applications  respectively.  
Vibration
To  calculate  velocity,  displacement  must  be  changed  from  
mils-­peak  to  peak  to  inches-­peak.  This  requires  division  by  
two  (2)  and  by  one  thousand  (1,000  mils  =  1  inch).  To  obtain  
acceleration  in  gs,  divide  the  value  in  in/sec2 by  386.1  
in/sec2 per  g.  For  example,  a  vibration  displacement  of  5  
mils-­pk to  pk becomes  5/2000  =  0.0025  inches-­peak.  For  a  
frequency  of  100  Hz,  the  velocity  is  V  =  2  x  𝜋x  100  x  0.0025  
in/sec-­peak.  V  =  1.57  IPS-­pk.  The  acceleration  A  =  2  x  𝜋x  
100  x  1.57/386.1  =  2.55  gs-­peak.  A  displacement  of  6.4  
mils-­pk to  pk relates  to  a  velocity  of  0.2  IPS-­peak  at  10Hz  
whereas  the  acceleration  is  only  0.03  gs peak.
An  acceleration  of  3.2gs  at  1,000  Hz  relates  to  a  
displacement  of  0.064  mils-­pk to  pk.  Therefore,  
displacement  and  acceleration  measures  are  restricted  to  
low-­ and  high-­frequency  applications  respectively.  
Vibration  Analysis
The  basic  vibration  data  (waveforms)  collected  by  sensors  
and  displayed  by  instruments  must  be  broken  down  into  
frequency  components  in  order  to  perform  a  detailed  
vibration  analysis.
Vibration  Analysis
Vibration  signals  are  usually  composed  of  multiple  
frequency  components  with  different  amplitude.  The  
amplitude  of  the  lower  plot  (time  waveform)  is  3.6  mils  peak-­
to-­peak;;  the  period  is  18.7  mSec (53.5  Hz).  The  upper  plot,  
which  is  called  a  spectrum,  is  the  breakdown  of  the  time  
waveform  in  mils  peak-­to-­peak  versus  frequency.  The  
spectrum  is  obtained  from  the  waveform  using  a  
mathematical  procedure  called  an  algorithm.  This  allows  the  
analyst  to  determine  the  dominant  source  of  the  problem.  
The  fundamental  frequency,  53.3  Hz,  of  the  data  in  Figure  
2.10  is  equal  to  the  operating  speed  of  the  driven  pump  
(3,198  RPM).  
Vibration
The  data  shown  in  Figure  2.11  were  obtained  from  
a  velocity  sensor  mounted  on  a  generator  exciter  
bearing  with  a  magnet.  
Vibration
The  amplitude  of  the  time  waveform  is  0.73  
inch/second  (IPS)-­peak.  The  amplitude  in  the  
spectrum  can  be  given  in  spectral  component  
peaks  (0.275  IPS  at  60  Hz  and  0.24  IPS  at  120  Hz)  
or  in  overall  root-­mean-­square  (RMS),  which  is  
0.283  IPS
Vibration
The  RMS  measure  of  a  complex  waveform  cannot  
be  obtained  from  the  peak  value.  If  the  vibration  
waveform  is  not  harmonic  (one  frequency),  the  
RMS  cannot  be  obtained  by  multiplying  the  peak  
value  by  0.707  as  shown  in  Example  2.4.  Note  that  
the  two  RMS  peaks  in  the  spectrum  do  not  add  up  
to  the  actual  RMS  values.  
Example	
  2.4.	
  Peak	
  and	
  RMS	
  Measurements.
From	
  Figure	
  2.11
At	
  60	
  Hz	
  RMS	
  =	
  0.275	
  x	
  0.707	
  -­‐ 0.194	
  IPS
At	
  120	
  Hz	
  RMS	
  =	
  0.24	
  x	
  0.707	
  -­‐ 0.170	
  IPS
Total	
  RMS	
  in	
  the	
  spectrum	
  -­‐ 0.283	
  IPS
Excitation
The  purpose  of  vibration  analysis  is  to  identify  
defects  and  evaluate  machine  condition.  
Frequencies  are  used  to  relate  machine  faults  
to  the  time-­varying  forces,  termed  forcing  
frequencies,  that  cause  vibration.  It  is  therefore  
important  to  identify  the  frequencies  of  machine  
components  and  machine  systems  before  
performing  vibration  analysis.  The  forces  are  
often  the  result  of  defects  or  wear  of  
components  or  are  due  to  equipment  design  or  
such  installation  problems  as  misalignment,  
soft  foot,  and  looseness.  
Vibration
Example  Machine  Forcing  Frequencies.
Mass	
  unbalance shaft	
  rotational	
  frequency	
  (RPM)
Misalignment two	
  times	
  RPM
Bent	
  shaft RPM
Vane	
  and	
  blade number	
  of	
  vanes/blades	
  x	
  RPM
Electromagnetic two	
  times	
  line	
  frequency
NATURAL  FREQUENCIES  AND  CRITICAL  
SPEEDS  
Natural  frequencies  are  determined  by  the  design  of  
a  machine  or  component.  For  example,  the  shape  of  
a  bell  will  determine  its  natural  frequency.  The  
sound  of  the  bell  when  it  is  rung  is  its  natural  
frequency.  How  long  it  rings  is  a  measure  of  its  
damping.  Natural  frequencies  are  properties  of  a  
system  and  are  dependent  on  the  distribution  of  
mass  (material)  and  stiffness  (elasticity).  Every  
system  has  a  number  of  natural  frequencies.  
However,  they  are  not  multiples  of  the  first  natural  
frequency  (with  the  exception  of  rare  instances  of  
simple  components).  
NATURAL  FREQUENCIES  AND  CRITICAL  
SPEEDS  
Natural  frequencies  are  not  important  in  machine  
diagnostics  unless  a  forcing  frequency  occurs  at  or  
close  to  a  natural  frequency  or  impacts  occur  within  
the  machine.  If  a  forcing  frequency  is  close  to  a  
natural  frequency,  a  resonance  exists,  and  the  
vibration  level  is  high  because  the  machine  absorbs  
energy  easily  at  its  natural  frequencies.  If  the  forcing  
frequency  is  an  order  of  the  operating  speed  of  the  
machine,  the  resonance  is  termed  a  critical  speed.  
Only  natural  frequencies  in  the  range  of  forcing  
frequencies  are  of  interest  in  the  vibration  analysis  
of  machines.  
REVIEW  
•    Two  important  characteristics  of  vibration  are  frequency  
and  amplitude.  
•    The  frequency  is  the  number  of  cycles  per  unit  of  time.  
•    The  period  is  the  time  required  for  one  cycle  of  vibration;;  it  
is  the  reciprocal  of  frequency.  
•    Amplitude  is  the  maximum  value  of  vibration  at  a  given  
location  on  a  machine.  It  is  expressed  in  mils  (displacement),  
in.!sec (velocity),  or  gs (acceleration).  
•    The  amplitude  of  vibration  is  expressed  in  units  of  peak,  
peak  to  peak,  or  rms.  
•    Peak  and  rms are  used  with  velocity  and  acceleration;;  mils  
peak  to  peak  are  used  with  displacement.  
•    The  measures  of  vibration  -­ displacement  (stress),  velocity  
(fatigue)  and  acceleration  (force)  -­ can  be  converted  one  to  
the  other  if  the  vibration  is  a  single  frequency  (harmonic).  
REVIEW  
•    A  force,  or  excitation,  causes  vibration.  
•    Vibratory  forces  arise  from  process  variable,  improper  
design,  bad  installation,  and  defects.  
•    Vibrations  are  analyzed  in  the  time  waveform  and  the  
frequency  spectrum.  
•    Natural  frequencies  are  a  property  of  a  machine  system  
and  depend  on  mass  and  stiffness.  
•    Resonance  occurs  when  a  forcing  frequency  is  equal  to  or  
close  to  a  natural  frequency.  
•    Vibration  is  amplified  at  resonance.  
This  chapter  involves  the  acquisition  of  data  which  will  be  
analyzed  and  used  to  make  maintenance  or  acceptance  
decisions  on  the  operability  and  efficiency  of  machines.  
Sources  of  data
•    physical  observations  of  persons  walking  through  the  plant  
•    periodic  collection  of  vibration  data,  oil  samples,  and  
thermography  snapshots  
•    continuous  vibration  monitoring  with  permanently  
installed  sensors  
•    periodic  or  continuous  acquisition  of  process   data  like  
temperature,  pressure,  and  flow  
•    design  and  installation  drawings  and  procedures  
•    maintenance  records  
Chapter  III  – Data  Collection
Vibration
The  procedures  and  processes  of  obtaining  
data,  types  of  data,  sensors  and  instruments  
for  collection  of  data,  and  computers  for  
analyzing  and  displaying  data  will  be  
discussed.  
Any  vibration  analysis  is  only  as  good  as  
the  data  collected.
This  is  a  very  important  task  and  as  such  good  
procedures  should  be  observed.  
PHYSICAL  OBSERVATIONS  by  Human  
Senses  
While  there  are  several  types  of  recorded  data  
that  form  the  basis  for  machine  fault  and  
condition  analysis,  among  the  most  basic  data  
are  direct  observations  by  the  person  doing  the  
data  collection  based  on  human  senses  -­
hearing,  sight,  touch,  smell,  and  taste.  Human  
sensory  capabilities,  although  not  analytical,  
cannot  be  underestimated  in  the  machine  
analysis  process.  
Noise
Unusual  noises  can  indicate  rubs,  bearing  
defects,  looseness,  improper  assembly,  lack  of  
lubrication,  and  any  other  metal  to  metal  
contact  problems.  A  listening  rod  or  screw  
driver  can  be  used  to  detect  a  bearing  defect  or  
rubbing  in  a  low  speed  machine.  In  pumps,  a  
sign  of  flow  problems  is  a  noise  that  sounds  
like  gravel  in  the  piping.  Motors  and  generators  
may  emit  high  frequency  whining  noises  when  
they  are  subject  to  excessive  vibration  due  to  
casing  distortion,  misalignment,  or  coupling  
unbalance.  
Noise
High  pitched  noise  from  new  gears  indicates  
bad  construction  and  machinery  quality  or  
design  (low  contact  ratio).  Rubbing  of  guards  
by  pulleys  and  belts  will  cause  impacting  and  
noise.  Lack  of  lubrication  in  oil  starved  bearings  
or  bearings  with  excessive  clearance  means  
that  the  bearing  needs  attention.  Excessive  
noise  is  almost  always  an  indicator  of  trouble.  
The  experienced  data  collector  will  be  able  to  
enhance  their  analytical  capability  by  learning  
to  identify  noise  sources  and  associate  the  
physical  problem  with  them.  
Sight
The  use  of  sight  is  an  even  more  powerful  tool  for  
data  collectors.  Smoke,  fire,  and  catastrophic  
failures  need  and  get  immediate  attention.  However,  
other  mundane  faults  may  go  unnoticed  for  months.  
Foundation  and  bearing  pedestal  faults  are  the  
source  of  many  cases  of  excessive  vibration.  
A  flashlight  and  feeler  gage  or  knife  help  to  root  out  
these  type  problems.  Squishing  oil  between  joints  is  
a  certain  clue  of  looseness.
Cracks  in  ducting  and  piping  and  other  machine  
components  provide  clues  to  the  presence  of  
excessive  vibration.  Vibration  analysis  will  confirm  
these  faults
Sight
Vibration  analysis  will  confirm  these  faults.  The  data  
collector  may  have  to  go  off  route  to  measure  these  
cases.  
Hammered	
  and	
  Torched	
  to	
  Fit.
Smell  and  Touch  
The  senses  of  smell  and  touch  are  less  important  but  
should  not  be  neglected.  Unusual,  abnormal  odors  are  
easily  detected  by  the  human  sense  of  smell.  Oil  
smoke  can  be  smelled  long  before  an  oil  fire.  Ammonia  
and  other  chemical  and  gas  leaks  are  best  detected  by  
the  nose.  Even  small  quantities  can  be  detected.  Hot  
bearings  or  other  machine  parts  that  are  not  normally  
operating  above  ambient  temperature  can  be  identified  
by  touch.  However,  the  data  collector  needs  to  exercise  
extreme  caution.  A  steaming  or  red  hot  machine  should  
not  be  touched.  The  water  can  confirm  the  
temperatures  are  above  100⁰  C.  
The  use  of  taste  is  not  recommended  in  this  work.  
PERIODIC  AND  CONTINUOUS  DATA  
COLLECTION  
Periodic  and  continuous  non-­intrusive  data  
collection  provide  current  and  trended  information  
about  the  condition  of  a  machine.  The  procedure  
involves  the  use  of  sensors  to  acquire  data,  meters  
to  quantify  the  measured  data,  and  instruments  to  
store,  manipulate,  and  present  the  data.  Periodically  
acquired  data  provide  an  intermittent  record  of  what  
is  happening  in  the  machine.  Whereas  continuous  
data  monitoring  and  collection  provides  continuous  
surveillance  along  with  the  ability  to  protect  the  
machine  through  data  based  automatic  shutdown.  
PERIODIC  AND  CONTINUOUS  DATA  
COLLECTION  
Measurement  of  vibration  for  analytical  use  is  
performed  by  a  sensor,  sometimes  called  a  
transducer  or  pickup,  and  is  nonintrusive  to  the  
machine  or  process,  Figure  3.2.  The  sensor  
transforms  the  vibration  (mechanical  motion)  of  the  
mounting  location  to  an  electrical  voltage  which  
varies  with  time,  Figure  3.3.
PERIODIC  AND  CONTINUOUS  DATA  
COLLECTION  
Selecting  a  Measure  
A  measure  is  a  unit  or  measures  of  vibration  are  
standard  of  measurement  that  provides  a  means  for  
physical  evaluation.  Examples  of  measures  are  
pounds  for  weight  and  feet  for  height.  Three  basic  
available  displacement,  velocity,  and  acceleration.  
Ideally  the  sensor  would  directly  provide  the  
selected  measure.  Unfortunately,  sensor  limitations  
do  not  always  allow  direct  measurement  of  vibration  
in  the  proper  measure.  Other  predictive  
maintenance  based  measures  are  temperature,  
pressure,  and  viscosity.  
Selecting  a  Measure  
The  measure  is  selected  on  the  basis  of  the  
frequency  content  of  the  vibration  present,  the  type  
of  sensor,  the  design  of  the  machine,  the  type  of  
analysis  to  be  conducted  (e.g.,  faults,  condition,  
design  information),  and  the  information  sought.  
Selecting  a  Measure  
Relative  shaft  displacement
which  is  measured  with  a  noncontacting relative  
displacement  sensor,  proximity  probe,  shows  the  
extent  of  bearing  clearance  taken  up  by  vibration  
and  is  used  over  a  frequency  range  as  wide  as  the  
shaft  speed.  This  permanently  mounted  probe  
measures  the  relative  motion  between  the  point  of  
mounting  and  the  rotor.  
Selecting  a  Measure  
Absolute  displacement
which  is  used  for  low-­frequency  vibration  (0  to  
10Hz)  measured  on  the  bearing  pedestal,  relates  to  
stress  (shaft  or  structure)  and  is  typically  measured  
with  a  double  integrated  accelerometer.  It  is  called  
seismic  vibration.  Absolute  displacement  of  a  shaft  
must  be  measured  with  either  a  contacting  sensor  
or  a  noncontacting sensor  in  combination  with  a  
seismic  sensor  mounted  on  the  bearing  pedestal.  
Selecting  a  Measure  
Velocity
For  general  machinery  monitoring  and  analysis  in  
the  span  from  10  Hz  to  1,000  Hz,  velocity  is  the  
default  measure.  Velocity  as  a  time  rate  of  change  
of  displacement  is  dependent  upon  both  frequency  
and  displacement  and  related  to  fatigue.  It  has  been  
shown  to  be  a  good  measure  in  the  span  for  10Hz  
to  1,000  Hz  because  a  single  value  for  rms or  peak  
velocity  can  be  used  in  rough  assessments  of  
condition  without  the  need  to  consider  frequency.  
Most  modem  data  collectors  use  accelerometers  but  
the  signal  must  be  integrated  to  obtain  velocity.  
Selecting  a  Measure  
Acceleration  
is  the  measure  used  above  1,000  Hz;;  it  relates  to  
force  and  is  used  for  such  high-­ frequency  vibrations  
as  gearmesh and  rolling  element  bearing  defects.  
Acceleration  and  velocity  are  absolute  measures  
taken  on  the  bearing  housing  or  as  close  to  the  
bearing  as  possible.  
Selecting  a  Measure  
.  
Measure
Useful	
  
Frequency	
  
Span
Physical	
  
Parameter Application
Relative	
  displacement	
  
(Proximity	
  probe)
0	
  – 1000	
  HZ stress/motion
relative	
  motions	
  
in	
  
bearings/casings.
Absolute	
  displacement	
  
(seismic)
0	
  – 10	
  Hz stress/motion machine	
  condition
Velocity
(seismic)
10	
  – 1000	
  Hz energy/fatigue
general	
  machine,	
  
medium-­‐
frequency	
  
vibrations
Acceleration
(seismic)
>1000	
  Hz force
general	
  machine,	
  
medium-­‐high-­‐
frequency	
  
vibrations
Selecting  a  Measure  
The  rule  of  thumb  for  measure  selection  is  that  
velocity  is  used  for  bearing  pedestal  measurement  
up  to  2,000  RPM  and  acceleration  is  used  above  
that  machine  speed.  If  the  machine  has  permanent  
non-­contacting  displacement  sensors,  then  
displacement  is  acquired.
Selecting  a  Measure  
FREQUENCIES  
Bearing  Frequencies  
FTF =
Ω
2
1 −
B
P
cos CA
BPFI =
N
2
Ω 1 +
B
P
cos CA
BPFO =
N
2
Ω 1 −
B
P
cos CA
BSF =
P
2B
Ω 1 −
B
P
1
cos1
CA
FTF =  fundamental   train  frequency CA =  contact  angle    
BPFI =  ball  pass  frequency,  inner  race   Ω =  machine  speed  
BPFO =  ball  pass  frequency,  outer  race N =  number  of  
rolling  elements    
BSF =  ball  spin  frequency P =  pitch  diameter,  
in    
RPM =  shaft  speed
B =  ball  or  roller  diameter,  in  
Bearing  defect  frequencies  are  same  units  as  machine  speed
Selecting  a  Measure  
FREQUENCIES  
Bearing  Frequencies  
General  Guideline  Bearing  Frequencies  
(for  use  in  maximum  Frequency  selection  ONLY)  
BPFO  =  0.41  x  RPM  x  N  
BPFI  =  0.59  x  RPM  x  N  
FTF  =  0.41  x  RPM  
BSF  =  0.22  x  RPM  x  N  
FAN
blade  pass  frequency  =  no  blades  x  RPM  
Example	
  3.1.	
  Measure	
  and	
  Sensor	
  Selection	
  -­‐ Fan.
Select	
  a	
  measure	
  and	
  sensor	
  for	
  a	
  fan	
  operating	
  at	
  950	
  RPM.	
  The	
  fan	
  has	
  
seven	
  (7)	
  blades	
  and	
  fifteen	
  (15)	
  rolling	
  elements	
  in	
  its	
  bearings.	
  
The	
  frequencies	
  of	
  interest	
  are	
  operating	
  speed	
  and	
  orders,	
  blade	
  pass	
  
frequency	
  and	
  multiples,	
  and	
  rolling	
  element	
  fault	
  frequencies,	
  and	
  multiples.	
  	
  
operating	
  speed	
  frequency	
  =	
  
]27	
  ^_`
a7
=	
  15.83	
  Hz	
  and	
  orders
blade	
  pass	
  frequency	
  =	
  no	
  blades	
  x	
  RPM	
  
blade	
  pass	
  frequency	
  =	
  
]27	
  ^_`
a7
×7	
  =	
  110.8	
  Hz	
  and	
  multiples	
  
ball	
  pass	
  frequency	
  of	
  inner	
  race	
  =	
  0.6	
  x	
  no.	
  balls	
  x	
  RPM
bearing	
  fault	
  frequency	
  =	
  
]27	
  ^_`
a7
×0.6×15	
   =	
  142.5	
  Hz	
  and	
  multiples
The	
  majority	
  of	
  the	
  frequency	
  activity	
  is	
  between	
  150	
  and	
  1425	
  Hz,	
  if	
  ten	
  
multiples	
  are	
  used.	
  Therefore,	
  velocity	
  measure	
  will	
  provide	
  the	
  best	
  
information.	
  An	
  integrated	
  accelerometer	
  or	
  velocity	
  sensor	
  can	
  be	
  used	
  to	
  
acquire	
  the	
  data.	
  
Example	
  3.2.	
  Measure	
  Selection	
  -­‐ Low	
  Speed	
  Roll
Select	
  measure(s)	
  for	
  low-­‐speed	
  200	
  RPM	
  dryer	
  roll.	
  The	
  multi-­‐
ton	
  roll	
  is	
  mounted	
  on	
  large	
  rolling	
  
element	
  (26)	
  bearings.	
  Because	
  the	
  roll	
  operates	
  at	
  such	
  a	
  low	
  
speed,	
  mass	
  unbalance	
  is	
  not	
  a	
  major	
  
consideration	
  since	
  the	
  force	
  is	
  small.	
  The	
  highest	
  rolling	
  element	
  
bearing	
  frequency	
  is	
  the	
  ball	
  pass	
  
frequency	
  of	
  the	
  inner	
  race.	
  It	
  can	
  be	
  estimated	
  as	
  
BPFI	
  =	
  (0.6)	
  (RPM)	
  (N)
BPFI	
  =	
  (0.6)	
  200	
  (26)	
  =	
  3,120	
  CPM	
  (52	
  Hz)
Therefore,	
  the	
  frequency	
  span	
  is	
  520	
  Hz	
  if	
  ten	
  multiples	
  are	
  used.	
  
This	
  value	
  is	
  within	
  the	
  velocity	
  range	
  (see	
  Table	
  3.1).	
  
Example	
  3.3.	
  Measure	
  Selection	
  -­‐ Motor
Select	
  measure(s)	
  for	
  a	
  200	
  HP-­‐four	
  pole	
  induction	
  motor	
  with	
  eight	
  rolling	
  
elements	
  in	
  the	
  bearings.	
  The	
  operating	
  speed	
  vibrations	
  have	
  a	
  frequency	
  of	
  
1,800	
  CPM	
  (30	
  Hz)	
  and	
  a	
  frequency	
  span	
  of300	
  Hz,	
  which	
  is	
  within	
  the	
  velocity	
  
range.	
  For	
  ten	
  multiples,	
  the	
  bearing	
  frequency	
  span	
  is	
  
(BPFI)	
  (10)	
  =	
  (0.6)	
  (8)	
  (1,800)	
  (10)	
  =	
  86,400	
  CPM	
  (1,440	
  Hz)
Because	
  the	
  majority	
  of	
  the	
  activity	
  is	
  in	
  the	
  velocity	
  range,	
  a	
  velocity	
  
transducer	
  can	
  be	
  used	
  even	
  though	
  some	
  activity	
  is	
  above	
  1,000	
  Hz.	
  The	
  
useful	
  frequency	
  spans	
  of	
  all	
  measures	
  overlap.	
  Therefore,	
  the	
  measure	
  
should	
  be	
  selected	
  from	
  the	
  predominant	
  portion	
  of	
  the	
  frequency	
  activity	
  of	
  
the	
  component.	
  For	
  example,	
  if	
  the	
  default	
  frequency	
  span	
  for	
  the	
  bearing	
  
had	
  been	
  2,880	
  Hz	
  (16	
  rolling	
  elements),	
  acceleration	
  would	
  have	
  been	
  
selected	
  as	
  the	
  measure	
  for	
  the	
  bearings.	
  Unfortunately,	
  the	
  shaft	
  vibration	
  
frequency	
  span	
  of300	
  Hz	
  remains	
  within	
  the	
  velocity	
  range.	
  Therefore,	
  two	
  
measures,	
  velocity	
  and	
  acceleration,	
  are	
  required.	
  
Vibration  Sensors
Magnitude,  frequency,  and  phase  between  two  
signals  are  used  for  evaluation.  Sensor  
selection  is  based  on  sensitivity,  size  required,  
selected  measure,  frequency  response,  and  
machine  design  and  speed.  The  sensor  should  
be  mounted  as  close  to  the  source  of  vibration  
as  possible.  
Proximity  probes
The  proximity  probe  (non-­contacting  eddy  current  
displacement  transducer)  shown  in  Figure  3.5  
measures  static  and  dynamic  displacement  of  a  shaft  
relative  to  the  bearing  housing.  It  is  permanently  
mounted  on  many  large  (greater  than  1,000  HP)  
machines  for  monitoring  (protection  and  trending)  and  
analysis.  
Proximity  probes
The  probe  generates  a  negative  DC  voltage  
proportional  to  the  distance  of  the  shaft  from  the  sensor  
(gap).  The  typical  gap  is  40  mils  or  at  200  mv/mil,  8  
volts.  The  negative  voltage  decreases  as  the  shaft  gets  
closer  to  the  probe.  The  probe  generates  an  AC  voltage  
proportional  to  the  vibration  with  a  scale  factor  of  200  
mv/mil.  Therefore,  the  voltage  measured  is  divided  by  
the  scale  factor  to  obtain  the  vibration  level  (Example  
3.4).  The  probe  does  require  an  18  or  24  volt  power  
supply.  
Example	
  3.4
Assuming  the  data  on  Figure  3.3  were  taken  from  
a  proximity  probe  with  a  scale  factor  of  200  mv/mil  
(0.20  Volts/mil),  the  peak  to  peak  displacement  
would  be  1.58  volts  divided  by  0.2  volts  per  mil  or  
7.9  mils-­pk to  pk.  If  the  measured  gap  voltage  was  
7.6  volts,  then  the  gap  (distance  from  the  probe  to  
the  shaft)  would  be  7.6  volts  divided  by  0.2  
Volts/mil  or  38  mils.  
Velocity  transducers
Velocity  transducers.  The  velocity  transducer  (Figure  
3.6)  is  a  seismic  transducer  (i.e.,  it  measures  absolute  
vibration)  that  is  used  to  measure  vibration  levels  on  
casings  or  bearing  housings  in  the  range  from  10  Hz  to  
2,000  Hz.  The  transducer  is  self-­excited  -­ that  is,  it  
requires  no  power  supply.  The  self-­generated  signal  
can  be  directly  passed  to  an  oscilloscope,  meter,  or  
analyzer  for  evaluation.  A  typical  velocity  transducer  
generates  500  mv/(in./sec).  
Velocity  transducers
Accelerometers
Accelerometers  are  used  to  measure  vibration  levels  
on  casings  and  bearing  housings;;  they  are  the  
transducers  typically  supplied  with  electronic  data  
collectors.  An  accelerometer  (Figure  3.7)  consists  of  a  
small  mass  mounted  on  a  piezoelectric  crystal  that  
produces  an  electrical  output  proportional  to  
acceleration  when  a  force  is  applied  from  the  vibrating  
mass.  
Accelerometers
The  size  of  an  accelerometer  is  proportional  to  its  
sensitivity.  Small  accelerometers  (the  size  of  a  pencil  
eraser)  have  a  sensitivity  of  5  mv/g  (1  g  =  386.1  
in./sec2)  and  a  flat  frequency  response  to  25  kHz.  A  
1,000  mv/g  accelerometer,  which  is  used  for  low-­
frequency  measurement,  may  be  as  large  as  a  velocity  
sensor;;  however,  the  limit  of  its  usable  frequency  span  
may  be  to  1,000  Hz.  The  analyst  should  be  aware  of  
the  properties  of  each  accelerometer  being  used.  
Accelerometers
Accelerometers
If  vibration  velocity  is  desired,  the  signal  is  usually  
integrated,  which  electronically  converts  acceleration  to  
velocity,  before  it  is  recorded  or  analyzed;;  an  analog  
integrator/power  supply  is  shown  in  Figure  3.8.  
Analog	
  Integrator	
  and	
  Power
Accelerometers
Accelerometers  are  recommended  for  permanent  
seismic  monitoring  because  of  their  extended  life  and  
because  their  cross  sensitivity  is  low.  (Cross  sensitivity  
means  that  the  transducer  generates  a  signal  in  
horizontal  direction  from  vibration  in  the  vertical  
direction.)  
However,  cable  noise,  transmission  distance,  and  
temperature  sensitivity  of  the  accelerometer  must  be  
carefully  evaluated.  Excellent  guidelines  are  available  
from  vendors  for  accelerometer  use.  
Sensor  Selection  
Important  considerations  in  sensor  selection  include  
frequency  response,  signal-­to-­noise  ratio,  size,  thermal  and  
amplitude  sensitivity  of  the  sensor,  and  the  strength  of  the  
signal  being  measured.  The  frequency  range  of  the  sensor  
must  be  compatible  with  the  frequencies  generated  by  the  
mechanical  components  of  the  machine.  Otherwise,  another  
transducer  must  be  selected  and  the  signal  converted  to  the  
proper  measure.  For  example,  if  the  velocity  measure  is  
desired  at  frequencies  above  2,000  Hz,  an  accelerometer  
integrated  to  velocity  should  be  selected  to  obtain  the  
signal.  If  the  time  waveform  of  the  velocity  measure  is  
desired,  the  signal  must  be  acquired  from  a  velocity  pickup  
or  analog  integrated  signal  from  an  accelerometer,  either  
within  or  external  to  the  data  collector.  
Sensor  Selection  
The  cable  that  transmits  the  signal  to  the  data  collector  can  
cause  erroneous  readings.  Many  standard  cables  are  
specially  wound  cords  that  are  more  convenient  than  the  
standard  coaxial  construction.  But,  because  many  
conductors  are  flexible  at  the  core,  individual  strands  may  
fail  at  stress  points  as  a  result  of  handling  or  packing  in  a  
carrying  case.  In  addition,  the  terminals  must  be  handled  
carefully.  
Sensor  Mounting  
The  method  used  to  mount  a  vibration  sensor  can  affect  the  
frequency  response  because  the  natural  frequency  of  an  
accelerometer  can  decrease,  depending  on  the  mounting  
method  used  -­ hand-­held,  magnetic,  adhesive,  threaded  
stud  (Figure  3.9).
Method Frequency	
  Limit
Hand	
  Held 500	
  Hz
Magnet 2,000	
  Hz
Adhesive 2,500-­‐4,000	
  Hz
Bees	
  Wax 5,000	
  Hz
Stud 6,000-­‐10,000	
  Hz
Approximate	
  Frequency	
  Spans	
  for	
  100	
  mv/g	
  
Accelerometers.
Sensor  Location  
The  key  to  accurate  vibration  measurement  is  placement  of  
the  sensors  at  a  point  that  is  responsive  to  machine  
condition.  In  any  event  the  sensor  should  be  placed  as  
close  to  the  bearing  as  is  physically  possible  and  in  the  load  
zone.  Figure  3.10  shows  the  optimum  points  for  mounting  
sensors  for  data  acquisition  in  a  normal  bearing  mounting
Sensor  Location  
The  horizontal  and  vertical  locations  at  the  bearing  
centerline  are  shown.  These  locations  are  used  to  sense  
the  vibrations  from  radial  forces  such  as  mass  unbalance.  
Vibrations  from  axially-­directed  forces  such  as  gearmesh
and  bearing  faults  are  measured  in  the  axial  direction  in  the  
load  zone.  
Sensor  Location  
The  sensor  must  be  placed  as  close  to  the  bearing  as  
possible,  even  though  placement  is  restricted  by  such  
components  as  housings,  coupling  guards,  and  fan  covers.
In  general,  radial  readings  are  taken  on  radial  bearings;;  that  
is,  any  antifriction  bearing  with  a  contact  angle  of  0°.  
Radial  bearings  are  used  in  electric  motors,  in  medium-­ to  
light-­duty  fans,  and  in  power  transmission  units  not  subject  
to  axial  loading.  
Angular  contact  bearings  or  any  bearing  absorbing  thrust  
have  a  radial-­to-­axial  coupling  that  requires  an  axial  
measurement  for  accurate  condition  monitoring.  
Review
Measure: a  unit  or  standard  of  measurement    
Frequency  Span: Fmax or  frequency  range  in  the  
spectrum  
Sensor: device  that  senses  mechanical  
vibration  and  emits  an  electrical  
signal  
Frequency  Response: amplitude  out  of  an  
electrical  device  such  as  a  
sensor  as  a  function  of  
frequency  
Chapter  4 – Machine  Characteristics
The  design  and  function  of  machines  and  their  
peripheral  equipment  determine  the  basic  
vibration  characteristics  encountered  in  
machine  condition  monitoring  and  diagnostics.  
Manufacturing  and  installation  quality  may  alter  
the  vibrations  of  newly  installed  equipment.  
These  mechanisms  determine  the  amplitude  
and  frequency  of  vibrations  measured  under  a  
baseline  condition.  
Chapter  4 – Machine  Characteristics
As  the  machine  continues  in  service,  defects  
due  to  fatigue  and  wear  appear  as  part  of  the  
aging  process.  The  severity  of  these  defects  is  
dependent  on  load,  lubrication,  contamination,  
and  machine  speed.  These  defects  often  cause  
vibrations  at  unique  frequencies  and  increases  
in  the  amplitudes  of  vibrations  at  existing  
frequencies  such  as  operating  speed  and  its  
orders.  
General  Characteristics
It  is  important  to  know  the  connection  between  
measured  vibrations  and  the  function  and  
operating  mechanisms  of  the  machine.  By  
knowing  how  the  machine  works  and  what  can  
go  wrong  the  analyst  can  better  determine  what  
a  measured  vibration  pattern  means.  Vibrations  
are  generated  by  forces  which  are  caused  by  
mechanisms  involved  in  the  design,  
manufacturing,  installation,  and  wear  and  
structural  failures  of  the  machine.
General  Characteristics
The  more  information  available  about  the  
machine  design,  construction,  supports,  
operational  responses,  and  defect  responses,  
the  easier  will  be  the  diagnosis  of  defects  and  
malfunctions.  All  service  equipment  should  be  
cataloged  and  the  following  data  listed.  
General  Characteristics
•    broad  characteristics  such  as  rotational  frequencies,  
gear  mesh,  vane  pass,  and  bearing  defect  frequencies.  
•    vibration,  temperature  gradients,  or  pressure  initiated  
by  an  operating  component  or  system.  
•    vibration  responses  to  process  changes.  
•    characteristics  identified  with  the  specific  machine  
type.  
•    known  natural  frequencies  and  mode  shapes.  
•    sensitivity  to  vibration  from  mass  unbalance,  
misalignment,  distortion,  and  other  malfunction/defect  
excitations.  
•    sensitivity  to  instability  from  wear  or  changes  in  
operating  conditions.  
SOURCES  OF  VIBRATION  
Source
Design	
  and	
  
Function
Manufacturing Installation Defects
mass	
  
unbalance
•
• •
eccentricity • • • •
misalignment • • •
looseness • • •
distortion • • •
cogging •
gear	
  defects • • •
bearing	
  
defects
•
•
•
electrical • • • •
flow	
  noise •
SOURCES  OF  VIBRATION  
Source
Design	
  and	
  
Function
Manufacturing Installation Defects
natural	
  
frequency
• •
thermal • •
bad	
  grout • •
reciprocating •
flexible • •
oil	
  whirl • • •
excessive	
  
clearance
•
•
•
•
poor	
  quality • •
overstressed •
hydrodynamic • • •
acoustic • • •
machining • • •
Design  and  Function  
Mass  unbalance  occurs  when  the  mass  center  of  a  
rotating  part  is  not  located  at  the  geometric  center.  
However,  it  may  result  from  unsymmetrical  design  of  
a  part  such  as  a  coupling  hub.  Normally  
components  and  parts  would  have  a  symmetrical  
design  to  avoid  this  problem.  The  frequency  of  mass  
unbalance  is  the  shaft  operating  speed  and  the  
amplitude  is  dependent  on  the  mass  unbalance  and  
speed  squared.  
Design  and  Function  
Mass  unbalance  
.  However,  mechanisms  such  as  the  cam  in  Figure  
are  likely  to  be  unbalanced  because  the  mass  
center  is  not  at  the  geometric  center.
Design  and  Function  
Cogging  of  chain  links  of  a  sprocket,  Figure  4.4,  
occurs  because  of  the  intermittent  forces  generated  
from  the  sprocket  teeth  entering  and  exiting  the  
chain.  The  cogging  frequency  is  the  number  of  
sprocket  teeth  times  the  RPM  of  the  sprocket.  
Similarly,  the  frequency  of  a  timing  belt  is  the  
number  of  grooves  in  the  pulley  times  the  RPM  of  
the  pulley.
Design  and  Function  
Flow  noise  is  normally  generated  from  inlet  
conditions  (mixed  flow  from  elbows,  reducers,  or  
increasers)  or  operating  off  the  best  efficiency  point,  
BEP,  of  the  pump.  Straight  flow  is  usually  ensured  
by  having  at  least  ten  (10)  pipe  diameters  of  
straight,  constant  diameter  pipe  prior  to  the  pump  
inlet.  BEP  operation  is  designed  into  the  system  by  
proper  system  design.  Too  little  back  pressure  
causes  cavitation  while  too  high  back  pressure  
causes  recirculation  of  the  flow  at  the  inlet.  Both  
conditions  cause  random  noise  and  vibration  and  
sound  like  gravel  circulating  in  the  pump.  
Design  and  Function  
Certain  responses  (Table  4.2),  including  vibration,  
temperature,  and  pressure  can  be  related  to  
components  of  the  system
Design  and  Function  
Component Frequency
antifriction	
  bearings ball	
  pass	
  frequency,	
  outer	
  race
ball	
  pass	
  frequency,	
  inner	
  race
fundamental	
  train	
  frequency
rotating	
  unit	
  frequency
ball	
  spin	
  frequency
hydrodynamic	
  journal	
  bearings frictional	
  frequency,	
  whirl	
  frequencies
gears rotating	
  unit	
  frequency	
  
gear-­‐mesh	
  frequencies	
  and	
  harmonics	
  
harmonics	
  of	
  gear-­‐mesh	
  frequencies	
  
assemblage	
  frequencies	
  
system	
  natural	
  frequencies	
  (gear-­‐
tooth	
  defects)
Blade	
  wheels	
  and	
  impellers Rotating	
  unit	
  frequencies
vane	
  and	
  blading	
  frequencies	
  
harmonics	
  of	
  vane	
  and	
  blading	
  
frequencies
Design  and  Function  
Component Frequency
rotors trapped	
  fluid	
  rotational	
  frequency	
  
directional	
  natural	
  frequencies	
  
higher	
  harmonics
couplings	
  and	
  universal	
  joints orders	
  of	
  rotating	
  frequency
reciprocating	
  mechanisms rotating	
  frequency	
  and	
  its	
  orders
Electric	
  motor	
  rotors sidebands	
  at	
  no	
  poles	
  x	
  slips
Chapter  5  – VIBRATION  INSTRUMENTS
The  sensor  which  changes  the  mechanical  
motion  of  the  machine  to  an  electrical  signal  is  
connected  to  an  instrument  which  provides  an  
analytical  read  out  and/or  print  out.  The  read  
out  can  be  as  simple  as  a  single  number  from  a  
meter  or  a  waveform  from  an  oscilloscope.  
More  elaborate  analyzers  provide  spectra  
(amplitude  versus  frequency)  and  digital  time  
waveforms. Data  collectors  provide  overall  
values,  filtered  values,  phase  readings,  
spectra,  and  time  waveforms.  
Chapter  5  – VIBRATION  INSTRUMENTS
Figure	
  5.1.	
  Time	
  Waveform
Chapter  5  – VIBRATION  INSTRUMENTS
Figure	
  5.2.	
  Spectrum	
  (Top)	
  and	
  Waveform	
  (Bottom).
Chapter  5  – VIBRATION  INSTRUMENTS
Figure.	
  Trend	
  on	
  Three	
  Bearing	
  Pedestals.
Data  Collectors  and  Analyzers  
The  data  collector  (and  analyzers  are  all  Fast  
Fourier  Transform  (FFT)  based  calculated  off  a  
digitized  waveform  that  is  obtained  from  a  
sensor.  
Data  Collectors  and  Analyzers  
The  spectrum  of  Figure  
5.10  (upper  plot)  has  
400  lines  (bins)  and  a  
frequency  span  of  
1,000  Hz.  Therefore,  
there  are  400  divisions  
across  the  horizontal  
frequency  scale  where  
data  can  be  located.  
Any  frequency  
between  these  lines  is  
included  in  the  closest  
adjacent  bin.  
Chapter  6  – VIBRATION  TESTING
Basically  there  are  four  types  of  vibration  tests  
that  the  machine  analyst  conducts
• periodic  monitoring
• fault  and  condition  analysis
• Acceptance
• design.  
Chapter  6  – VIBRATION  TESTING
Periodic  monitoring
serves  a  predictive  maintenance  program  by  
acquiring  vibration  data  on  a  routine  basis  on  
organized  routes  with  data  point  specific  
collector  setups.  The  data  collected  on  the  
route  are  compared  against  previous  data  and  
alarm  settings  to  evaluate  the  machine's  
change  in  condition.  Data  are  downloaded  into  
a  computer  for  trending  and  analysis.  
Chapter  6  – VIBRATION  TESTING
Machine  analysis  
is  conducted  when  trended  data  exceed  alarm  
levels.  Frequencies  and  amplitudes  are  
evaluated  to  determine  the  fault  and  severity  of  
the  problem.
Chapter  6  – VIBRATION  TESTING
Acceptance  testing  
is  used  to  determine  whether  a  new  or  repaired  
machine  meets  the  specification  in  the  
purchase  agreement.  Usually  decisions  are  
made  on  the  basis  of  agreed  upon  
measurements  and  vibration  levels  according  
to  specified  procedures.  
Chapter  6  – VIBRATION  TESTING
Design  testing  
Basic  tests  for  design  characteristics  are  
conducted  to  determine  machine  dynamic  
properties  such  as  natural  frequencies,  
damping,  and  critical  speeds.  
PERIODIC  MONITORING  
Periodic  monitoring  of  machine  vibrations  is  
one  of  the  principal  components  of  any  
predictive  maintenance  program  because  it  
provides  information  that  allows  decisions  to  be  
made  on  production  scheduling,  minimizes  the  
occurrence  of  catastrophic  equipment  failures,  
and  provides  rational  management  of  assets  
and  resources.  By  using  the  electronic  data  
collector,  an  individual  can  effectively  monitor  
many  machines  for  signs  of  equipment  
malfunction,  wear,  and  failure  during  
production.  
PERIODIC  MONITORING  
Machine  Knowledge  
The  person  collecting  data  should  have  a  
working  knowledge  of  the  machines  being  
monitored.  This  knowledge  involves  internal  
construction,  supports,  foundations  and  piping  
as  well  as  how  the  machine  works  internally  
(Chapter  4).  The  experienced  data  collector  will  
be  aware  of  and  report  unusual  physical  
behavior  (Chapter  3)  through  senses  of  touch,  
sound,  sight,  and  smell.  
PERIODIC  MONITORING  
Machine  Knowledge  
These  signs  of  deterioration  are  often  vital  in  
the  process  of  non-­intrusive  monitoring.  
Knowledge  of  speeds  and  characteristics  
common  to  individual  machines  (Chapter  4)  is  
absolutely  essential.  There  are  many  texts  and  
magazines  on  machine  function  which  can  heIp
the  data  collector  continuously  expands  
machine  knowledge.  Viewing  the  machine  
being  repaired  or  having  a  background  as  an  
operator,  millwright,  or  mechanic  provide  
invaluable  experience.  
PERIODIC  MONITORING  
Data  Collection  Procedures  
The  data  collection  route  can  be  based  on  plant  
layout,  machine  train,  machine  type,  or  data  
type.  Whatever  the  criterion  used  for  route  
design,  it  should  allow  efficient  movement  of  
the  data  collector  from  machine  to  machine  and  
data  point  to  data  point.  Figure  6.1  shows  a  
route  for  a  4,000  HP  motor  driven  boiler  feed  
pump  while  Figure  6.2  shows  a  schematic  
diagram  of  the  location  of  measurements.
PERIODIC  MONITORING  
Figure	
  6.1.	
  
Example	
  of	
  a	
  
Route	
  for	
  Motor	
  
Driven	
  Boiler	
  
Feed	
  Pump
PERIODIC  MONITORING  
Figure	
  6.2.	
  Location	
  of	
  Measurement	
  Points.
PERIODIC  MONITORING  
Transducer  Positioning  and  Mounting.  
While  collecting  data  on  a  route,  the  data  
collector  programming  should  be  consistent  
with  transducer  positioning  and  mounting  -­ the  
measured  position  relates  to  the  data  collector  
recorded  position.  For  this  reason,  the  machine  
measurement  positions  should  be  permanently  
marked.
PERIODIC  MONITORING  
Transducer  Positioning  and  Mounting.  
Magnet  mountings  require  some  care  in  
attaching  the  transducer.  The  transducer  needs  
to  be  mounted  so  that  it  does  not  rock  or  is  not  
loose  -­ this  may  cause  erroneous,  noisy  data.  It  
is  a  good  idea  to  try  to  move  the  transducer  
after  it  is  magnetically  attached.  If  it  rocks,  turn  
it  until  it  does  not  move  when  you  put  a  minor  
force  on  it.  
PERIODIC  MONITORING  
Some	
  general	
  recommendations	
  should	
  be	
  considered	
  when	
  vibration	
  is	
  
sampled	
  on	
  equipment	
  with	
  known	
  faults:	
  
1.	
  Never	
  stand	
  next	
  to	
  drive	
  couplings	
  or	
  other	
  locations	
  where	
  
components	
  would	
  likely	
  come	
  out	
  in	
  the	
  event	
  of	
  failure.	
  
2.	
  If	
  temporary	
  test	
  equipment	
  is	
  setup	
  for	
  extended	
  monitoring,	
  locate	
  the	
  
equipment	
  on	
  the	
  end	
  of	
  the	
  machine	
  train,	
  usually	
  on	
  the	
  drive	
  end.	
  
3.	
  Plan	
  an	
  escape	
  route	
  when	
  approaching	
  the	
  machine.	
  
4.	
  Determine	
  a	
  threshold	
  vibration	
  level	
  above	
  which	
  continued	
  testing	
  will	
  
not	
  be	
  performed.	
  Discuss	
  this	
  level	
  with	
  plant	
  personnel	
  prior	
  to	
  testing	
  
if	
  necessary	
  so	
  that	
  appropriate	
  action	
  can	
  be	
  quickly	
  taken	
  to	
  shut	
  the	
  
machine	
  off	
  if	
  the	
  threshold	
  values	
  are	
  exceeded.	
  
5.	
  Be	
  prepared	
  at	
  all	
  times	
  to	
  stop	
  testing,	
  move	
  to	
  a	
  lower	
  risk	
  area,	
  and	
  
possibly	
  shut	
  the	
  machine	
  down	
  if	
  conditions	
  change	
  so	
  that	
  noise	
  or	
  
vibration	
  levels	
  obviously	
  increase.	
  
PERIODIC  MONITORING  
Some	
  general	
  recommendations	
  should	
  be	
  considered	
  when	
  vibration	
  is	
  
sampled	
  on	
  equipment	
  with	
  known	
  faults:	
  
6.	
  NEVER	
  stay	
  around	
  a	
  machine	
  that	
  has	
  known	
  faults	
  with	
  increasing	
  
severity.	
  
7.	
  NEVER	
  continue	
  testing	
  once	
  the	
  pre-­‐determined	
  safe	
  vibration	
  
threshold	
  has	
  been	
  identified	
  to	
  be	
  exceeded	
  on	
  any	
  sample	
  point.	
  
8.	
  NEVER	
  continue	
  operating	
  a	
  machine	
  with	
  an	
  obvious	
  mechanical	
  fault	
  
such	
  as	
  loose	
  hold	
  down	
  bolts,	
  coupling	
  element	
  progressing	
  damage	
  
(rubber	
  material	
  falling	
  under	
  coupling),	
  metal	
  shavings	
  or	
  bolts	
  failing	
  
from	
  the	
  machine,	
  etc.	
  
PERIODIC  MONITORING  
Figure.	
  Possible	
  Unsafe	
  Data	
  Acquisition	
  Locations
PERIODIC  MONITORING  
Screening  and  Trending  
The  central  tasks  of  periodic  monitoring  are  
screening  and  trending.  Screening  is  the  process  of  
routine  data  sampling  and  comparison  of  that  data  
to  alarms  to  determine  if  the  condition  of  the  
machine  has  changed.  
PERIODIC  MONITORING  
PERIODIC  MONITORING  
Screening  and  Trending  
This  process  typically  involves  amplitude  changes  
using  overall  peak  or  RMS  values  of  velocity  or  
acceleration.  Changes  in  vibration  levels  can  be  
attributed  to  long-­ and  short-­term  changes  in  
machine  speed,  production  conditions,  mechanical  
defects,  thermal  conditions,  product  buildup,  and  
alignment  and  foundation  function.  
PERIODIC  MONITORING  
Screening  and  Trending  
A  change  in  measured  value  of  two  to  two  and  one-­
half  usually  indicates  a  genuine  change  in  
condition  leading  to  more  detailed  analysis,  more  
frequent  monitoring,  shut  down  for  inspection  or  
parts  replacement.  The  severity  of  the  problem  and  
management  procedures  dictate  what  combination  
of  these  actions  will  be  followed.  
PERIODIC  MONITORING  
PERIODIC  MONITORING  
Screening  and  Trending  
Unfortunately,  there  are  cases  where  trending  of  
overall  amplitude  values  of  vibration  does  not  work.  
Typically,  the  problem  is  either  lack  of  signal  
strength  (very  low  amplitudes),  noise  problems,  or  
masking  of  the  low  amplitude  important  data  by  
normal  vibration  levels.  For  example,  low  amplitude  
rolling  element  bearing  defect  frequencies  may  be  
sending  a  very  important  message  about  an  
impending  bearing  failure.  However,  there  is  a  much  
higher  amplitude  component  of  vibration  due  to  
mass  unbalance  or  gearmesh present  (Figure  6.8).  
PERIODIC  MONITORING  
Bearing	
  Frequencies	
  Masked	
  by	
  Gearmesh and	
  Mass	
  Unbalance	
  Frequencies.
PERIODIC  MONITORING  
Screening  and  Trending  
Changes  in  overall  amplitude  due  to  the  bearing  
defect  may  be  a  small  percentage  of  the  existing  
vibration  amplitude.  Trending  of  overall  amplitude  
values  in  this  case  is  useless.  Bearing  failures  will  
be  missed.  There  are  three  ways  of  dealing  with  this  
problem.  
PERIODIC  MONITORING  
Screening  and  Trending  
The  first  method  involving  moderately  low  (0.05  IPS-­
peak)  bearing  defect  frequency  amplitudes  uses  
RMS  trending  of  band  filtered  values  (Figure  6.8)  
which  eliminate  the  higher  amplitude  normal  
vibration  levels.  In  other  words,  only  the  data  
important  to  failure  are  being  trended.  In  actual  point  
of  fact,  usually  band  (filtered)  trending  is  an  adjunct  
to  overall  trending.  For  example,  a  trend  chart  like  
Figure  6.7  would  be  recorded  for  Bands  2,4,  and  6  
in  Figure  6.7.  
PERIODIC  MONITORING  
Bearing	
  Frequencies	
  Masked	
  by	
  Gearmesh and	
  Mass	
  Unbalance	
  Frequencies.
PERIODIC  MONITORING  
Screening  and  Trending  
The  second  method  involves  routine  high  resolution  
spectrum  analysis  where  important  bearing  defect  
frequency  amplitudes  are  very  low  (less  than  0.02  
IPS-­peak).  Here  the  severity  of  the  problem  is  
defined  by  the  presence  of  frequencies  (defect  
frequencies  and  sidebands,  Figure  6.8).  
PERIODIC  MONITORING  
Screening  and  Trending  
The  third  and  last  method  of  dealing  with  low  
amplitude  signals  involves  the  use  of  procedures  
that  filter  out  low  frequency  high  amplitude  portions  
of  the  vibration  data  prior  to  processing.  The  
peakness and  enveloping  methods  depend  on  high  
frequencies  to  carry  the  failure  oriented  information  
to  the  analyst.  Because  of  transducer  mounting  
uncertainties  and  design  natural  frequency  variance,  
these  methods  in  general  do  not  yield  trendable
results  or  indicate  the  severity  of  the  problem.  They  
do,  however,  indicate  the  presence  of  a  problem.  
PERIODIC  MONITORING  
Screening  and  Trending  
Therefore,  providing  a  message  to  management  to  
analyze  further  or  go  into  the  machine  and  
determine  the  severity.  These  methods  will  indicate  
where  the  problem  is  located  so  that  minimum  
energy  will  be  exhausted.  
MACHINE  ANALYSIS  
Machine  testing  for  in-­depth  analysis  has  two  levels
• Fault  analysis  -­ what  and  where  is  the  problem  
(Chapter  7)
• Condition  evaluation  -­ what  is  the  severity  of  
the  problem  (Chapter  8).  
MACHINE  ANALYSIS  
Fault  analysis  
In  the  time  waveform,  the  data  sample  is  essentially  
unprocessed  raw  data  that  has  information  about  
the  condition  of  the  machine.  The  analyst  obtains  an  
overview  of  what  is  at  fault  and  the  severity  of  the  
problem  from  the  periodicity,  shape,  and  amplitude  
of  the  time  waveform,  Figure  6.9  -­ lower  plot.  
MACHINE  ANALYSIS  
MACHINE  ANALYSIS  
Fault  analysis  
The  waveform  contained  in  Figure  6.9  shows  a  
shape  and  periodicity  that  indicates  vibration  of  one  
and  two  times  operating  speed  (small  peak  within  
the  period)  is  present.  The  amplitude  of  1.39  IPS  
indicates  that  it  is  a  serious  problem.  
MACHINE  ANALYSIS  
Fault  analysis  
For  more  analytical  details,  the  spectrum,  amplitude  
versus  frequency  -­ Chapter  7,  is  examined.  
Frequencies  in  the  spectrum,  Figure  6.9  -­ upper  
plot,  confirm  that  the  frequencies  of  operating  speed  
and  twice  operating  speed  are  present.  Since  this  is  
a  generator  where  vibration  generated  by  two  times  
operating  speed  (mechanical)  and  two  times  line  
frequency  (electrical)  can  be  present,  the  fault  
cannot  accurately  be  defined  through  the  use  of  
frequency  matching  without  further  in-­ depth  
analysis.  
MACHINE  ANALYSIS  
Fault  analysis  
Most  spectrum  analysis  is  done  through  frequency  
matching  -­ known  machine  frequencies  such  as  
operating  speed  are  matched  to  frequencies  present  
in  the  vibration  spectrum.  The  problem  in  Figure  6.9  
is  that  the  frequencies  of  twice  operating  speed  
7,200  cpm -­ 120  Hz  (mechanical-­ indicating  
misalignment)  and  twice  line  frequency  (electrical  -­
indicating  air-­gap  or  stator  faults)  are  equal.  Thus  
one  or  the  other  or  both  faults  could  be  present.  
MACHINE  ANALYSIS  
Condition  Evaluation  
Condition  Evaluation  is  the  process  of  determining  
the  severity  of  the  vibration  and  what  it  means  in  
terms  of  machine  condition.  Most  condition  
evaluation  is  done  with  charts  and  graphs  where  
overall  RMS  or  peak  values  of  vibration  are  
matched  against  the  standard  chart.  For  example,  
the  value  of  1.39  IPS  on  Figure  6.9  (lower  plot)  time  
waveform  would  be  compared  to  a  chart.  
MACHINE  ANALYSIS  
Condition  Evaluation  
Unfortunately,  this  provides  only  a  rough  
assessment  of  condition  and  more  detailed  analysis  
is  usually  required  because  these  charts  are  not  
machine  specific.  However,  some  charts  do  have  
adjustments  of  allowable  values  for  type,  mounting,  
and  size  of  machines.  
MACHINE  ANALYSIS  
ACCEPTANCE  TESTING  
Acceptance  testing  of  new  and  repaired  equipment  
provides  some  assurance  of  the  quality  of  
workmanship  provided  the  purchase  specification  is  
properly  written.  The  acceptance  test  is  based  on  a  
purchase  specification  that  includes  procedures,  
measurement  locations,  process  conditions,  
measures  and  how  they  are  processed,  and  
acceptable  levels  of  vibration.  Acceptance  testing  
may  be  conducted  in  the  shop  prior  to  equipment  
release  or  it  may  be  conducted  in  the  field.  
MACHINE  ANALYSIS  
ACCEPTANCE  TESTING  
Due  to  mounting,  process  activation,  and  other  
differing  conditions,  levels  of  vibration  will  differ  in  
these  methods.  If  no  specification  exists,  a  baseline  
test  should  be  conducted  and  the  data  compared  
with  general  vibration  standards.  The  baseline  test  
should  reflect  the  operating  conditions  of  the  
machine  and  its  environment  to  the  best  extent  
possible.  
MACHINE  ANALYSIS  
ACCEPTANCE  TESTING  
The  purchase  specification  should  include  testing  
procedures  as  well  as  acceptable  levels  of  vibration;;  
that  is,  it  should  be  similar  to  ISO,  IEC,  or  OM  
standards.  For  example,  ISO  10816  contains  
information  about  equipment  mounting,  the  
measures  to  be  used,  transducer  locations,  and  
acceptance  levels.  
MACHINE  ANALYSIS  
Procedure  for  Acceptance  Testing
1.	
  	
  Read	
  the	
  specification	
  and	
  determine	
  what	
  is	
  legally	
  required	
  for	
  
acceptance.	
  
2.	
  	
  If	
  no	
  specification	
  exists,	
  determine	
  what	
  the	
  owner	
  expects.	
  
3.	
  	
  Based	
  on	
  available	
  information	
  determine	
  the	
  measurement	
  locations,	
  
type	
  of	
  data	
  to	
  be	
  evaluated,	
  data	
  processing	
  if	
  any,	
  machine	
  speeds,	
  and	
  
process	
  conditions.	
  
4.	
  	
  Select	
  transducers	
  and	
  set	
  up	
  the	
  data	
  collector,	
  analyzer	
  or	
  tape	
  recorder	
  
to	
  acquire	
  data.	
  
5.	
  	
  Check	
  the	
  mounting	
  conditions	
  -­‐make	
  sure	
  loose	
  bolts	
  or	
  safety	
  issues	
  do	
  
not	
  exist.	
  
6.	
  	
  Conduct	
  the	
  machine	
  test	
  keeping	
  records	
  of	
  data	
  acquired.	
  
7.	
  	
  Evaluate	
  the	
  data	
  for	
  acceptance	
  and	
  give	
  reasons	
  if	
  the	
  machine	
  should	
  
not	
  be	
  acceptance.	
  
8.	
  	
  Write	
  a	
  brief	
  report.	
  
MACHINE  ANALYSIS  
DESIGN  TESTING
Design  characteristics  of  the  machine  such  as  
natural  frequencies,  critical  speeds,  and  damping  
levels  are  important  factors  in  vibration  analysis.  
Specialized  tests  have  been  designed  to  determine  
this  information  because  of  the  influence  of  design  
on  vibration  severity.  Abnormally  high  vibration  
levels  cause  bearing  failures,  rubs,  and  shaft  and  
structural  fatigue  failure.  In  addition,  high  vibration  
levels  may  affect  process  quality  -­ imaging  and  
printing  are  two  examples
MACHINE  ANALYSIS  
DESIGN  TESTING
Resonance  -­ matching  natural  frequencies  to  forcing  
frequencies  -­ cannot  be  tolerated  in  most  machines.  
Therefore,  special  vibration  tests  have  been  devised  
to  determine  the  common  design  parameters  -­
natural  frequencies  and  critical  speeds.  These  
advanced  tests  will  be  covered  in  subsequent  books  
at  advanced  levels.  
Chapter  7  – BASIC  ANALYSIS
Vibration  analysis  is  conducted  to  determine  
the  origin  of  the  vibration.  Vibration  sources  
include  mechanical  and  electrical  defects,  
normal  functioning  of  the  machine  or  its  
process,  installation  problems,  and  faulty  
design.  These  sources  all  involve  the  
generation  of  forces  which  cause  vibrations.  
SPECTRUM  ANALYSIS  
Basic  vibration  analysis  is  about  matching  
frequencies  -­ that  is  known  machine  frequencies  are  
related  to  those  of  the  measured  vibration.  The  
typical  vibration  analyzer  provides  the  vibration  
waveform  (usually  called  the  time  waveform)  and  a  
spectrum  -­ a  plot  of  vibration  level  versus  frequency.  
Figure  7.1  (lower  plot)  shows  a  data  sample  
obtained  by  a  sensor  from  a  generator  exciter  
pedestal  measurement.
SPECTRUM  ANALYSIS  
SPECTRUM  ANALYSIS  
The  lower  plot,  called  the  time  waveform,  shows  the  
data  as  it  was  acquired  from  the  exciter  by  the  
sensor.  It  has  a  period  (repeat  cycle)  of  16.7  mSec
or  0.0167  see  per  cycle  of  vibration.  
by  using  the  formula  f  =  1/T  =  60  Hz  =  3600  RPM.
Note  the  time  waveform  in  Figure  7.1  has  a  second  
peak  in  between  the  principal  peaks.  This  indicates  
that  another  vibration  frequency  is  present.  
SPECTRUM  ANALYSIS  
The  spectrum,  upper  plot,  is  required  because  the  
relative  size  (amplitude)  of  the  two  peaks  cannot  be  
readily  determined  from  the  time  waveform.  
The  spectrum  displays  the  amplitude  and  frequency  
of  each  vibration  component  is  required  for  analysis.  
In  this  case  the  frequency  of  the  second  vibration  
component  is  120  Hz  or  exactly  twice  the  first  
vibration  component  which  is  equal  to  operating  
speed.
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
The  spectrum  (a  plot  of  amplitude  versus  frequency  
-­ upper  plot  of  Figure  7.1)  is  computed  from  the  time  
waveform  by  a  numerical  process  called  an  
algorithm.  The  process  commonly  used  is  the  fast  
Fourier  transform.
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
When  the  analyst  is  setting  up  the  analyzer,  three  
decisions  have  to  be  made.  
1. Fmax is  the  maximum  frequency  measured  -­
1,250  Hz  in  Figure  7.1.
2. The  number  of  lines  which  is  tied  to  the  number  
of  data  points  -­ 400  lines  in  Figure  7.1.
3. The  window  which  is  related  to  the  type  of  
analysis  -­ Hanning in  Figure  7.1.  
The  number  of  lines  and  window  are  not  shown  on  
the  plot.  
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
Fmax
The  Fmax should  be  set  for  the  maximum  frequency  
desired  but  should  not  be  excessively  high;;  
however,  it  must  cover  the  frequency  range  of  
spectral  activity.  The  Fmax is  determined  from  the  
design  of  the  machine.  
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
The  number  of  lines  determines  the  detail  of  the  
spectrum.  The  fact  that  Figure  7.1  has  400  lines  
means  400  discrete  points  are  plotted  across  the  
frequency  axis  -­ no  information  is  provided  between  
the  lines.  If  a  frequency  does  not  fall  on  a  line,  then  
it  will  be  included  in  the  closest  line  with  an  
amplitude  error  dependent  on  the  window  used.  If  
two  vibration  components  are  close  together  and  fall  
in  the  same  bin  (the  area  around  the  line  -­ Figure  
7.2),  they  are  summed  and  a  true  picture  is  not  
obtained.  
SPECTRUM  ANALYSIS  
Figure	
  7.2.	
  Bins	
  and	
  Lines.
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
However,  the  penalty  for  more  lines  is  data  
acquisition  time.  Thus  it  takes  more  time  to  acquire  
data  when  using  a  large  number  of  lines.  
Data  Acquisition  Time  =  
ef4g?C	
  Eh	
  iDj?A	
  (e)	
  
klmn	
  
For  example,  in  the  spectrum  of  Figure  7.1  (upper  
plot),  the  data  acquisition  time  per  sample  was  400  
lines/1,250  Hz  or  0.32  sec.  Ten  averages  were  
made  -­ thus  the  total  data  acquisition  time  for  the  
spectrum  was  3.2  sec  (3,200  mSec).
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
Without  the  window,  the  resolution  (ability  to  resolve  
and  display  closely  spaced  frequencies)  would  be  
the  Fmax divided  by  the  number  of  lines  or  Fmax
/N=  3.125  Hz/line  in  Figure  7.1.  But  the  window,  
which  is  required  because  the  FFT  process  
degrades  the  resolution  by  spreading  vibration  
component  energy  into  adjacent  bins,  lowers  the  
ability  to  resolve  closely  spaced  frequencies.  The  
amount  of  actual  resolution  then  is  equal  to  two  
times  the  Fmax and  the  window  factor  divided  by  
the  number  of  lines  as  shown  below.  
SPECTRUM  ANALYSIS  
FAST  FOURIER  ANALYSIS  
Resolution  (Hz)  =  
The  Hanning window  which  was  used  in  Figure  7.1  
has  a  window  factor  (WF)  of  1.5.  
2 ×
Fmax 	
  	
  (Hz)	
  
N
× WF	
  
ANALYSIS  TERMINOLOGY  
Operating  Speed  and  Orders  
The  frequency  of  operating  speed  is  the  foundation  
of  spectrum  analysis  of  mechanically  generated  
vibrations.  Many  other  frequencies  in  the  spectrum  
are  related  to  the  operating  speed  -­ being  multiples  
(orders)  or  non-­multiples.  
ANALYSIS  TERMINOLOGY  
Figure  7.3  shows  a  spectrum  from  a  generator  
pedestal  with  one  component  (0.263  IPS-­peak)  at  
60  Hz  -­ the  frequency  of  operating  speed.  
ANALYSIS  TERMINOLOGY  
Vibrations  shown  in  Figures  7.3  is  symptomatic  of  
mass  unbalance
ANALYSIS  TERMINOLOGY  
Figure  7.4  shows  a  spectrum  with  operating  speed  
vibrations  60  Hz  and  a  second  order  120  Hz.
ANALYSIS  TERMINOLOGY  
Vibrations  shown  in  Figures  7.3  is  symptomatic  of  
misalignment
ANALYSIS  TERMINOLOGY  
Electrical  Frequencies  
Line  frequency  is  the  basic  frequency  of  AC  electric  
power  and  electrically  generated  vibration.  Line  
frequency  is  60  Hz  in  North  America  and  50  Hz  in  
the  remainder  of  the  world.  Line  frequency  will  not  
be  60  Hz  when  variable  frequency  drives  are  
analyzed.  In  each  case  the  base  frequency  must  be  
obtained  prior  to  analysis.  
ANALYSIS  TERMINOLOGY  
Figure  7.5  shows  data  from  a  motor  operating  at  
3,588  RPM.  
ANALYSIS  TERMINOLOGY  
The  second  order  is  dominant  (upper  plot)  but  may  
contain  mechanical  (2x  operating  speed)  and/or  
electrical  (2x  line  frequency)  vibration.  
ANALYSIS  TERMINOLOGY  
The  lower  plot  of  Figure  7.5,  which  is  a  zoom  
(increased  resolution)  of  the  data  on  the  upper  plot,  
shows  mechanical  (119.6  Hz)  and  electrical  (120  
Hz)  symptoms.  
COMMON  MACHINE  FAULTS  
Table	
  7.4.	
  Common	
  Machine	
  Faults.
•	
  	
  	
  Resonance	
  and	
  critical	
  speeds	
  
•	
  	
  	
  Mass	
  unbalance	
  
•	
  	
  	
  Misalignment	
  
•	
  	
  	
  Looseness	
  
•	
  	
  	
  Distortion	
  
•	
  	
  	
  Beats	
  
•	
  	
  	
  Rolling	
  element	
  bearing	
  defects	
  
•	
  	
  	
  Gear	
  defects	
  
•	
  	
  	
  Motor	
  faults	
  
•	
  	
  	
  Pumps	
  
•	
  	
  	
  Fans	
  
Resonance  and  Critical  Speeds  
All  systems  have  natural  frequencies  that  are  
not  active  unless  they  are  excited  by  some  
force.  When  a  forcing  frequency  such  as  
operating  speed  is  close  to  or  equal  to  a  natural  
frequency,  the  condition  of  resonance  occurs  
and  the  vibration  is  amplified  beyond  what  
would  normally  be  obtained  for  that  force.  
When  the  rotor  of  the  system  excites  the  
natural  frequency,  the  frequency  of  the  rotor  
that  matches  the  natural  frequency  of  the  
system  is  called  a  critical  speed.  
Resonance  and  Critical  Speeds  
Figure  7.8  is  an  example  of  a  resonance  in  a  
vertical  pump  support  structure.  
Figure	
  7.8.	
  Vertical	
  Pump	
  Resonance.
Resonance  and  Critical  Speeds  
The  operating  speed  of  the  pump  is  close  to  
the  natural  frequency  of  the  pump  frame  and  
support.  This  is  a  common  problem  with  pumps  
driven  by  variable  frequency  driven  motors.  It  is  
difficult  to  design  a  system  where  no  natural  
frequencies  will  occur  in  a  wide  speed  range.
Natural  frequencies  usually  respond  
directionally.  Therefore,  if  the  vibration  level  is  
high  in  one  direction  but  not  90° from  it,  that  is  
an  indication  that  it  may  be  resonant.
Mass  Unbalance  
Mass  unbalance  occurs  when  the  geometric  center  
(shaft  centerline)  and  the  mass  center  of  a  rotor  do  
not  coincide.  Unbalance  is  a  once-­per-­revolution  
fault  -­ that  is,  it  creates  vibration  at  the  frequency  of  
rotor  speed.
Mass  Unbalance  
it  creates  vibration  at  the  frequency  of  rotor  
speed
Figure	
  7.9.	
  Mass	
  Unbalance	
  of	
  a	
  Generator.
Mass  Unbalance  
This  can  be  done  with  phase  analysis  because  
the  nature  of  the  forces  is  different.  The  
spectrum  for  mass  unbalance  normally  has  a  
high  amplitude  component  at  a  frequency  of  
operating  speed  (Figure  7.9  -­ 3,600  RPM)  and  
low  amplitude  orders  of  operating  speed.  Mass  
unbalance  appears  to  be  similar  to  resonance;;  
however,  by  moving  the  sensor  90° the  
vibration  should  be  similar  in  amplitude.  
Misalignment  
The  magnitude  of  the  resulting  vibration  is  
dependent  on  the  radial  stiffness  of  the  components  
(bearings,  shafts,  seals,  couplings)  in  the  system.
It  is  characterized  by  two  peaks  at  1x  and  2x.
The  second  order  component  of  vibration  in  cases  
of  severe  misalignment  can  exceed  the  first  order.  
High  first-­order  axial  vibration  is  also  a  symptom  of  
misalignment.    
Misalignment  
Figure	
  7.9.	
  Generator	
  Misalignment.
Looseness    
Excessive  bearing  clearances  and  untightened  bolts  cause  
impacts  that  can  be  identified  in  the  spectrum  as  once-­per-­
revolution  vibration  plus  orders  of  operating  speed
Figure	
  7.11.	
  
Fan	
  
Looseness.
Rolling  Element  Bearing  Defects    
When  a  rolling  element  passes  over  a  bearing  defect  in  the  
races  or  cages  (Figure  7.14),  pulse-­like  forces  are  generated  
that  result  in  one  or  a  combination  of  bearing  frequencies.  
This  causes  pulses  in  the  time  waveform  and  bearing  
frequencies  and  harmonics  in  the  spectrum  (Figure  7.15)  at  
nonsynchronous  (not  an  order  of  operating  speed)  frequency  
and  resonance.  
Rolling  Element  Bearing  Defects    
Figure	
  7.14.	
  Nomenclature	
  of	
  Rolling	
  Element	
  Bearings.
Rolling  Element  Bearing  Defects    
Figure	
  7.15.	
  Rolling	
  Element	
  Bearing	
  Defects.
Rolling  Element  Bearing  Defects    
Figure  7.15  shows  the  spectrum  from  a  bearing  supporting  a  felt  
roll  (530  RPM)).  It  has  a  fundamental  ball  pass  frequency  of  the  
outer  race  of  56.25  Hz  or  6.37  times  operating  speed.  The  bearing  
frequencies  would  be  calculated  using  the  above  formulas  or  
would  be  given  by  the  bearing  manufacturer  as  a  multiple  of  
operating  speed  -­ in  this  case  BPFO  =  6.37  x  operating  speed.  In  
Figure  7.15  the  third  harmonic  has  sidebands  (small  peaks)  at  
operating  speed  frequency  (530  RPM/60  =  8.83  Hz).  
Rolling  Element  Bearing  Defects    
•    ball  pass  frequency  of  the  outer  race  (BPFO);;  generated  by  balls  
or  rollers  passing  over  defective  outer  races.  
•    ball  pass  frequency  of  the  inner  race  (BPFI);;  generated  by  balls  
or  rollers  passing  over  defective  inner  races.  
•    ball  spin  frequency  (BSF);;  generated  by  ball  or  roller  defects.  
•    fundamental  train  frequency  (FTF);;  generated  by  cage  defects  
or  improper  movements.  
•    ∅ =  contact  angle;;  angle  between  lines  perpendicular  to  the  
shaft  and  from  the  center  of  the  ball  to  the  point  where  the  arc  of  
the  ball  and  the  race  make  contact  (Figure  7.14c).  
•    N  =  number  of  rolling  elements  (balls  or  rollers).  
•    P  =  pitch  diameter,  in.  
•    B  =  ball  or  roller  diameter;;  average  value  for  tapered  bearings,  
in.  
•    RPS  =  speed  of  rotating  unit  in  revolutions  per  second.  
Rolling  Element  Bearing  Defects    
Ω =	
  RPM/60	
  =	
  RPS
FTF =
Ω
2
1 −
B
P
cos∅
BPFI =
N
2
Ω 1 +
B
P
cos∅
BPFO =
N
2
Ω 1 −
B
P
cos∅
BSF =
P
2B
Ω 1 −
B
P
1
cos1
∅
Gear  Defects  
Gearboxes  generate  high-­frequency  vibrations  as  a  result  of  the  
gearmeshing function  of  the  box.  The  greater  the  number  of  gear  
teeth  in  mesh  at  any  instant  the  smoother  the  performance  of  the  
box.  Gearbox  faults  fall  into  two  categories  -­ gear  meshing  and  
broken  teeth.  Gearmesh frequency  is  number  of  teeth  on  the  
pinion  times  speed  of  the  pinion  or  number  of  teeth  on  the  gear  
times  gear  speed.  These  frequencies  will  be  equal.  
The  gearmeshing problem  occurs  because  of  uneven  local  wear,  
pitting,  roughness,  and/or  machine  gear  tooth  quality.  As  the  teeth  
go  through  mesh  the  vibration  varies  because  the  surface  quality  
of  the  teeth  vary.  This  causes  vibration  with  amplitude  modulation  
(change)  which  results  in  gearmesh frequency  and  sidebands  in  
the  spectrum  
Gear  Defects  
Fans
On  fans,  pumps,  and  other  bladed  machines,  look  for  frequencies  
that  are  multiples  of  operating  speed  that  relate  to  the  number  of  
blades  or  vanes.  Figure  shows  data  from  a  six  (6)  bladed  fan.  
Fans
The  spectrum  (upper  plot)  shows  vibration  at  92.8  Hz  which  is  
close  to  six  (6)  times  the  operating  speed  (15.6  Hz).  This  vibration  
is  generally  caused  by  the  blades  passing  the  discharge  duct.  
CHAPTER  8-­ VIBRATION  SEVERITY
BEARING  HOUSING  EVALUATION
Table  8.2  shows  peak  and  RMS  velocity  levels  for  machine  
vibrations  based  on  evaluation  of  operating  speed  faults.  
MACHINE	
  CONDITION
ACCEPTABLE	
  LEVELS	
  (IPS)
RMS PEAK
Acceptance less	
  than	
  0.08 less	
  than	
  0.16
Normal less	
  than	
  0.12 less	
  than	
  0.24
Surveillance 0.12	
  to	
  0.28 0.24	
  to	
  0.7
Unacceptable more	
  than	
  0.28 more	
  than	
  0.7
Table	
  8.2.	
  Acceptable	
  Levels	
  of	
  Machine	
  Vibrations	
  for	
  Operating	
  Speed	
  Faults.
CHAPTER  8-­ VIBRATION  SEVERITY
BEARING  HOUSING  EVALUATION
Figure  8.1  shows  vibration  data  acquired  from  a  lobed  blower  operating  at  3,563  
RPM.
Vibration Analysis.pdf
Vibration Analysis.pdf

More Related Content

What's hot

R&t 2008 principles and practices of vibrational analysis - keefer
R&t 2008   principles and practices of vibrational analysis - keeferR&t 2008   principles and practices of vibrational analysis - keefer
R&t 2008 principles and practices of vibrational analysis - keefer
makarandnikume
 
Vibration analysis at thermal power plants
Vibration analysis at thermal power plantsVibration analysis at thermal power plants
Vibration analysis at thermal power plants
SHIVAJI CHOUDHURY
 

What's hot (20)

Vibration monitoring and its features for corelation
Vibration monitoring and its features for corelationVibration monitoring and its features for corelation
Vibration monitoring and its features for corelation
 
VIBRATION-ANALYSIS.ppt
VIBRATION-ANALYSIS.pptVIBRATION-ANALYSIS.ppt
VIBRATION-ANALYSIS.ppt
 
Vibration Analysis
Vibration AnalysisVibration Analysis
Vibration Analysis
 
R&t 2008 principles and practices of vibrational analysis - keefer
R&t 2008   principles and practices of vibrational analysis - keeferR&t 2008   principles and practices of vibrational analysis - keefer
R&t 2008 principles and practices of vibrational analysis - keefer
 
Machine Vibration Analysis
Machine Vibration AnalysisMachine Vibration Analysis
Machine Vibration Analysis
 
B. basic of vibration
B. basic of vibrationB. basic of vibration
B. basic of vibration
 
Bump test (Resonance Test)
Bump test (Resonance Test)Bump test (Resonance Test)
Bump test (Resonance Test)
 
BASICS OF VIBRATION.ppt
BASICS OF VIBRATION.pptBASICS OF VIBRATION.ppt
BASICS OF VIBRATION.ppt
 
Vibration measurement
Vibration measurement Vibration measurement
Vibration measurement
 
Condition monitoring & vibration analysis
Condition monitoring & vibration analysisCondition monitoring & vibration analysis
Condition monitoring & vibration analysis
 
Dynamics of Machinery Unit IV
Dynamics of Machinery Unit IVDynamics of Machinery Unit IV
Dynamics of Machinery Unit IV
 
Vibration Analysis Report
Vibration Analysis ReportVibration Analysis Report
Vibration Analysis Report
 
Vibration analysis unit1
Vibration analysis unit1Vibration analysis unit1
Vibration analysis unit1
 
Vibration analysis to find out fault in machines
Vibration analysis to find out fault in machinesVibration analysis to find out fault in machines
Vibration analysis to find out fault in machines
 
Fluke Vibration Testing 101 Webinar
Fluke Vibration Testing 101 WebinarFluke Vibration Testing 101 Webinar
Fluke Vibration Testing 101 Webinar
 
Condition Monitoring Basics
Condition Monitoring BasicsCondition Monitoring Basics
Condition Monitoring Basics
 
Orbit anlysis vibration
Orbit anlysis vibrationOrbit anlysis vibration
Orbit anlysis vibration
 
Vibration analysis at thermal power plants
Vibration analysis at thermal power plantsVibration analysis at thermal power plants
Vibration analysis at thermal power plants
 
Condition monitoring
Condition monitoringCondition monitoring
Condition monitoring
 
Condition monitoring
Condition monitoringCondition monitoring
Condition monitoring
 

Vibration Analysis.pdf

  • 1. Vibration  Analysis Dr./  Ahmed  Nagib November  9,  2015
  • 2. Vibration  Analysis  Lectures Chapter  I   Vibration  Sources  and  Uses   Chapter  II   Basic  Machinery  Vibrations   Chapter  III   Data  Collection  and  Analysis   Chapter  IV   Machine  Characteristics   Chapter  V   Vibration  Instruments   Chapter  VI   Vibration  Testing   Chapter  VII             Basic  Analysis   Chapter  VIII             Vibration  Severity  
  • 3. Vibration Q:  Will  structure  fail  before  the  human  body  in   a  factory  or  vice  versa?
  • 6. Sources  of  Vibration Table  1.1.    Sources  of  Vibration. Function Inadequate  Design Manufacturing  Processes Installation Wear  and  Abuse Faulty  Maintenance
  • 7. Sources  of  Vibration  -­ Function Vibration  by  imposed  motion
  • 8. Sources  of  Vibration  -­ Function The  two  causes  of  vibration  are  imposed   motions  and  forces.  Imposed  motions  usually   relate  to  the  function  of  the  machine.  Cams,   slider  cranks  (reciprocating  compressors  and   engines),  chain  and  sprocket  cogging,  and   misalignment  are  examples  of  devices  and   conditions  that  generate  vibrations  by  imposed   motions.  The  imposed  motion  creates  internal   forces  in  the  machine.  In  reality  all  vibration  is   essentially  caused  by  forces  that  are  generated   internally  or  applied  externally.  
  • 9. Sources  of  Vibration  -­ Inadequate   machine  design   can  be  responsible  for  excessive  vibration   because  the  machine  enhances  or  is  the  cause   of  unnecessary  pulsating  or  vibratory  forces.   For  example,  if  a  motor  stator  flexes  as  a  result   of  electromagnetic  forces,  unnecessary   vibration  results.
  • 10. Sources  of  Vibration  – Manufacturing   Process  and  Assembly   poor  quality  machining  and  manufacturing  or   assembly  errors.  These  conditions  enhance   background  noise  and,  in  some  cases,  will   produce  unacceptable  vibration.   • Gears  cut  with  a  poor  hobbing tool  will   produce  a  high-­frequency  gear-­mesh  like   vibration.   • Motors  assembled  with  rotors  that  are  not   centered  in  the  stator  will  cause  unbalanced   electromagnetic  forces  that  excite  vibration. • Inadequate  balancing  causes  excessive   forces  and  vibration
  • 11. Sources  of  Vibration  – Manufacturing   Process   Table  1.3.    Vibrating  Forces. Poor  Quality  Machining   Assembly  Errors   Installation   • misalignment   • distortion   • looseness   Structural  and  Material  Defects   Thermal  Distortion   Lack  of  Lubrication   Unbalance
  • 12. Sources  of  Vibration  – Installation  Erroes Misalignment,  distortion  (soft  foot),  and  looseness   (bolts  not  tight)  are  examples  of  conditions  that  cause   excessive  vibration;  Figure  1.4.  Normal  wear,   structural  damage,  and  abuse  can  modify  the  function   of  a  machine  and  so  cause  vibration.  
  • 13. Sources  of  Vibration  – Installation  Erroes
  • 14. Sources  of  Vibration  – Lack  or  Faulty   maintinance Machines  become  unbalanced,  need   lubrication,  and  require  changing  of  worn  parts.   Some  parts,  such  as  vibration  isolators,   deteriorate  over  time,  depending  on  the   environment.  Lack  of  or  excessive  lubrication  is   detrimental  to  the  life  of  rolling  element   bearings  as  well  as  gears.  Bolts  must  be  tight,   and  properly  torqued.  Fits  and  clearances  are   important  in  assembly.  Above  all  it  is  important   to  keep  good  records.  Lack  of  good   professional  maintenance  is  an  open  invitation   to  machine  vibration.  
  • 15. Harmonic Mass  Unbalance Periodic Misalignment Impulsive Rolling  Element   Bearing,  Gears  tooth Pulsating Random Cavitation  in   Pumps Types  Vibration
  • 16. Vibration  Effect Table  1.4.    Vibration  Effects. Catastrophic  Failure Fatigue  Failure Loss  of  Product  Quality Human  Annoyance The  weakest  link  in  a  machine  exterior,  its  piping,  ductwork,   or  supporting  structure,  can  fail  as  a  result  of  excessive   vibration.  Coupling,  shaft  and  bearing  failures  occur  in  the   rotating  elements.  Cracks,  prior  to  failure,  can  occur  in   ductwork  and  foundations;  piping  can  become  overstressed   and  fail.  
  • 17. Uses  of  Vibration Table  1.5.    Uses  of  Vibration. Acceptance  Testing Predictive  Maintenance Manufacturing
  • 18. Predictive  Maintinance Procedure Table  1.6.    Predictive  Maintenance. Monitoring Fault  Diagnosis Severity  Evaluation
  • 19. Measurement  and  Analysis Schematic  of  Data  Collection  Instrument.
  • 21. Measurement  and  Analysis Data  Acquisition  with  two  sensors
  • 23. Vibration Monthly  Trend  Plot  of  a  Pump  Motor  for   Peak  Velocity.
  • 24. Periodic  Monitoring data  are  acquired  sequentially  in  a  route  from   bearing  to  bearing  and  machine  to  machine.   The  data  collector  is  preprogrammed  and   routes  are  uploaded  in  the  computer  to  accept   and  store  the  data  acquired  from  the  machines   in  the  route.  After  acquisition,  the  data  are   downloaded  to  the  computer  for  trending  and   analysis.  
  • 25. Review Sources of  vibration  include  function,  inadequate   design,  manufacturing  processes,  installation,   wear,  abuse  and  bad  maintenance   Forces cause  vibration   Types of  vibration  include  harmonic,  periodic,   impulsive,  pulsating,  and  random Effects of  vibration  are  component  failures,  loss  of   product  quality,  and  human  annoyance   Uses of  vibration  include  acceptance  testing,   predictive  maintenance,  and  manufacturing   Sensors are  used  to  detect  vibrations   Analyzers are  used  to  quantify  the  amplitude  and   frequency  of  vibrations  
  • 26. Chapter  II  -­ Basic  Machinery  Vibrations   Table  2.1.  Vibration  Units The  basic  units  used  in  this  book  to  describe  vibratory  forces   and  motions,  from  the  English  system,  are  pound  (lb),  inch   (in.),  and  second  (see). Amplitudes of  vibrating  motion  are  described  using  the   following  units: displacement,  mils-­‐peak  to  peak  (1,000  mils  =  1  inch) velocity,  in./sec-­‐peak  or  rms (IPS-­‐peak  or  rms) acceleration,  gs peak  or  rms (386.1  in./sec2  =  1  g) Frequencies are  expressed  in  cycles/minute  (CPM)  or   cycles/second  (Hertz,  Hz),  or  orders  (multiples  of  operating   speed). Speeds are  expressed  in  revolutions/minute  (RPM).
  • 28. Vibration  Measurement Mechanical  vibration  is  measured  by  a   transducer  (also  called  sensor)  that  converts   vibratory  motion  to  an  electrical  signal.  The   units  of  the  electrical  signal  are  volts  (v)  or,   more  typically,  millivolts  (mv).  There  are  1,000   millivolts  per  volt  (mv/v)
  • 29. Vibration Example  2.2.  Measurement  Units 400  mv-­‐pk to  pk was  measured  by  a  displacement   transducer  that  has  a  scale  factor  of  200  mv/mil.  Then  the   displacement  amplitude  equals   400  mv − pk  to  pk 200  mv/mil = 2  mils  pk − pk Example  2.1.  Voltage  Units Convert  253  millivolts  to  volts 123  45 6777  45/5 = 0.253  v Convert  0.342  volts  to  millivolts   0.342  𝑣 6777  45 5 = 342  mv
  • 30. Proximity  Probe Proximity  probes,  also  termed  noncontacting eddy  current  displacement  transducers,  are   attached  to  the  bearing  housing  and  measure   shaft  vibration  relative  to  the  mounting  position   of  the  probe.  Two  probes  are  usually  mounted   at  a  90° angle  to  each  other  
  • 32. Vibration  motion Three  fundamental  properties  that  describe  vibration   are  frequency,  amplitude,  and  phase.  Frequency  is   defined  as  the  number  of  cycles  or  events  per  unit   time.  It  is  expressed  as  cycles  per  second  (Hertz,   Hz),  cycles  per  minute  (CPM),  or  orders  (multiples)   of  operating  speed
  • 33. Vibration  motion Amplitude  is  the  maximum  value  of  vibration  at  a   given  location  on  the  machine.  When  the  vibration  is   displayed  as  displacement  and  measured  in  mils  (1   mil  =1/  1,000  in.),  the  amplitude  measured  is  peak   to  peak.  
  • 34. Vibration  motion For  example,  in  Figure  2.6,  one  cycle  of  vibration  is   made  in  32.8  milliseconds  (mSec)  or  0.0328  sec.   Therefore,  one  cycle  divided  by  0.0328  sec.  equals   30.48  cycles  per  second.  ).  
  • 35. Vibration  motion Example  Period  and  Frequency From  Figure  2.6,  Period  (τ)  =  32.8  mSec/cycle τ =   31.=  4>?@ 6777  4>?@/A?@  =  0.0328  sec/  cycle Frequency  (f)  =   6 B?CDEF  (H) Then f  =   6 H = 6 7.731=  A?@/@J@K? =  30.49  Hz(cycles/sec) f  =  30.49  Hz  x  60  sec/min  =  1,829  cycles/minute  (CPM)
  • 36. Vibration  motion For  example,  in  Figure  2.6,  Velocity  equals  0.6  IPS-­ Peak.
  • 37. Vibration  motion Also,  the  velocity  amplitude  can  be  reported  in  root-­ mean-­square  (RMS)  units.  If  the  data  are  harmonic   (one-­frequency)  as  they  are  in  Figure  2.7,  then  the   RMS  is  equal  to  0.707  times  the  peak  or  0.424  IPS-­ RMS.  If  the  data  are  not  harmonic,  no  simple   mathematical  relationship  holds  between  RMS  and   peak  and  an  electronic  circuit  must  be  used  to  get   the  RMS.  The  advantage  of  the  peak  unit  is  that  it   always  can  be  obtained  from  the  time  waveform.  
  • 38. Vibration Vibration  Measures. Measure Units Description displacement mils  p-­‐p* motion  of  machine,   structure,  or  rotor;   relates  to  stress velocity in./sec,  IPS time  rate  of  motion;   relates  to   component  fatigue acceleration gs** relates  to  forces   present  in   components *1  mil  =  0.001  inch;  p-­‐p  =  peak  to  peak            **1  g  =  386.1  inches/sec2
  • 39. Vibration Displacement.  Displacement  (D)  is  the   dominant  measure  at  low  frequencies  and  is   related  to  stress  in  flexing  members.  It  is   expressed  in  mils  peak  to  peak  because  the   total  excursions  of  the  machine  motions  are   measured.  It  is  normally  nonharmonic  but   periodic  and  will  therefore  yield  different   positive  and  negative  peaks.  Displacement  is   used  as  the  measure  for  low-­frequency   vibration  [less  than  600  CPM  (10  Hz)]  on   bearing  caps  and  structures.  
  • 40. Vibration Displacement  is  also  commonly  used  to  determine   the  relative  motion  between  a  bearing  and  its   journal  or  between  the  machine  casing  and  its  shaft   to  assess  whether  or  not  rubbing  may  occur.  Figure   shows  vibration  data  plotted  in  the  displacement   measure  that  is  symmetrical  originating  from  a   harmonic  force  like  mass  unbalance.  
  • 41. Vibration Velocity  (V)  is  the  time  rate  of  change  of  displacement.   Velocity  cannot  be  sensed  by  touch  -­ only  changes  in  it.   Basically,  it  is  displacement  times  frequency  and  is  a   measure  of  fatigue  in  machines.  The  greater  the   displacement  and/or  frequency  of  vibration,  the  greater  is   the  severity  of  machine  vibration  at  the  measured  location. Velocity  is  used  to  evaluate  machine  condition  in  the   frequency  range  from  600  CPM  (10  Hz)  to  60,000  CPM   (1,000  Hz).
  • 42. Vibration Figure  2.8  is  a  plot  of  velocity  versus  time.  The  amplitude  is   measured  in  peak  units  positive  or  negative,  whichever  is   larger.  In  Figure  2.8  the  negative  peaks  are  larger;;   therefore,  the  peak  velocity  is  0.42  inches  per  second,  IPS-­ peak.  
  • 43. Vibration Acceleration  is  the  dominant  measure  at  higher   frequencies.  Because  it  is  related  to  force  it  can  be   sensed  by  touch.  It  is  proportional  to  the  force  on  a   machine  component  such  as  a  gear  and  is  used  to   evaluate  machine  condition  when  frequencies   exceed  1,000  Hz  (60,000  CPM)  in  gears  and   bearings.  Acceleration  is  the  time  rate  of  change  in   velocity.
  • 44. Vibration Figure  shows  acceleration  measured  on  a  gearbox;;   the  peak  amplitude  is  10  gs.  
  • 45. Vibration If  the  vibration  is  harmonic  (one  frequency),  the   amplitudes  of  the  velocity  and  acceleration  are   directly  related  to  displacement  by  frequency.  If  the   frequency  is  known  and,  the  measures-­ displacement,  velocity,  and  acceleration  -­ are   related  by  frequency.  If  a  measure  and  the   frequency  is  known,  the  two  other  measures  can   be  calculated  using  the  formulas  provided  below.   V  =  2𝜋fD and  A=2𝜋fV
  • 46. Vibration To  calculate  velocity,  displacement  must  be  changed  from   mils-­peak  to  peak  to  inches-­peak.  This  requires  division  by   two  (2)  and  by  one  thousand  (1,000  mils  =  1  inch).  To  obtain   acceleration  in  gs,  divide  the  value  in  in/sec2 by  386.1   in/sec2 per  g.  For  example,  a  vibration  displacement  of  5   mils-­pk to  pk becomes  5/2000  =  0.0025  inches-­peak.  For  a   frequency  of  100  Hz,  the  velocity  is  V  =  2  x  𝜋x  100  x  0.0025   in/sec-­peak.  V  =  1.57  IPS-­pk.  The  acceleration  A  =  2  x  𝜋x   100  x  1.57/386.1  =  2.55  gs-­peak.  A  displacement  of  6.4   mils-­pk to  pk relates  to  a  velocity  of  0.2  IPS-­peak  at  10Hz   whereas  the  acceleration  is  only  0.03  gs peak. An  acceleration  of  3.2gs  at  1,000  Hz  relates  to  a   displacement  of  0.064  mils-­pk to  pk.  Therefore,   displacement  and  acceleration  measures  are  restricted  to   low-­ and  high-­frequency  applications  respectively.  
  • 47. Vibration To  calculate  velocity,  displacement  must  be  changed  from   mils-­peak  to  peak  to  inches-­peak.  This  requires  division  by   two  (2)  and  by  one  thousand  (1,000  mils  =  1  inch).  To  obtain   acceleration  in  gs,  divide  the  value  in  in/sec2 by  386.1   in/sec2 per  g.  For  example,  a  vibration  displacement  of  5   mils-­pk to  pk becomes  5/2000  =  0.0025  inches-­peak.  For  a   frequency  of  100  Hz,  the  velocity  is  V  =  2  x  𝜋x  100  x  0.0025   in/sec-­peak.  V  =  1.57  IPS-­pk.  The  acceleration  A  =  2  x  𝜋x   100  x  1.57/386.1  =  2.55  gs-­peak.  A  displacement  of  6.4   mils-­pk to  pk relates  to  a  velocity  of  0.2  IPS-­peak  at  10Hz   whereas  the  acceleration  is  only  0.03  gs peak. An  acceleration  of  3.2gs  at  1,000  Hz  relates  to  a   displacement  of  0.064  mils-­pk to  pk.  Therefore,   displacement  and  acceleration  measures  are  restricted  to   low-­ and  high-­frequency  applications  respectively.  
  • 48. Vibration  Analysis The  basic  vibration  data  (waveforms)  collected  by  sensors   and  displayed  by  instruments  must  be  broken  down  into   frequency  components  in  order  to  perform  a  detailed   vibration  analysis.
  • 49. Vibration  Analysis Vibration  signals  are  usually  composed  of  multiple   frequency  components  with  different  amplitude.  The   amplitude  of  the  lower  plot  (time  waveform)  is  3.6  mils  peak-­ to-­peak;;  the  period  is  18.7  mSec (53.5  Hz).  The  upper  plot,   which  is  called  a  spectrum,  is  the  breakdown  of  the  time   waveform  in  mils  peak-­to-­peak  versus  frequency.  The   spectrum  is  obtained  from  the  waveform  using  a   mathematical  procedure  called  an  algorithm.  This  allows  the   analyst  to  determine  the  dominant  source  of  the  problem.   The  fundamental  frequency,  53.3  Hz,  of  the  data  in  Figure   2.10  is  equal  to  the  operating  speed  of  the  driven  pump   (3,198  RPM).  
  • 50. Vibration The  data  shown  in  Figure  2.11  were  obtained  from   a  velocity  sensor  mounted  on  a  generator  exciter   bearing  with  a  magnet.  
  • 51. Vibration The  amplitude  of  the  time  waveform  is  0.73   inch/second  (IPS)-­peak.  The  amplitude  in  the   spectrum  can  be  given  in  spectral  component   peaks  (0.275  IPS  at  60  Hz  and  0.24  IPS  at  120  Hz)   or  in  overall  root-­mean-­square  (RMS),  which  is   0.283  IPS
  • 52. Vibration The  RMS  measure  of  a  complex  waveform  cannot   be  obtained  from  the  peak  value.  If  the  vibration   waveform  is  not  harmonic  (one  frequency),  the   RMS  cannot  be  obtained  by  multiplying  the  peak   value  by  0.707  as  shown  in  Example  2.4.  Note  that   the  two  RMS  peaks  in  the  spectrum  do  not  add  up   to  the  actual  RMS  values.   Example  2.4.  Peak  and  RMS  Measurements. From  Figure  2.11 At  60  Hz  RMS  =  0.275  x  0.707  -­‐ 0.194  IPS At  120  Hz  RMS  =  0.24  x  0.707  -­‐ 0.170  IPS Total  RMS  in  the  spectrum  -­‐ 0.283  IPS
  • 53. Excitation The  purpose  of  vibration  analysis  is  to  identify   defects  and  evaluate  machine  condition.   Frequencies  are  used  to  relate  machine  faults   to  the  time-­varying  forces,  termed  forcing   frequencies,  that  cause  vibration.  It  is  therefore   important  to  identify  the  frequencies  of  machine   components  and  machine  systems  before   performing  vibration  analysis.  The  forces  are   often  the  result  of  defects  or  wear  of   components  or  are  due  to  equipment  design  or   such  installation  problems  as  misalignment,   soft  foot,  and  looseness.  
  • 54. Vibration Example  Machine  Forcing  Frequencies. Mass  unbalance shaft  rotational  frequency  (RPM) Misalignment two  times  RPM Bent  shaft RPM Vane  and  blade number  of  vanes/blades  x  RPM Electromagnetic two  times  line  frequency
  • 55. NATURAL  FREQUENCIES  AND  CRITICAL   SPEEDS   Natural  frequencies  are  determined  by  the  design  of   a  machine  or  component.  For  example,  the  shape  of   a  bell  will  determine  its  natural  frequency.  The   sound  of  the  bell  when  it  is  rung  is  its  natural   frequency.  How  long  it  rings  is  a  measure  of  its   damping.  Natural  frequencies  are  properties  of  a   system  and  are  dependent  on  the  distribution  of   mass  (material)  and  stiffness  (elasticity).  Every   system  has  a  number  of  natural  frequencies.   However,  they  are  not  multiples  of  the  first  natural   frequency  (with  the  exception  of  rare  instances  of   simple  components).  
  • 56. NATURAL  FREQUENCIES  AND  CRITICAL   SPEEDS   Natural  frequencies  are  not  important  in  machine   diagnostics  unless  a  forcing  frequency  occurs  at  or   close  to  a  natural  frequency  or  impacts  occur  within   the  machine.  If  a  forcing  frequency  is  close  to  a   natural  frequency,  a  resonance  exists,  and  the   vibration  level  is  high  because  the  machine  absorbs   energy  easily  at  its  natural  frequencies.  If  the  forcing   frequency  is  an  order  of  the  operating  speed  of  the   machine,  the  resonance  is  termed  a  critical  speed.   Only  natural  frequencies  in  the  range  of  forcing   frequencies  are  of  interest  in  the  vibration  analysis   of  machines.  
  • 57. REVIEW   •    Two  important  characteristics  of  vibration  are  frequency   and  amplitude.   •    The  frequency  is  the  number  of  cycles  per  unit  of  time.   •    The  period  is  the  time  required  for  one  cycle  of  vibration;;  it   is  the  reciprocal  of  frequency.   •    Amplitude  is  the  maximum  value  of  vibration  at  a  given   location  on  a  machine.  It  is  expressed  in  mils  (displacement),   in.!sec (velocity),  or  gs (acceleration).   •    The  amplitude  of  vibration  is  expressed  in  units  of  peak,   peak  to  peak,  or  rms.   •    Peak  and  rms are  used  with  velocity  and  acceleration;;  mils   peak  to  peak  are  used  with  displacement.   •    The  measures  of  vibration  -­ displacement  (stress),  velocity   (fatigue)  and  acceleration  (force)  -­ can  be  converted  one  to   the  other  if  the  vibration  is  a  single  frequency  (harmonic).  
  • 58. REVIEW   •    A  force,  or  excitation,  causes  vibration.   •    Vibratory  forces  arise  from  process  variable,  improper   design,  bad  installation,  and  defects.   •    Vibrations  are  analyzed  in  the  time  waveform  and  the   frequency  spectrum.   •    Natural  frequencies  are  a  property  of  a  machine  system   and  depend  on  mass  and  stiffness.   •    Resonance  occurs  when  a  forcing  frequency  is  equal  to  or   close  to  a  natural  frequency.   •    Vibration  is  amplified  at  resonance.  
  • 59. This  chapter  involves  the  acquisition  of  data  which  will  be   analyzed  and  used  to  make  maintenance  or  acceptance   decisions  on  the  operability  and  efficiency  of  machines.   Sources  of  data •    physical  observations  of  persons  walking  through  the  plant   •    periodic  collection  of  vibration  data,  oil  samples,  and   thermography  snapshots   •    continuous  vibration  monitoring  with  permanently   installed  sensors   •    periodic  or  continuous  acquisition  of  process   data  like   temperature,  pressure,  and  flow   •    design  and  installation  drawings  and  procedures   •    maintenance  records   Chapter  III  – Data  Collection
  • 60. Vibration The  procedures  and  processes  of  obtaining   data,  types  of  data,  sensors  and  instruments   for  collection  of  data,  and  computers  for   analyzing  and  displaying  data  will  be   discussed.   Any  vibration  analysis  is  only  as  good  as   the  data  collected. This  is  a  very  important  task  and  as  such  good   procedures  should  be  observed.  
  • 61. PHYSICAL  OBSERVATIONS  by  Human   Senses   While  there  are  several  types  of  recorded  data   that  form  the  basis  for  machine  fault  and   condition  analysis,  among  the  most  basic  data   are  direct  observations  by  the  person  doing  the   data  collection  based  on  human  senses  -­ hearing,  sight,  touch,  smell,  and  taste.  Human   sensory  capabilities,  although  not  analytical,   cannot  be  underestimated  in  the  machine   analysis  process.  
  • 62. Noise Unusual  noises  can  indicate  rubs,  bearing   defects,  looseness,  improper  assembly,  lack  of   lubrication,  and  any  other  metal  to  metal   contact  problems.  A  listening  rod  or  screw   driver  can  be  used  to  detect  a  bearing  defect  or   rubbing  in  a  low  speed  machine.  In  pumps,  a   sign  of  flow  problems  is  a  noise  that  sounds   like  gravel  in  the  piping.  Motors  and  generators   may  emit  high  frequency  whining  noises  when   they  are  subject  to  excessive  vibration  due  to   casing  distortion,  misalignment,  or  coupling   unbalance.  
  • 63. Noise High  pitched  noise  from  new  gears  indicates   bad  construction  and  machinery  quality  or   design  (low  contact  ratio).  Rubbing  of  guards   by  pulleys  and  belts  will  cause  impacting  and   noise.  Lack  of  lubrication  in  oil  starved  bearings   or  bearings  with  excessive  clearance  means   that  the  bearing  needs  attention.  Excessive   noise  is  almost  always  an  indicator  of  trouble.   The  experienced  data  collector  will  be  able  to   enhance  their  analytical  capability  by  learning   to  identify  noise  sources  and  associate  the   physical  problem  with  them.  
  • 64. Sight The  use  of  sight  is  an  even  more  powerful  tool  for   data  collectors.  Smoke,  fire,  and  catastrophic   failures  need  and  get  immediate  attention.  However,   other  mundane  faults  may  go  unnoticed  for  months.   Foundation  and  bearing  pedestal  faults  are  the   source  of  many  cases  of  excessive  vibration.   A  flashlight  and  feeler  gage  or  knife  help  to  root  out   these  type  problems.  Squishing  oil  between  joints  is   a  certain  clue  of  looseness. Cracks  in  ducting  and  piping  and  other  machine   components  provide  clues  to  the  presence  of   excessive  vibration.  Vibration  analysis  will  confirm   these  faults
  • 65. Sight Vibration  analysis  will  confirm  these  faults.  The  data   collector  may  have  to  go  off  route  to  measure  these   cases.   Hammered  and  Torched  to  Fit.
  • 66. Smell  and  Touch   The  senses  of  smell  and  touch  are  less  important  but   should  not  be  neglected.  Unusual,  abnormal  odors  are   easily  detected  by  the  human  sense  of  smell.  Oil   smoke  can  be  smelled  long  before  an  oil  fire.  Ammonia   and  other  chemical  and  gas  leaks  are  best  detected  by   the  nose.  Even  small  quantities  can  be  detected.  Hot   bearings  or  other  machine  parts  that  are  not  normally   operating  above  ambient  temperature  can  be  identified   by  touch.  However,  the  data  collector  needs  to  exercise   extreme  caution.  A  steaming  or  red  hot  machine  should   not  be  touched.  The  water  can  confirm  the   temperatures  are  above  100⁰  C.   The  use  of  taste  is  not  recommended  in  this  work.  
  • 67. PERIODIC  AND  CONTINUOUS  DATA   COLLECTION   Periodic  and  continuous  non-­intrusive  data   collection  provide  current  and  trended  information   about  the  condition  of  a  machine.  The  procedure   involves  the  use  of  sensors  to  acquire  data,  meters   to  quantify  the  measured  data,  and  instruments  to   store,  manipulate,  and  present  the  data.  Periodically   acquired  data  provide  an  intermittent  record  of  what   is  happening  in  the  machine.  Whereas  continuous   data  monitoring  and  collection  provides  continuous   surveillance  along  with  the  ability  to  protect  the   machine  through  data  based  automatic  shutdown.  
  • 68. PERIODIC  AND  CONTINUOUS  DATA   COLLECTION   Measurement  of  vibration  for  analytical  use  is   performed  by  a  sensor,  sometimes  called  a   transducer  or  pickup,  and  is  nonintrusive  to  the   machine  or  process,  Figure  3.2.  The  sensor   transforms  the  vibration  (mechanical  motion)  of  the   mounting  location  to  an  electrical  voltage  which   varies  with  time,  Figure  3.3.
  • 69. PERIODIC  AND  CONTINUOUS  DATA   COLLECTION  
  • 70. Selecting  a  Measure   A  measure  is  a  unit  or  measures  of  vibration  are   standard  of  measurement  that  provides  a  means  for   physical  evaluation.  Examples  of  measures  are   pounds  for  weight  and  feet  for  height.  Three  basic   available  displacement,  velocity,  and  acceleration.   Ideally  the  sensor  would  directly  provide  the   selected  measure.  Unfortunately,  sensor  limitations   do  not  always  allow  direct  measurement  of  vibration   in  the  proper  measure.  Other  predictive   maintenance  based  measures  are  temperature,   pressure,  and  viscosity.  
  • 71. Selecting  a  Measure   The  measure  is  selected  on  the  basis  of  the   frequency  content  of  the  vibration  present,  the  type   of  sensor,  the  design  of  the  machine,  the  type  of   analysis  to  be  conducted  (e.g.,  faults,  condition,   design  information),  and  the  information  sought.  
  • 72. Selecting  a  Measure   Relative  shaft  displacement which  is  measured  with  a  noncontacting relative   displacement  sensor,  proximity  probe,  shows  the   extent  of  bearing  clearance  taken  up  by  vibration   and  is  used  over  a  frequency  range  as  wide  as  the   shaft  speed.  This  permanently  mounted  probe   measures  the  relative  motion  between  the  point  of   mounting  and  the  rotor.  
  • 73. Selecting  a  Measure   Absolute  displacement which  is  used  for  low-­frequency  vibration  (0  to   10Hz)  measured  on  the  bearing  pedestal,  relates  to   stress  (shaft  or  structure)  and  is  typically  measured   with  a  double  integrated  accelerometer.  It  is  called   seismic  vibration.  Absolute  displacement  of  a  shaft   must  be  measured  with  either  a  contacting  sensor   or  a  noncontacting sensor  in  combination  with  a   seismic  sensor  mounted  on  the  bearing  pedestal.  
  • 74. Selecting  a  Measure   Velocity For  general  machinery  monitoring  and  analysis  in   the  span  from  10  Hz  to  1,000  Hz,  velocity  is  the   default  measure.  Velocity  as  a  time  rate  of  change   of  displacement  is  dependent  upon  both  frequency   and  displacement  and  related  to  fatigue.  It  has  been   shown  to  be  a  good  measure  in  the  span  for  10Hz   to  1,000  Hz  because  a  single  value  for  rms or  peak   velocity  can  be  used  in  rough  assessments  of   condition  without  the  need  to  consider  frequency.   Most  modem  data  collectors  use  accelerometers  but   the  signal  must  be  integrated  to  obtain  velocity.  
  • 75. Selecting  a  Measure   Acceleration   is  the  measure  used  above  1,000  Hz;;  it  relates  to   force  and  is  used  for  such  high-­ frequency  vibrations   as  gearmesh and  rolling  element  bearing  defects.   Acceleration  and  velocity  are  absolute  measures   taken  on  the  bearing  housing  or  as  close  to  the   bearing  as  possible.  
  • 76. Selecting  a  Measure   .   Measure Useful   Frequency   Span Physical   Parameter Application Relative  displacement   (Proximity  probe) 0  – 1000  HZ stress/motion relative  motions   in   bearings/casings. Absolute  displacement   (seismic) 0  – 10  Hz stress/motion machine  condition Velocity (seismic) 10  – 1000  Hz energy/fatigue general  machine,   medium-­‐ frequency   vibrations Acceleration (seismic) >1000  Hz force general  machine,   medium-­‐high-­‐ frequency   vibrations
  • 77. Selecting  a  Measure   The  rule  of  thumb  for  measure  selection  is  that   velocity  is  used  for  bearing  pedestal  measurement   up  to  2,000  RPM  and  acceleration  is  used  above   that  machine  speed.  If  the  machine  has  permanent   non-­contacting  displacement  sensors,  then   displacement  is  acquired.
  • 78. Selecting  a  Measure   FREQUENCIES   Bearing  Frequencies   FTF = Ω 2 1 − B P cos CA BPFI = N 2 Ω 1 + B P cos CA BPFO = N 2 Ω 1 − B P cos CA BSF = P 2B Ω 1 − B P 1 cos1 CA FTF =  fundamental   train  frequency CA =  contact  angle     BPFI =  ball  pass  frequency,  inner  race   Ω =  machine  speed   BPFO =  ball  pass  frequency,  outer  race N =  number  of   rolling  elements     BSF =  ball  spin  frequency P =  pitch  diameter,   in     RPM =  shaft  speed B =  ball  or  roller  diameter,  in   Bearing  defect  frequencies  are  same  units  as  machine  speed
  • 79. Selecting  a  Measure   FREQUENCIES   Bearing  Frequencies   General  Guideline  Bearing  Frequencies   (for  use  in  maximum  Frequency  selection  ONLY)   BPFO  =  0.41  x  RPM  x  N   BPFI  =  0.59  x  RPM  x  N   FTF  =  0.41  x  RPM   BSF  =  0.22  x  RPM  x  N   FAN blade  pass  frequency  =  no  blades  x  RPM  
  • 80. Example  3.1.  Measure  and  Sensor  Selection  -­‐ Fan. Select  a  measure  and  sensor  for  a  fan  operating  at  950  RPM.  The  fan  has   seven  (7)  blades  and  fifteen  (15)  rolling  elements  in  its  bearings.   The  frequencies  of  interest  are  operating  speed  and  orders,  blade  pass   frequency  and  multiples,  and  rolling  element  fault  frequencies,  and  multiples.     operating  speed  frequency  =   ]27  ^_` a7 =  15.83  Hz  and  orders blade  pass  frequency  =  no  blades  x  RPM   blade  pass  frequency  =   ]27  ^_` a7 ×7  =  110.8  Hz  and  multiples   ball  pass  frequency  of  inner  race  =  0.6  x  no.  balls  x  RPM bearing  fault  frequency  =   ]27  ^_` a7 ×0.6×15   =  142.5  Hz  and  multiples The  majority  of  the  frequency  activity  is  between  150  and  1425  Hz,  if  ten   multiples  are  used.  Therefore,  velocity  measure  will  provide  the  best   information.  An  integrated  accelerometer  or  velocity  sensor  can  be  used  to   acquire  the  data.  
  • 81. Example  3.2.  Measure  Selection  -­‐ Low  Speed  Roll Select  measure(s)  for  low-­‐speed  200  RPM  dryer  roll.  The  multi-­‐ ton  roll  is  mounted  on  large  rolling   element  (26)  bearings.  Because  the  roll  operates  at  such  a  low   speed,  mass  unbalance  is  not  a  major   consideration  since  the  force  is  small.  The  highest  rolling  element   bearing  frequency  is  the  ball  pass   frequency  of  the  inner  race.  It  can  be  estimated  as   BPFI  =  (0.6)  (RPM)  (N) BPFI  =  (0.6)  200  (26)  =  3,120  CPM  (52  Hz) Therefore,  the  frequency  span  is  520  Hz  if  ten  multiples  are  used.   This  value  is  within  the  velocity  range  (see  Table  3.1).  
  • 82. Example  3.3.  Measure  Selection  -­‐ Motor Select  measure(s)  for  a  200  HP-­‐four  pole  induction  motor  with  eight  rolling   elements  in  the  bearings.  The  operating  speed  vibrations  have  a  frequency  of   1,800  CPM  (30  Hz)  and  a  frequency  span  of300  Hz,  which  is  within  the  velocity   range.  For  ten  multiples,  the  bearing  frequency  span  is   (BPFI)  (10)  =  (0.6)  (8)  (1,800)  (10)  =  86,400  CPM  (1,440  Hz) Because  the  majority  of  the  activity  is  in  the  velocity  range,  a  velocity   transducer  can  be  used  even  though  some  activity  is  above  1,000  Hz.  The   useful  frequency  spans  of  all  measures  overlap.  Therefore,  the  measure   should  be  selected  from  the  predominant  portion  of  the  frequency  activity  of   the  component.  For  example,  if  the  default  frequency  span  for  the  bearing   had  been  2,880  Hz  (16  rolling  elements),  acceleration  would  have  been   selected  as  the  measure  for  the  bearings.  Unfortunately,  the  shaft  vibration   frequency  span  of300  Hz  remains  within  the  velocity  range.  Therefore,  two   measures,  velocity  and  acceleration,  are  required.  
  • 83. Vibration  Sensors Magnitude,  frequency,  and  phase  between  two   signals  are  used  for  evaluation.  Sensor   selection  is  based  on  sensitivity,  size  required,   selected  measure,  frequency  response,  and   machine  design  and  speed.  The  sensor  should   be  mounted  as  close  to  the  source  of  vibration   as  possible.  
  • 84. Proximity  probes The  proximity  probe  (non-­contacting  eddy  current   displacement  transducer)  shown  in  Figure  3.5   measures  static  and  dynamic  displacement  of  a  shaft   relative  to  the  bearing  housing.  It  is  permanently   mounted  on  many  large  (greater  than  1,000  HP)   machines  for  monitoring  (protection  and  trending)  and   analysis.  
  • 85. Proximity  probes The  probe  generates  a  negative  DC  voltage   proportional  to  the  distance  of  the  shaft  from  the  sensor   (gap).  The  typical  gap  is  40  mils  or  at  200  mv/mil,  8   volts.  The  negative  voltage  decreases  as  the  shaft  gets   closer  to  the  probe.  The  probe  generates  an  AC  voltage   proportional  to  the  vibration  with  a  scale  factor  of  200   mv/mil.  Therefore,  the  voltage  measured  is  divided  by   the  scale  factor  to  obtain  the  vibration  level  (Example   3.4).  The  probe  does  require  an  18  or  24  volt  power   supply.  
  • 86. Example  3.4 Assuming  the  data  on  Figure  3.3  were  taken  from   a  proximity  probe  with  a  scale  factor  of  200  mv/mil   (0.20  Volts/mil),  the  peak  to  peak  displacement   would  be  1.58  volts  divided  by  0.2  volts  per  mil  or   7.9  mils-­pk to  pk.  If  the  measured  gap  voltage  was   7.6  volts,  then  the  gap  (distance  from  the  probe  to   the  shaft)  would  be  7.6  volts  divided  by  0.2   Volts/mil  or  38  mils.  
  • 87. Velocity  transducers Velocity  transducers.  The  velocity  transducer  (Figure   3.6)  is  a  seismic  transducer  (i.e.,  it  measures  absolute   vibration)  that  is  used  to  measure  vibration  levels  on   casings  or  bearing  housings  in  the  range  from  10  Hz  to   2,000  Hz.  The  transducer  is  self-­excited  -­ that  is,  it   requires  no  power  supply.  The  self-­generated  signal   can  be  directly  passed  to  an  oscilloscope,  meter,  or   analyzer  for  evaluation.  A  typical  velocity  transducer   generates  500  mv/(in./sec).  
  • 89. Accelerometers Accelerometers  are  used  to  measure  vibration  levels   on  casings  and  bearing  housings;;  they  are  the   transducers  typically  supplied  with  electronic  data   collectors.  An  accelerometer  (Figure  3.7)  consists  of  a   small  mass  mounted  on  a  piezoelectric  crystal  that   produces  an  electrical  output  proportional  to   acceleration  when  a  force  is  applied  from  the  vibrating   mass.  
  • 90. Accelerometers The  size  of  an  accelerometer  is  proportional  to  its   sensitivity.  Small  accelerometers  (the  size  of  a  pencil   eraser)  have  a  sensitivity  of  5  mv/g  (1  g  =  386.1   in./sec2)  and  a  flat  frequency  response  to  25  kHz.  A   1,000  mv/g  accelerometer,  which  is  used  for  low-­ frequency  measurement,  may  be  as  large  as  a  velocity   sensor;;  however,  the  limit  of  its  usable  frequency  span   may  be  to  1,000  Hz.  The  analyst  should  be  aware  of   the  properties  of  each  accelerometer  being  used.  
  • 92. Accelerometers If  vibration  velocity  is  desired,  the  signal  is  usually   integrated,  which  electronically  converts  acceleration  to   velocity,  before  it  is  recorded  or  analyzed;;  an  analog   integrator/power  supply  is  shown  in  Figure  3.8.   Analog  Integrator  and  Power
  • 93. Accelerometers Accelerometers  are  recommended  for  permanent   seismic  monitoring  because  of  their  extended  life  and   because  their  cross  sensitivity  is  low.  (Cross  sensitivity   means  that  the  transducer  generates  a  signal  in   horizontal  direction  from  vibration  in  the  vertical   direction.)   However,  cable  noise,  transmission  distance,  and   temperature  sensitivity  of  the  accelerometer  must  be   carefully  evaluated.  Excellent  guidelines  are  available   from  vendors  for  accelerometer  use.  
  • 94. Sensor  Selection   Important  considerations  in  sensor  selection  include   frequency  response,  signal-­to-­noise  ratio,  size,  thermal  and   amplitude  sensitivity  of  the  sensor,  and  the  strength  of  the   signal  being  measured.  The  frequency  range  of  the  sensor   must  be  compatible  with  the  frequencies  generated  by  the   mechanical  components  of  the  machine.  Otherwise,  another   transducer  must  be  selected  and  the  signal  converted  to  the   proper  measure.  For  example,  if  the  velocity  measure  is   desired  at  frequencies  above  2,000  Hz,  an  accelerometer   integrated  to  velocity  should  be  selected  to  obtain  the   signal.  If  the  time  waveform  of  the  velocity  measure  is   desired,  the  signal  must  be  acquired  from  a  velocity  pickup   or  analog  integrated  signal  from  an  accelerometer,  either   within  or  external  to  the  data  collector.  
  • 95. Sensor  Selection   The  cable  that  transmits  the  signal  to  the  data  collector  can   cause  erroneous  readings.  Many  standard  cables  are   specially  wound  cords  that  are  more  convenient  than  the   standard  coaxial  construction.  But,  because  many   conductors  are  flexible  at  the  core,  individual  strands  may   fail  at  stress  points  as  a  result  of  handling  or  packing  in  a   carrying  case.  In  addition,  the  terminals  must  be  handled   carefully.  
  • 96. Sensor  Mounting   The  method  used  to  mount  a  vibration  sensor  can  affect  the   frequency  response  because  the  natural  frequency  of  an   accelerometer  can  decrease,  depending  on  the  mounting   method  used  -­ hand-­held,  magnetic,  adhesive,  threaded   stud  (Figure  3.9). Method Frequency  Limit Hand  Held 500  Hz Magnet 2,000  Hz Adhesive 2,500-­‐4,000  Hz Bees  Wax 5,000  Hz Stud 6,000-­‐10,000  Hz Approximate  Frequency  Spans  for  100  mv/g   Accelerometers.
  • 97. Sensor  Location   The  key  to  accurate  vibration  measurement  is  placement  of   the  sensors  at  a  point  that  is  responsive  to  machine   condition.  In  any  event  the  sensor  should  be  placed  as   close  to  the  bearing  as  is  physically  possible  and  in  the  load   zone.  Figure  3.10  shows  the  optimum  points  for  mounting   sensors  for  data  acquisition  in  a  normal  bearing  mounting
  • 98. Sensor  Location   The  horizontal  and  vertical  locations  at  the  bearing   centerline  are  shown.  These  locations  are  used  to  sense   the  vibrations  from  radial  forces  such  as  mass  unbalance.   Vibrations  from  axially-­directed  forces  such  as  gearmesh and  bearing  faults  are  measured  in  the  axial  direction  in  the   load  zone.  
  • 99. Sensor  Location   The  sensor  must  be  placed  as  close  to  the  bearing  as   possible,  even  though  placement  is  restricted  by  such   components  as  housings,  coupling  guards,  and  fan  covers. In  general,  radial  readings  are  taken  on  radial  bearings;;  that   is,  any  antifriction  bearing  with  a  contact  angle  of  0°.   Radial  bearings  are  used  in  electric  motors,  in  medium-­ to   light-­duty  fans,  and  in  power  transmission  units  not  subject   to  axial  loading.   Angular  contact  bearings  or  any  bearing  absorbing  thrust   have  a  radial-­to-­axial  coupling  that  requires  an  axial   measurement  for  accurate  condition  monitoring.  
  • 100. Review Measure: a  unit  or  standard  of  measurement     Frequency  Span: Fmax or  frequency  range  in  the   spectrum   Sensor: device  that  senses  mechanical   vibration  and  emits  an  electrical   signal   Frequency  Response: amplitude  out  of  an   electrical  device  such  as  a   sensor  as  a  function  of   frequency  
  • 101. Chapter  4 – Machine  Characteristics The  design  and  function  of  machines  and  their   peripheral  equipment  determine  the  basic   vibration  characteristics  encountered  in   machine  condition  monitoring  and  diagnostics.   Manufacturing  and  installation  quality  may  alter   the  vibrations  of  newly  installed  equipment.   These  mechanisms  determine  the  amplitude   and  frequency  of  vibrations  measured  under  a   baseline  condition.  
  • 102. Chapter  4 – Machine  Characteristics As  the  machine  continues  in  service,  defects   due  to  fatigue  and  wear  appear  as  part  of  the   aging  process.  The  severity  of  these  defects  is   dependent  on  load,  lubrication,  contamination,   and  machine  speed.  These  defects  often  cause   vibrations  at  unique  frequencies  and  increases   in  the  amplitudes  of  vibrations  at  existing   frequencies  such  as  operating  speed  and  its   orders.  
  • 103. General  Characteristics It  is  important  to  know  the  connection  between   measured  vibrations  and  the  function  and   operating  mechanisms  of  the  machine.  By   knowing  how  the  machine  works  and  what  can   go  wrong  the  analyst  can  better  determine  what   a  measured  vibration  pattern  means.  Vibrations   are  generated  by  forces  which  are  caused  by   mechanisms  involved  in  the  design,   manufacturing,  installation,  and  wear  and   structural  failures  of  the  machine.
  • 104. General  Characteristics The  more  information  available  about  the   machine  design,  construction,  supports,   operational  responses,  and  defect  responses,   the  easier  will  be  the  diagnosis  of  defects  and   malfunctions.  All  service  equipment  should  be   cataloged  and  the  following  data  listed.  
  • 105. General  Characteristics •    broad  characteristics  such  as  rotational  frequencies,   gear  mesh,  vane  pass,  and  bearing  defect  frequencies.   •    vibration,  temperature  gradients,  or  pressure  initiated   by  an  operating  component  or  system.   •    vibration  responses  to  process  changes.   •    characteristics  identified  with  the  specific  machine   type.   •    known  natural  frequencies  and  mode  shapes.   •    sensitivity  to  vibration  from  mass  unbalance,   misalignment,  distortion,  and  other  malfunction/defect   excitations.   •    sensitivity  to  instability  from  wear  or  changes  in   operating  conditions.  
  • 106. SOURCES  OF  VIBRATION   Source Design  and   Function Manufacturing Installation Defects mass   unbalance • • • eccentricity • • • • misalignment • • • looseness • • • distortion • • • cogging • gear  defects • • • bearing   defects • • • electrical • • • • flow  noise •
  • 107. SOURCES  OF  VIBRATION   Source Design  and   Function Manufacturing Installation Defects natural   frequency • • thermal • • bad  grout • • reciprocating • flexible • • oil  whirl • • • excessive   clearance • • • • poor  quality • • overstressed • hydrodynamic • • • acoustic • • • machining • • •
  • 108. Design  and  Function   Mass  unbalance  occurs  when  the  mass  center  of  a   rotating  part  is  not  located  at  the  geometric  center.   However,  it  may  result  from  unsymmetrical  design  of   a  part  such  as  a  coupling  hub.  Normally   components  and  parts  would  have  a  symmetrical   design  to  avoid  this  problem.  The  frequency  of  mass   unbalance  is  the  shaft  operating  speed  and  the   amplitude  is  dependent  on  the  mass  unbalance  and   speed  squared.  
  • 109. Design  and  Function   Mass  unbalance   .  However,  mechanisms  such  as  the  cam  in  Figure   are  likely  to  be  unbalanced  because  the  mass   center  is  not  at  the  geometric  center.
  • 110. Design  and  Function   Cogging  of  chain  links  of  a  sprocket,  Figure  4.4,   occurs  because  of  the  intermittent  forces  generated   from  the  sprocket  teeth  entering  and  exiting  the   chain.  The  cogging  frequency  is  the  number  of   sprocket  teeth  times  the  RPM  of  the  sprocket.   Similarly,  the  frequency  of  a  timing  belt  is  the   number  of  grooves  in  the  pulley  times  the  RPM  of   the  pulley.
  • 111. Design  and  Function   Flow  noise  is  normally  generated  from  inlet   conditions  (mixed  flow  from  elbows,  reducers,  or   increasers)  or  operating  off  the  best  efficiency  point,   BEP,  of  the  pump.  Straight  flow  is  usually  ensured   by  having  at  least  ten  (10)  pipe  diameters  of   straight,  constant  diameter  pipe  prior  to  the  pump   inlet.  BEP  operation  is  designed  into  the  system  by   proper  system  design.  Too  little  back  pressure   causes  cavitation  while  too  high  back  pressure   causes  recirculation  of  the  flow  at  the  inlet.  Both   conditions  cause  random  noise  and  vibration  and   sound  like  gravel  circulating  in  the  pump.  
  • 112. Design  and  Function   Certain  responses  (Table  4.2),  including  vibration,   temperature,  and  pressure  can  be  related  to   components  of  the  system
  • 113. Design  and  Function   Component Frequency antifriction  bearings ball  pass  frequency,  outer  race ball  pass  frequency,  inner  race fundamental  train  frequency rotating  unit  frequency ball  spin  frequency hydrodynamic  journal  bearings frictional  frequency,  whirl  frequencies gears rotating  unit  frequency   gear-­‐mesh  frequencies  and  harmonics   harmonics  of  gear-­‐mesh  frequencies   assemblage  frequencies   system  natural  frequencies  (gear-­‐ tooth  defects) Blade  wheels  and  impellers Rotating  unit  frequencies vane  and  blading  frequencies   harmonics  of  vane  and  blading   frequencies
  • 114. Design  and  Function   Component Frequency rotors trapped  fluid  rotational  frequency   directional  natural  frequencies   higher  harmonics couplings  and  universal  joints orders  of  rotating  frequency reciprocating  mechanisms rotating  frequency  and  its  orders Electric  motor  rotors sidebands  at  no  poles  x  slips
  • 115. Chapter  5  – VIBRATION  INSTRUMENTS The  sensor  which  changes  the  mechanical   motion  of  the  machine  to  an  electrical  signal  is   connected  to  an  instrument  which  provides  an   analytical  read  out  and/or  print  out.  The  read   out  can  be  as  simple  as  a  single  number  from  a   meter  or  a  waveform  from  an  oscilloscope.   More  elaborate  analyzers  provide  spectra   (amplitude  versus  frequency)  and  digital  time   waveforms. Data  collectors  provide  overall   values,  filtered  values,  phase  readings,   spectra,  and  time  waveforms.  
  • 116. Chapter  5  – VIBRATION  INSTRUMENTS Figure  5.1.  Time  Waveform
  • 117. Chapter  5  – VIBRATION  INSTRUMENTS Figure  5.2.  Spectrum  (Top)  and  Waveform  (Bottom).
  • 118. Chapter  5  – VIBRATION  INSTRUMENTS Figure.  Trend  on  Three  Bearing  Pedestals.
  • 119. Data  Collectors  and  Analyzers   The  data  collector  (and  analyzers  are  all  Fast   Fourier  Transform  (FFT)  based  calculated  off  a   digitized  waveform  that  is  obtained  from  a   sensor.  
  • 120. Data  Collectors  and  Analyzers   The  spectrum  of  Figure   5.10  (upper  plot)  has   400  lines  (bins)  and  a   frequency  span  of   1,000  Hz.  Therefore,   there  are  400  divisions   across  the  horizontal   frequency  scale  where   data  can  be  located.   Any  frequency   between  these  lines  is   included  in  the  closest   adjacent  bin.  
  • 121. Chapter  6  – VIBRATION  TESTING Basically  there  are  four  types  of  vibration  tests   that  the  machine  analyst  conducts • periodic  monitoring • fault  and  condition  analysis • Acceptance • design.  
  • 122. Chapter  6  – VIBRATION  TESTING Periodic  monitoring serves  a  predictive  maintenance  program  by   acquiring  vibration  data  on  a  routine  basis  on   organized  routes  with  data  point  specific   collector  setups.  The  data  collected  on  the   route  are  compared  against  previous  data  and   alarm  settings  to  evaluate  the  machine's   change  in  condition.  Data  are  downloaded  into   a  computer  for  trending  and  analysis.  
  • 123. Chapter  6  – VIBRATION  TESTING Machine  analysis   is  conducted  when  trended  data  exceed  alarm   levels.  Frequencies  and  amplitudes  are   evaluated  to  determine  the  fault  and  severity  of   the  problem.
  • 124. Chapter  6  – VIBRATION  TESTING Acceptance  testing   is  used  to  determine  whether  a  new  or  repaired   machine  meets  the  specification  in  the   purchase  agreement.  Usually  decisions  are   made  on  the  basis  of  agreed  upon   measurements  and  vibration  levels  according   to  specified  procedures.  
  • 125. Chapter  6  – VIBRATION  TESTING Design  testing   Basic  tests  for  design  characteristics  are   conducted  to  determine  machine  dynamic   properties  such  as  natural  frequencies,   damping,  and  critical  speeds.  
  • 126. PERIODIC  MONITORING   Periodic  monitoring  of  machine  vibrations  is   one  of  the  principal  components  of  any   predictive  maintenance  program  because  it   provides  information  that  allows  decisions  to  be   made  on  production  scheduling,  minimizes  the   occurrence  of  catastrophic  equipment  failures,   and  provides  rational  management  of  assets   and  resources.  By  using  the  electronic  data   collector,  an  individual  can  effectively  monitor   many  machines  for  signs  of  equipment   malfunction,  wear,  and  failure  during   production.  
  • 127. PERIODIC  MONITORING   Machine  Knowledge   The  person  collecting  data  should  have  a   working  knowledge  of  the  machines  being   monitored.  This  knowledge  involves  internal   construction,  supports,  foundations  and  piping   as  well  as  how  the  machine  works  internally   (Chapter  4).  The  experienced  data  collector  will   be  aware  of  and  report  unusual  physical   behavior  (Chapter  3)  through  senses  of  touch,   sound,  sight,  and  smell.  
  • 128. PERIODIC  MONITORING   Machine  Knowledge   These  signs  of  deterioration  are  often  vital  in   the  process  of  non-­intrusive  monitoring.   Knowledge  of  speeds  and  characteristics   common  to  individual  machines  (Chapter  4)  is   absolutely  essential.  There  are  many  texts  and   magazines  on  machine  function  which  can  heIp the  data  collector  continuously  expands   machine  knowledge.  Viewing  the  machine   being  repaired  or  having  a  background  as  an   operator,  millwright,  or  mechanic  provide   invaluable  experience.  
  • 129. PERIODIC  MONITORING   Data  Collection  Procedures   The  data  collection  route  can  be  based  on  plant   layout,  machine  train,  machine  type,  or  data   type.  Whatever  the  criterion  used  for  route   design,  it  should  allow  efficient  movement  of   the  data  collector  from  machine  to  machine  and   data  point  to  data  point.  Figure  6.1  shows  a   route  for  a  4,000  HP  motor  driven  boiler  feed   pump  while  Figure  6.2  shows  a  schematic   diagram  of  the  location  of  measurements.
  • 130. PERIODIC  MONITORING   Figure  6.1.   Example  of  a   Route  for  Motor   Driven  Boiler   Feed  Pump
  • 131. PERIODIC  MONITORING   Figure  6.2.  Location  of  Measurement  Points.
  • 132. PERIODIC  MONITORING   Transducer  Positioning  and  Mounting.   While  collecting  data  on  a  route,  the  data   collector  programming  should  be  consistent   with  transducer  positioning  and  mounting  -­ the   measured  position  relates  to  the  data  collector   recorded  position.  For  this  reason,  the  machine   measurement  positions  should  be  permanently   marked.
  • 133. PERIODIC  MONITORING   Transducer  Positioning  and  Mounting.   Magnet  mountings  require  some  care  in   attaching  the  transducer.  The  transducer  needs   to  be  mounted  so  that  it  does  not  rock  or  is  not   loose  -­ this  may  cause  erroneous,  noisy  data.  It   is  a  good  idea  to  try  to  move  the  transducer   after  it  is  magnetically  attached.  If  it  rocks,  turn   it  until  it  does  not  move  when  you  put  a  minor   force  on  it.  
  • 134. PERIODIC  MONITORING   Some  general  recommendations  should  be  considered  when  vibration  is   sampled  on  equipment  with  known  faults:   1.  Never  stand  next  to  drive  couplings  or  other  locations  where   components  would  likely  come  out  in  the  event  of  failure.   2.  If  temporary  test  equipment  is  setup  for  extended  monitoring,  locate  the   equipment  on  the  end  of  the  machine  train,  usually  on  the  drive  end.   3.  Plan  an  escape  route  when  approaching  the  machine.   4.  Determine  a  threshold  vibration  level  above  which  continued  testing  will   not  be  performed.  Discuss  this  level  with  plant  personnel  prior  to  testing   if  necessary  so  that  appropriate  action  can  be  quickly  taken  to  shut  the   machine  off  if  the  threshold  values  are  exceeded.   5.  Be  prepared  at  all  times  to  stop  testing,  move  to  a  lower  risk  area,  and   possibly  shut  the  machine  down  if  conditions  change  so  that  noise  or   vibration  levels  obviously  increase.  
  • 135. PERIODIC  MONITORING   Some  general  recommendations  should  be  considered  when  vibration  is   sampled  on  equipment  with  known  faults:   6.  NEVER  stay  around  a  machine  that  has  known  faults  with  increasing   severity.   7.  NEVER  continue  testing  once  the  pre-­‐determined  safe  vibration   threshold  has  been  identified  to  be  exceeded  on  any  sample  point.   8.  NEVER  continue  operating  a  machine  with  an  obvious  mechanical  fault   such  as  loose  hold  down  bolts,  coupling  element  progressing  damage   (rubber  material  falling  under  coupling),  metal  shavings  or  bolts  failing   from  the  machine,  etc.  
  • 136. PERIODIC  MONITORING   Figure.  Possible  Unsafe  Data  Acquisition  Locations
  • 137. PERIODIC  MONITORING   Screening  and  Trending   The  central  tasks  of  periodic  monitoring  are   screening  and  trending.  Screening  is  the  process  of   routine  data  sampling  and  comparison  of  that  data   to  alarms  to  determine  if  the  condition  of  the   machine  has  changed.  
  • 139. PERIODIC  MONITORING   Screening  and  Trending   This  process  typically  involves  amplitude  changes   using  overall  peak  or  RMS  values  of  velocity  or   acceleration.  Changes  in  vibration  levels  can  be   attributed  to  long-­ and  short-­term  changes  in   machine  speed,  production  conditions,  mechanical   defects,  thermal  conditions,  product  buildup,  and   alignment  and  foundation  function.  
  • 140. PERIODIC  MONITORING   Screening  and  Trending   A  change  in  measured  value  of  two  to  two  and  one-­ half  usually  indicates  a  genuine  change  in   condition  leading  to  more  detailed  analysis,  more   frequent  monitoring,  shut  down  for  inspection  or   parts  replacement.  The  severity  of  the  problem  and   management  procedures  dictate  what  combination   of  these  actions  will  be  followed.  
  • 142. PERIODIC  MONITORING   Screening  and  Trending   Unfortunately,  there  are  cases  where  trending  of   overall  amplitude  values  of  vibration  does  not  work.   Typically,  the  problem  is  either  lack  of  signal   strength  (very  low  amplitudes),  noise  problems,  or   masking  of  the  low  amplitude  important  data  by   normal  vibration  levels.  For  example,  low  amplitude   rolling  element  bearing  defect  frequencies  may  be   sending  a  very  important  message  about  an   impending  bearing  failure.  However,  there  is  a  much   higher  amplitude  component  of  vibration  due  to   mass  unbalance  or  gearmesh present  (Figure  6.8).  
  • 143. PERIODIC  MONITORING   Bearing  Frequencies  Masked  by  Gearmesh and  Mass  Unbalance  Frequencies.
  • 144. PERIODIC  MONITORING   Screening  and  Trending   Changes  in  overall  amplitude  due  to  the  bearing   defect  may  be  a  small  percentage  of  the  existing   vibration  amplitude.  Trending  of  overall  amplitude   values  in  this  case  is  useless.  Bearing  failures  will   be  missed.  There  are  three  ways  of  dealing  with  this   problem.  
  • 145. PERIODIC  MONITORING   Screening  and  Trending   The  first  method  involving  moderately  low  (0.05  IPS-­ peak)  bearing  defect  frequency  amplitudes  uses   RMS  trending  of  band  filtered  values  (Figure  6.8)   which  eliminate  the  higher  amplitude  normal   vibration  levels.  In  other  words,  only  the  data   important  to  failure  are  being  trended.  In  actual  point   of  fact,  usually  band  (filtered)  trending  is  an  adjunct   to  overall  trending.  For  example,  a  trend  chart  like   Figure  6.7  would  be  recorded  for  Bands  2,4,  and  6   in  Figure  6.7.  
  • 146. PERIODIC  MONITORING   Bearing  Frequencies  Masked  by  Gearmesh and  Mass  Unbalance  Frequencies.
  • 147. PERIODIC  MONITORING   Screening  and  Trending   The  second  method  involves  routine  high  resolution   spectrum  analysis  where  important  bearing  defect   frequency  amplitudes  are  very  low  (less  than  0.02   IPS-­peak).  Here  the  severity  of  the  problem  is   defined  by  the  presence  of  frequencies  (defect   frequencies  and  sidebands,  Figure  6.8).  
  • 148. PERIODIC  MONITORING   Screening  and  Trending   The  third  and  last  method  of  dealing  with  low   amplitude  signals  involves  the  use  of  procedures   that  filter  out  low  frequency  high  amplitude  portions   of  the  vibration  data  prior  to  processing.  The   peakness and  enveloping  methods  depend  on  high   frequencies  to  carry  the  failure  oriented  information   to  the  analyst.  Because  of  transducer  mounting   uncertainties  and  design  natural  frequency  variance,   these  methods  in  general  do  not  yield  trendable results  or  indicate  the  severity  of  the  problem.  They   do,  however,  indicate  the  presence  of  a  problem.  
  • 149. PERIODIC  MONITORING   Screening  and  Trending   Therefore,  providing  a  message  to  management  to   analyze  further  or  go  into  the  machine  and   determine  the  severity.  These  methods  will  indicate   where  the  problem  is  located  so  that  minimum   energy  will  be  exhausted.  
  • 150. MACHINE  ANALYSIS   Machine  testing  for  in-­depth  analysis  has  two  levels • Fault  analysis  -­ what  and  where  is  the  problem   (Chapter  7) • Condition  evaluation  -­ what  is  the  severity  of   the  problem  (Chapter  8).  
  • 151. MACHINE  ANALYSIS   Fault  analysis   In  the  time  waveform,  the  data  sample  is  essentially   unprocessed  raw  data  that  has  information  about   the  condition  of  the  machine.  The  analyst  obtains  an   overview  of  what  is  at  fault  and  the  severity  of  the   problem  from  the  periodicity,  shape,  and  amplitude   of  the  time  waveform,  Figure  6.9  -­ lower  plot.  
  • 153. MACHINE  ANALYSIS   Fault  analysis   The  waveform  contained  in  Figure  6.9  shows  a   shape  and  periodicity  that  indicates  vibration  of  one   and  two  times  operating  speed  (small  peak  within   the  period)  is  present.  The  amplitude  of  1.39  IPS   indicates  that  it  is  a  serious  problem.  
  • 154. MACHINE  ANALYSIS   Fault  analysis   For  more  analytical  details,  the  spectrum,  amplitude   versus  frequency  -­ Chapter  7,  is  examined.   Frequencies  in  the  spectrum,  Figure  6.9  -­ upper   plot,  confirm  that  the  frequencies  of  operating  speed   and  twice  operating  speed  are  present.  Since  this  is   a  generator  where  vibration  generated  by  two  times   operating  speed  (mechanical)  and  two  times  line   frequency  (electrical)  can  be  present,  the  fault   cannot  accurately  be  defined  through  the  use  of   frequency  matching  without  further  in-­ depth   analysis.  
  • 155. MACHINE  ANALYSIS   Fault  analysis   Most  spectrum  analysis  is  done  through  frequency   matching  -­ known  machine  frequencies  such  as   operating  speed  are  matched  to  frequencies  present   in  the  vibration  spectrum.  The  problem  in  Figure  6.9   is  that  the  frequencies  of  twice  operating  speed   7,200  cpm -­ 120  Hz  (mechanical-­ indicating   misalignment)  and  twice  line  frequency  (electrical  -­ indicating  air-­gap  or  stator  faults)  are  equal.  Thus   one  or  the  other  or  both  faults  could  be  present.  
  • 156. MACHINE  ANALYSIS   Condition  Evaluation   Condition  Evaluation  is  the  process  of  determining   the  severity  of  the  vibration  and  what  it  means  in   terms  of  machine  condition.  Most  condition   evaluation  is  done  with  charts  and  graphs  where   overall  RMS  or  peak  values  of  vibration  are   matched  against  the  standard  chart.  For  example,   the  value  of  1.39  IPS  on  Figure  6.9  (lower  plot)  time   waveform  would  be  compared  to  a  chart.  
  • 157. MACHINE  ANALYSIS   Condition  Evaluation   Unfortunately,  this  provides  only  a  rough   assessment  of  condition  and  more  detailed  analysis   is  usually  required  because  these  charts  are  not   machine  specific.  However,  some  charts  do  have   adjustments  of  allowable  values  for  type,  mounting,   and  size  of  machines.  
  • 158. MACHINE  ANALYSIS   ACCEPTANCE  TESTING   Acceptance  testing  of  new  and  repaired  equipment   provides  some  assurance  of  the  quality  of   workmanship  provided  the  purchase  specification  is   properly  written.  The  acceptance  test  is  based  on  a   purchase  specification  that  includes  procedures,   measurement  locations,  process  conditions,   measures  and  how  they  are  processed,  and   acceptable  levels  of  vibration.  Acceptance  testing   may  be  conducted  in  the  shop  prior  to  equipment   release  or  it  may  be  conducted  in  the  field.  
  • 159. MACHINE  ANALYSIS   ACCEPTANCE  TESTING   Due  to  mounting,  process  activation,  and  other   differing  conditions,  levels  of  vibration  will  differ  in   these  methods.  If  no  specification  exists,  a  baseline   test  should  be  conducted  and  the  data  compared   with  general  vibration  standards.  The  baseline  test   should  reflect  the  operating  conditions  of  the   machine  and  its  environment  to  the  best  extent   possible.  
  • 160. MACHINE  ANALYSIS   ACCEPTANCE  TESTING   The  purchase  specification  should  include  testing   procedures  as  well  as  acceptable  levels  of  vibration;;   that  is,  it  should  be  similar  to  ISO,  IEC,  or  OM   standards.  For  example,  ISO  10816  contains   information  about  equipment  mounting,  the   measures  to  be  used,  transducer  locations,  and   acceptance  levels.  
  • 161. MACHINE  ANALYSIS   Procedure  for  Acceptance  Testing 1.    Read  the  specification  and  determine  what  is  legally  required  for   acceptance.   2.    If  no  specification  exists,  determine  what  the  owner  expects.   3.    Based  on  available  information  determine  the  measurement  locations,   type  of  data  to  be  evaluated,  data  processing  if  any,  machine  speeds,  and   process  conditions.   4.    Select  transducers  and  set  up  the  data  collector,  analyzer  or  tape  recorder   to  acquire  data.   5.    Check  the  mounting  conditions  -­‐make  sure  loose  bolts  or  safety  issues  do   not  exist.   6.    Conduct  the  machine  test  keeping  records  of  data  acquired.   7.    Evaluate  the  data  for  acceptance  and  give  reasons  if  the  machine  should   not  be  acceptance.   8.    Write  a  brief  report.  
  • 162. MACHINE  ANALYSIS   DESIGN  TESTING Design  characteristics  of  the  machine  such  as   natural  frequencies,  critical  speeds,  and  damping   levels  are  important  factors  in  vibration  analysis.   Specialized  tests  have  been  designed  to  determine   this  information  because  of  the  influence  of  design   on  vibration  severity.  Abnormally  high  vibration   levels  cause  bearing  failures,  rubs,  and  shaft  and   structural  fatigue  failure.  In  addition,  high  vibration   levels  may  affect  process  quality  -­ imaging  and   printing  are  two  examples
  • 163. MACHINE  ANALYSIS   DESIGN  TESTING Resonance  -­ matching  natural  frequencies  to  forcing   frequencies  -­ cannot  be  tolerated  in  most  machines.   Therefore,  special  vibration  tests  have  been  devised   to  determine  the  common  design  parameters  -­ natural  frequencies  and  critical  speeds.  These   advanced  tests  will  be  covered  in  subsequent  books   at  advanced  levels.  
  • 164. Chapter  7  – BASIC  ANALYSIS Vibration  analysis  is  conducted  to  determine   the  origin  of  the  vibration.  Vibration  sources   include  mechanical  and  electrical  defects,   normal  functioning  of  the  machine  or  its   process,  installation  problems,  and  faulty   design.  These  sources  all  involve  the   generation  of  forces  which  cause  vibrations.  
  • 165. SPECTRUM  ANALYSIS   Basic  vibration  analysis  is  about  matching   frequencies  -­ that  is  known  machine  frequencies  are   related  to  those  of  the  measured  vibration.  The   typical  vibration  analyzer  provides  the  vibration   waveform  (usually  called  the  time  waveform)  and  a   spectrum  -­ a  plot  of  vibration  level  versus  frequency.   Figure  7.1  (lower  plot)  shows  a  data  sample   obtained  by  a  sensor  from  a  generator  exciter   pedestal  measurement.
  • 167. SPECTRUM  ANALYSIS   The  lower  plot,  called  the  time  waveform,  shows  the   data  as  it  was  acquired  from  the  exciter  by  the   sensor.  It  has  a  period  (repeat  cycle)  of  16.7  mSec or  0.0167  see  per  cycle  of  vibration.   by  using  the  formula  f  =  1/T  =  60  Hz  =  3600  RPM. Note  the  time  waveform  in  Figure  7.1  has  a  second   peak  in  between  the  principal  peaks.  This  indicates   that  another  vibration  frequency  is  present.  
  • 168. SPECTRUM  ANALYSIS   The  spectrum,  upper  plot,  is  required  because  the   relative  size  (amplitude)  of  the  two  peaks  cannot  be   readily  determined  from  the  time  waveform.   The  spectrum  displays  the  amplitude  and  frequency   of  each  vibration  component  is  required  for  analysis.   In  this  case  the  frequency  of  the  second  vibration   component  is  120  Hz  or  exactly  twice  the  first   vibration  component  which  is  equal  to  operating   speed.
  • 169. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   The  spectrum  (a  plot  of  amplitude  versus  frequency   -­ upper  plot  of  Figure  7.1)  is  computed  from  the  time   waveform  by  a  numerical  process  called  an   algorithm.  The  process  commonly  used  is  the  fast   Fourier  transform.
  • 170. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   When  the  analyst  is  setting  up  the  analyzer,  three   decisions  have  to  be  made.   1. Fmax is  the  maximum  frequency  measured  -­ 1,250  Hz  in  Figure  7.1. 2. The  number  of  lines  which  is  tied  to  the  number   of  data  points  -­ 400  lines  in  Figure  7.1. 3. The  window  which  is  related  to  the  type  of   analysis  -­ Hanning in  Figure  7.1.   The  number  of  lines  and  window  are  not  shown  on   the  plot.  
  • 171. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   Fmax The  Fmax should  be  set  for  the  maximum  frequency   desired  but  should  not  be  excessively  high;;   however,  it  must  cover  the  frequency  range  of   spectral  activity.  The  Fmax is  determined  from  the   design  of  the  machine.  
  • 172. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   The  number  of  lines  determines  the  detail  of  the   spectrum.  The  fact  that  Figure  7.1  has  400  lines   means  400  discrete  points  are  plotted  across  the   frequency  axis  -­ no  information  is  provided  between   the  lines.  If  a  frequency  does  not  fall  on  a  line,  then   it  will  be  included  in  the  closest  line  with  an   amplitude  error  dependent  on  the  window  used.  If   two  vibration  components  are  close  together  and  fall   in  the  same  bin  (the  area  around  the  line  -­ Figure   7.2),  they  are  summed  and  a  true  picture  is  not   obtained.  
  • 173. SPECTRUM  ANALYSIS   Figure  7.2.  Bins  and  Lines.
  • 174. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   However,  the  penalty  for  more  lines  is  data   acquisition  time.  Thus  it  takes  more  time  to  acquire   data  when  using  a  large  number  of  lines.   Data  Acquisition  Time  =   ef4g?C  Eh  iDj?A  (e)   klmn   For  example,  in  the  spectrum  of  Figure  7.1  (upper   plot),  the  data  acquisition  time  per  sample  was  400   lines/1,250  Hz  or  0.32  sec.  Ten  averages  were   made  -­ thus  the  total  data  acquisition  time  for  the   spectrum  was  3.2  sec  (3,200  mSec).
  • 175. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   Without  the  window,  the  resolution  (ability  to  resolve   and  display  closely  spaced  frequencies)  would  be   the  Fmax divided  by  the  number  of  lines  or  Fmax /N=  3.125  Hz/line  in  Figure  7.1.  But  the  window,   which  is  required  because  the  FFT  process   degrades  the  resolution  by  spreading  vibration   component  energy  into  adjacent  bins,  lowers  the   ability  to  resolve  closely  spaced  frequencies.  The   amount  of  actual  resolution  then  is  equal  to  two   times  the  Fmax and  the  window  factor  divided  by   the  number  of  lines  as  shown  below.  
  • 176. SPECTRUM  ANALYSIS   FAST  FOURIER  ANALYSIS   Resolution  (Hz)  =   The  Hanning window  which  was  used  in  Figure  7.1   has  a  window  factor  (WF)  of  1.5.   2 × Fmax    (Hz)   N × WF  
  • 177. ANALYSIS  TERMINOLOGY   Operating  Speed  and  Orders   The  frequency  of  operating  speed  is  the  foundation   of  spectrum  analysis  of  mechanically  generated   vibrations.  Many  other  frequencies  in  the  spectrum   are  related  to  the  operating  speed  -­ being  multiples   (orders)  or  non-­multiples.  
  • 178. ANALYSIS  TERMINOLOGY   Figure  7.3  shows  a  spectrum  from  a  generator   pedestal  with  one  component  (0.263  IPS-­peak)  at   60  Hz  -­ the  frequency  of  operating  speed.  
  • 179. ANALYSIS  TERMINOLOGY   Vibrations  shown  in  Figures  7.3  is  symptomatic  of   mass  unbalance
  • 180. ANALYSIS  TERMINOLOGY   Figure  7.4  shows  a  spectrum  with  operating  speed   vibrations  60  Hz  and  a  second  order  120  Hz.
  • 181. ANALYSIS  TERMINOLOGY   Vibrations  shown  in  Figures  7.3  is  symptomatic  of   misalignment
  • 182. ANALYSIS  TERMINOLOGY   Electrical  Frequencies   Line  frequency  is  the  basic  frequency  of  AC  electric   power  and  electrically  generated  vibration.  Line   frequency  is  60  Hz  in  North  America  and  50  Hz  in   the  remainder  of  the  world.  Line  frequency  will  not   be  60  Hz  when  variable  frequency  drives  are   analyzed.  In  each  case  the  base  frequency  must  be   obtained  prior  to  analysis.  
  • 183. ANALYSIS  TERMINOLOGY   Figure  7.5  shows  data  from  a  motor  operating  at   3,588  RPM.  
  • 184. ANALYSIS  TERMINOLOGY   The  second  order  is  dominant  (upper  plot)  but  may   contain  mechanical  (2x  operating  speed)  and/or   electrical  (2x  line  frequency)  vibration.  
  • 185. ANALYSIS  TERMINOLOGY   The  lower  plot  of  Figure  7.5,  which  is  a  zoom   (increased  resolution)  of  the  data  on  the  upper  plot,   shows  mechanical  (119.6  Hz)  and  electrical  (120   Hz)  symptoms.  
  • 186. COMMON  MACHINE  FAULTS   Table  7.4.  Common  Machine  Faults. •      Resonance  and  critical  speeds   •      Mass  unbalance   •      Misalignment   •      Looseness   •      Distortion   •      Beats   •      Rolling  element  bearing  defects   •      Gear  defects   •      Motor  faults   •      Pumps   •      Fans  
  • 187. Resonance  and  Critical  Speeds   All  systems  have  natural  frequencies  that  are   not  active  unless  they  are  excited  by  some   force.  When  a  forcing  frequency  such  as   operating  speed  is  close  to  or  equal  to  a  natural   frequency,  the  condition  of  resonance  occurs   and  the  vibration  is  amplified  beyond  what   would  normally  be  obtained  for  that  force.   When  the  rotor  of  the  system  excites  the   natural  frequency,  the  frequency  of  the  rotor   that  matches  the  natural  frequency  of  the   system  is  called  a  critical  speed.  
  • 188. Resonance  and  Critical  Speeds   Figure  7.8  is  an  example  of  a  resonance  in  a   vertical  pump  support  structure.   Figure  7.8.  Vertical  Pump  Resonance.
  • 189. Resonance  and  Critical  Speeds   The  operating  speed  of  the  pump  is  close  to   the  natural  frequency  of  the  pump  frame  and   support.  This  is  a  common  problem  with  pumps   driven  by  variable  frequency  driven  motors.  It  is   difficult  to  design  a  system  where  no  natural   frequencies  will  occur  in  a  wide  speed  range. Natural  frequencies  usually  respond   directionally.  Therefore,  if  the  vibration  level  is   high  in  one  direction  but  not  90° from  it,  that  is   an  indication  that  it  may  be  resonant.
  • 190. Mass  Unbalance   Mass  unbalance  occurs  when  the  geometric  center   (shaft  centerline)  and  the  mass  center  of  a  rotor  do   not  coincide.  Unbalance  is  a  once-­per-­revolution   fault  -­ that  is,  it  creates  vibration  at  the  frequency  of   rotor  speed.
  • 191. Mass  Unbalance   it  creates  vibration  at  the  frequency  of  rotor   speed Figure  7.9.  Mass  Unbalance  of  a  Generator.
  • 192. Mass  Unbalance   This  can  be  done  with  phase  analysis  because   the  nature  of  the  forces  is  different.  The   spectrum  for  mass  unbalance  normally  has  a   high  amplitude  component  at  a  frequency  of   operating  speed  (Figure  7.9  -­ 3,600  RPM)  and   low  amplitude  orders  of  operating  speed.  Mass   unbalance  appears  to  be  similar  to  resonance;;   however,  by  moving  the  sensor  90° the   vibration  should  be  similar  in  amplitude.  
  • 193. Misalignment   The  magnitude  of  the  resulting  vibration  is   dependent  on  the  radial  stiffness  of  the  components   (bearings,  shafts,  seals,  couplings)  in  the  system. It  is  characterized  by  two  peaks  at  1x  and  2x. The  second  order  component  of  vibration  in  cases   of  severe  misalignment  can  exceed  the  first  order.   High  first-­order  axial  vibration  is  also  a  symptom  of   misalignment.    
  • 194. Misalignment   Figure  7.9.  Generator  Misalignment.
  • 195. Looseness     Excessive  bearing  clearances  and  untightened  bolts  cause   impacts  that  can  be  identified  in  the  spectrum  as  once-­per-­ revolution  vibration  plus  orders  of  operating  speed Figure  7.11.   Fan   Looseness.
  • 196. Rolling  Element  Bearing  Defects     When  a  rolling  element  passes  over  a  bearing  defect  in  the   races  or  cages  (Figure  7.14),  pulse-­like  forces  are  generated   that  result  in  one  or  a  combination  of  bearing  frequencies.   This  causes  pulses  in  the  time  waveform  and  bearing   frequencies  and  harmonics  in  the  spectrum  (Figure  7.15)  at   nonsynchronous  (not  an  order  of  operating  speed)  frequency   and  resonance.  
  • 197. Rolling  Element  Bearing  Defects     Figure  7.14.  Nomenclature  of  Rolling  Element  Bearings.
  • 198. Rolling  Element  Bearing  Defects     Figure  7.15.  Rolling  Element  Bearing  Defects.
  • 199. Rolling  Element  Bearing  Defects     Figure  7.15  shows  the  spectrum  from  a  bearing  supporting  a  felt   roll  (530  RPM)).  It  has  a  fundamental  ball  pass  frequency  of  the   outer  race  of  56.25  Hz  or  6.37  times  operating  speed.  The  bearing   frequencies  would  be  calculated  using  the  above  formulas  or   would  be  given  by  the  bearing  manufacturer  as  a  multiple  of   operating  speed  -­ in  this  case  BPFO  =  6.37  x  operating  speed.  In   Figure  7.15  the  third  harmonic  has  sidebands  (small  peaks)  at   operating  speed  frequency  (530  RPM/60  =  8.83  Hz).  
  • 200. Rolling  Element  Bearing  Defects     •    ball  pass  frequency  of  the  outer  race  (BPFO);;  generated  by  balls   or  rollers  passing  over  defective  outer  races.   •    ball  pass  frequency  of  the  inner  race  (BPFI);;  generated  by  balls   or  rollers  passing  over  defective  inner  races.   •    ball  spin  frequency  (BSF);;  generated  by  ball  or  roller  defects.   •    fundamental  train  frequency  (FTF);;  generated  by  cage  defects   or  improper  movements.   •    ∅ =  contact  angle;;  angle  between  lines  perpendicular  to  the   shaft  and  from  the  center  of  the  ball  to  the  point  where  the  arc  of   the  ball  and  the  race  make  contact  (Figure  7.14c).   •    N  =  number  of  rolling  elements  (balls  or  rollers).   •    P  =  pitch  diameter,  in.   •    B  =  ball  or  roller  diameter;;  average  value  for  tapered  bearings,   in.   •    RPS  =  speed  of  rotating  unit  in  revolutions  per  second.  
  • 201. Rolling  Element  Bearing  Defects     Ω =  RPM/60  =  RPS FTF = Ω 2 1 − B P cos∅ BPFI = N 2 Ω 1 + B P cos∅ BPFO = N 2 Ω 1 − B P cos∅ BSF = P 2B Ω 1 − B P 1 cos1 ∅
  • 202. Gear  Defects   Gearboxes  generate  high-­frequency  vibrations  as  a  result  of  the   gearmeshing function  of  the  box.  The  greater  the  number  of  gear   teeth  in  mesh  at  any  instant  the  smoother  the  performance  of  the   box.  Gearbox  faults  fall  into  two  categories  -­ gear  meshing  and   broken  teeth.  Gearmesh frequency  is  number  of  teeth  on  the   pinion  times  speed  of  the  pinion  or  number  of  teeth  on  the  gear   times  gear  speed.  These  frequencies  will  be  equal.   The  gearmeshing problem  occurs  because  of  uneven  local  wear,   pitting,  roughness,  and/or  machine  gear  tooth  quality.  As  the  teeth   go  through  mesh  the  vibration  varies  because  the  surface  quality   of  the  teeth  vary.  This  causes  vibration  with  amplitude  modulation   (change)  which  results  in  gearmesh frequency  and  sidebands  in   the  spectrum  
  • 204. Fans On  fans,  pumps,  and  other  bladed  machines,  look  for  frequencies   that  are  multiples  of  operating  speed  that  relate  to  the  number  of   blades  or  vanes.  Figure  shows  data  from  a  six  (6)  bladed  fan.  
  • 205. Fans The  spectrum  (upper  plot)  shows  vibration  at  92.8  Hz  which  is   close  to  six  (6)  times  the  operating  speed  (15.6  Hz).  This  vibration   is  generally  caused  by  the  blades  passing  the  discharge  duct.  
  • 206. CHAPTER  8-­ VIBRATION  SEVERITY BEARING  HOUSING  EVALUATION Table  8.2  shows  peak  and  RMS  velocity  levels  for  machine   vibrations  based  on  evaluation  of  operating  speed  faults.   MACHINE  CONDITION ACCEPTABLE  LEVELS  (IPS) RMS PEAK Acceptance less  than  0.08 less  than  0.16 Normal less  than  0.12 less  than  0.24 Surveillance 0.12  to  0.28 0.24  to  0.7 Unacceptable more  than  0.28 more  than  0.7 Table  8.2.  Acceptable  Levels  of  Machine  Vibrations  for  Operating  Speed  Faults.
  • 207. CHAPTER  8-­ VIBRATION  SEVERITY BEARING  HOUSING  EVALUATION Figure  8.1  shows  vibration  data  acquired  from  a  lobed  blower  operating  at  3,563   RPM.