SlideShare a Scribd company logo
1 of 25
Download to read offline
HafenCity	
  University	
  Hamburg	
  
M.Sc.	
  Resource	
  Efficiency	
  in	
  Architecture	
  and	
  Planning	
  
Technologies	
  for	
  Sustainable	
  Material	
  Cycles	
  
Winter	
  Semester	
  2015/16	
  	
  
	
  
Final	
  Report	
  
	
  
Deconstruction	
  Management	
  for	
  Optimized	
  Material	
  Recovery:	
  
Rota	
  Flora	
  
Submitted	
  to:	
  Dr.	
  Wolfram	
  Trinius	
  
Submitted	
  on:	
  March	
  14th,	
  2016	
  
	
  
Contributing	
  Authors:	
  
Arrash-­‐‑Jan	
  Paivasteh	
  Bueno	
  –	
  000000	
  
Heather	
  Troutman	
  –	
  6028601	
  
Tobias	
  Kelm	
  –	
  000000	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
2	
  
Abstract	
  
	
  
“The	
  goal	
  is	
  to	
  move	
  the	
  fundamental	
  thinking	
  away	
  from	
  ‘waste	
  disposal’	
  to	
  ‘waste	
  
management’	
  and	
  from	
  ‘waste’	
  to	
  ‘resources’	
  –	
  hence	
  the	
  updated	
  terminology	
  ‘waste	
  and	
  
resource	
  management’	
  and	
  ‘resource	
  management’,	
  as	
  part	
  of	
  the	
  Circular	
  Economy”	
  (UNEP,	
  
2015).	
  	
  
	
  
Waste	
  management	
  and,	
  now,	
  resource	
  management	
  have	
  become	
  regular	
  topics	
  on	
  the	
  global	
  
agenda,	
  especially	
  in	
  the	
  context	
  of	
  sustainable	
  development	
  and	
  Circular	
  Economy.	
  	
  Of	
  the	
  
United	
  Nations’	
  (2015)	
  17	
  Sustainable	
  Development	
  Goals:	
  the	
  2030	
  agenda,	
  12	
  of	
  the	
  17	
  goals	
  
are	
  related	
  to	
  improved	
  waste	
  management,	
  which	
  is	
  seen	
  as	
  an	
  entry	
  point	
  for	
  sustainable	
  
development	
  and	
  a	
  most	
  basic	
  indicator	
  for	
  quality	
  of	
  life.	
  
	
  
According	
  to	
  the	
  United	
  Nations	
  Environmental	
  Programme’s	
  (UNEP)	
  (2015)	
  “Global	
  Waste	
  
Management	
  Outlook”	
  (GWMO),	
  36%	
  of	
  all	
  waste	
  produced	
  globally	
  in	
  2013	
  was	
  construction	
  
and	
  demolition	
  wastes	
  (C&D),	
  representing	
  the	
  largest	
  waste	
  category.	
  	
  30%	
  of	
  global	
  C&D	
  
wastes,	
  or	
  821	
  million	
  tonnes,	
  was	
  produced	
  in	
  the	
  European	
  Union	
  (EU).	
  
	
  
“Due	
  to	
  the	
  high	
  variety	
  of	
  materials,	
  it	
  is	
  important	
  that	
  the	
  C&D	
  waste	
  be	
  segregated	
  at	
  source,	
  
with	
  each	
  stream	
  managed	
  as	
  required”	
  (UNEP,	
  2015).	
  
	
  
	
  
	
  
	
  
This	
  report	
  examines	
  the	
  original	
  construction	
  and	
  long	
  history	
  of	
  renovations	
  of	
  the	
  culturally	
  
significant	
  Rota	
  Flora	
  in	
  Hamburg,	
  Germany,	
  developing	
  a	
  multi-­‐‑criteria	
  analysis	
  tool	
  based	
  
upon	
  the	
  German	
  Sustainable	
  Building	
  Council’s	
  (DGNB)	
  Sustainable	
  Construction	
  Methodology	
  
adopted	
  to	
  the	
  unique	
  situation	
  of	
  the	
  Rota	
  Flora.	
  	
  The	
  aim	
  of	
  this	
  assessment	
  is	
  to	
  identify	
  the	
  
most	
  sustainable	
  deconstruction	
  pathway	
  from	
  four	
  scenarios,	
  considering	
  the:	
  
	
  
•   Ecological	
  Quality,	
  
•   Economic	
  Quality,	
  
•   Socio-­‐‑Cultural	
  and	
  Functional	
  Quality,	
  
•   Technical	
  Quality,	
  and	
  
•   Process	
  Quality.	
  
	
  
The	
  analysis	
  concludes	
  that	
  the	
  most	
  sustainable	
  deconstruction	
  scenario	
  is	
  one	
  that	
  
incorporates	
  the	
  concerns	
  and	
  ideas	
  of	
  the	
  citizens	
  and	
  preserves	
  the	
  highest	
  quality	
  and	
  
quantity	
  of	
  building	
  materials	
  for	
  direct	
  re-­‐‑use	
  as	
  a	
  main	
  priority	
  and	
  recycling	
  as	
  a	
  second	
  
priority,	
  following	
  the	
  European	
  Commission’s	
  “Waste	
  Hierarchy”	
  as	
  prescribed	
  in	
  the	
  Waste	
  
Directive	
  (2008/98/EC).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
3	
  
Table	
  of	
  Contents	
  
	
  
1.	
  Historical	
  Context………………………………………………..…………………………………….……………….06	
  	
  	
  	
  	
  	
  
	
  
	
   1.1	
  Cultural	
  Significance……………………………………………………………………………………..06	
  
	
  
1.2.	
  Refurbishment	
  Ambiguity……………………………………..……………………………………..06	
  
	
  
2.	
  Waste	
  Directive….…………………………………………………………………………...………………………….07	
  
	
  
3.	
  Materials………….…………………………..……………………………………………………………………………..07	
  	
  
	
   	
  
3.1	
  Brick………….…………………………………………………………………………………………………..09	
  
	
  
	
   3.2.	
  Wood………….…………………………………………………………………………………………………11	
  
	
  
	
   3.3.	
  Glass………..……………………………………………………………………………………………………11	
  
	
  
3.4.	
  Steel…………….……………….……………………………………………………………………………….12	
  
	
   	
  
	
   3.5.	
  Re-­‐‑enforced	
  Concrete……………………………………………………………………………………12	
  
	
  
3.6.	
  Screed…………………………………………………………………………………………………………..13	
  
	
  
3.7.	
  Plaster………………………….……………………………………………………………………………….13	
  
	
  
3.8.	
  Bitumen…………………………………………………….………………………………………………….14	
  
	
  
3.9.	
  Comparison	
  of	
  all	
  materials	
  ……………….…….………………………………………………….14	
  
	
   	
  
4.	
  Main	
  Objectives	
  for	
  Sustainability………………………………………………….………...…..…………….15	
  
	
  
	
   4.1.	
  Ecological	
  Quality	
  ……….………………………………………………………………………………..15	
  
	
  
4.2.	
  Economic	
  Quality	
  …………………………………………………………………………………………15	
  
	
  
	
   4.3.	
  Socio-­‐‑Cultural	
  and	
  Functional	
  Quality	
  …………………………………………………………16	
  
	
  
4.4.	
  Technical	
  Quality	
  …………………………………………………………………………………………16	
  
	
  
4.5.	
  Process	
  Quality	
  …………………..…….………………………………………………………………….16	
  
	
  
5.	
  Deconstruction	
  Scenarios…………………………………………………………….….………………………….17	
  
	
  
	
   5.1.	
  Scenario	
  One:	
  The	
  Quickest…………………………………………………………………………..17	
  
	
  
	
   5.2.	
  Scenario	
  Two:	
  Recovery	
  of	
  the	
  Highest	
  Material	
  Quantity	
  and	
  Quality…………17	
  
	
  
5.3.	
  Scenario	
  Three:	
  The	
  Cheapest………………………………………………………………………19	
  
	
  
5.4.	
  Scenario	
  Four:	
  Most	
  Socially	
  Agreeable………….…………………………………………….19	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
4	
  
6.	
  Comparison	
  of	
  the	
  Four	
  Scenarios	
  for	
  Optimal	
  Sustainability…………….………………………20	
  
	
  
6.1.	
  Ecological	
  Quality…………………………………………………………………………………………20	
  
	
  
6.2.	
  Economic	
  Quality…………………………………….……………………………………………………21	
  
	
  
6.3.	
  Socio-­‐‑Cultural	
  and	
  Functional	
  Quality…………………………………………………..………22	
  
	
  
6.4.	
  Technical	
  Quality…………………….……………………………………………………………………22	
  
	
  
6.5.	
  Process	
  Quality……………………………..………………………………………………………………22	
  
	
  
6.6.	
  Results…………………………….……………………………………………………………………………23	
  
	
  
7.	
  Conclusion:	
  Planned	
  Deconstruction	
  for	
  Enhanced	
  Sustainability…………………...…………24	
  
	
  
	
  
	
  
	
  
	
  
Diagrams,	
  Figures	
  and	
  Tables	
  
	
  
Table	
  3.	
   Estimated	
  total	
  amount	
  of	
  materials	
  in	
  the	
  Rote	
  Flora,	
  by	
  volume	
  [m³]…………...07	
  
	
  
Figure	
  3.	
  Exploded	
  drawing:	
  Approximately	
  location	
  of	
  main	
  materials………………………..08	
  
	
  
Chart	
  3.	
  Estimated	
  total	
  amount	
  of	
  materials	
  in	
  the	
  Rote	
  Flora,	
  by	
  volume	
  [m³]…………….08	
  
	
  
Diagram	
  3.1.	
  Structural	
  use	
  of	
  brick…………………………………………………..…………………………..09	
  
	
  
Section	
  3.1.	
   Typical	
  brick	
  structure.....................................................................................................09	
  
	
  
Figure	
  3.1.	
   Berlin-­‐‑Wall:	
  Street-­‐‑Art…………………………………………………………………………………10	
  
	
  
Section	
  3.2.	
  Typical	
  wood	
  floor	
  construction....................................................................................11	
  
	
  
Figure	
  3.4.	
  Steel	
  column	
  on	
  the	
  ground	
  floor………………………………………………………………….12	
  
	
  
Table	
  3.9.	
  Multi-­‐‑Criteria	
  Assessment	
  of	
  Main	
  Building	
  Materials……………………………………14	
  
	
  
Figure	
  4.	
  BMUBS’	
  Assessment	
  System	
  for	
  Sustainable	
  Building………………………………………15	
  
	
  
Table	
  6.	
  Multi-­‐‑Criteria	
  Analysis	
  of	
  Deconstruction	
  Scenarios…………………………………………20	
  
	
  
Table	
  6.1.	
  Environmental	
  Impact	
  Categories………………………………………………………………….21	
  
	
  
Figure	
  6.6.	
  Summary	
  of	
  Multi-­‐‑Criteria	
  Assessment	
  of	
  Deconstruction	
  Scenarios……………23	
  	
  	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
5	
  
Definitions	
  
	
  
The	
  definitions	
  used	
  in	
  this	
  report	
  are	
  taken	
  form	
  the	
  European	
  Commission’s	
  Waste	
  Directive	
  
(2008/98/EC),	
  Article	
  3.	
  	
  
	
  
	
  
	
  
Collection:	
  means	
  the	
  gathering	
  of	
  waste,	
  including	
  the	
  preliminary	
  sorting	
  and	
  preliminary	
  
storage	
  of	
  waste	
  for	
  the	
  purposes	
  of	
  transport	
  to	
  a	
  waste	
  treatment	
  facility.	
  
	
  
Disposal:	
  means	
  any	
  operation	
  which	
  is	
  not	
  recovery	
  even	
  where	
  the	
  operation	
  has	
  as	
  a	
  
secondary	
  consequence	
  the	
  reclamation	
  of	
  substance	
  or	
  energy.	
  	
  Annex	
  I	
  sets	
  out	
  a	
  non-­‐‑
exhaustive	
  list	
  of	
  disposal	
  operations	
  [of	
  2008/98/EC].	
  	
  
	
  
Hazardous	
  Waste:	
  means	
  waste	
  which	
  displays	
  one	
  or	
  more	
  of	
  the	
  hazardous	
  properties	
  listed	
  
in	
  Annex	
  III	
  [of	
  2008/98/EC].	
  
	
  
Prevention:	
  means	
  measures	
  taken	
  before	
  a	
  substance,	
  material	
  or	
  product	
  has	
  become	
  waste,	
  
that	
  reduce:	
  
(a)  the	
  quantity	
  of	
  waste,	
  including	
  through	
  the	
  re-­‐‑use	
  of	
  products	
  or	
  the	
  extension	
  of	
  
the	
  life	
  span	
  of	
  products;	
  
(b)  the	
  adverse	
  impacts	
  of	
  the	
  generated	
  waste	
  on	
  the	
  environment	
  and	
  human	
  health;	
  
or	
  
(c)   the	
  contents	
  of	
  harmful	
  substances	
  in	
  materials	
  and	
  products.	
  
	
  
Recovery:	
  means	
  any	
  operation	
  the	
  principle	
  result	
  of	
  which	
  is	
  waste	
  serving	
  a	
  useful	
  purpose	
  
by	
  replacing	
  other	
  materials	
  which	
  would	
  otherwise	
  have	
  been	
  to	
  fulfil	
  a	
  particular	
  function,	
  or	
  
waste	
  being	
  prepared	
  to	
  fulfil	
  that	
  function,	
  in	
  the	
  plant	
  or	
  in	
  the	
  wider	
  economy.	
  	
  Annex	
  II	
  [of	
  
2008/98/EC]	
  sets	
  out	
  a	
  non-­‐‑exhaustive	
  list	
  of	
  recovery	
  operations.	
  
	
  
Recycling:	
  means	
  any	
  recovery	
  operation	
  by	
  which	
  waste	
  materials	
  or	
  substances	
  whether	
  for	
  
the	
  original	
  or	
  other	
  purposes.	
  	
  It	
  includes	
  the	
  reprocessing	
  of	
  organic	
  material	
  but	
  does	
  not	
  
include	
  energy	
  recovery	
  and	
  the	
  reprocessing	
  into	
  materials	
  that	
  are	
  to	
  be	
  used	
  as	
  fuels	
  or	
  for	
  
backfilling	
  operations.	
  
	
  
Re-­‐‑Use:	
  means	
  any	
  operation	
  by	
  which	
  products	
  or	
  components	
  that	
  are	
  not	
  waste	
  are	
  used	
  
again	
  for	
  the	
  same	
  purpose	
  for	
  which	
  they	
  were	
  conceived.	
  	
  
	
  
Separate	
  Collection:	
  means	
  the	
  collection	
  where	
  a	
  waste	
  stream	
  is	
  kept	
  separately	
  by	
  type	
  and	
  
nature	
  so	
  as	
  to	
  facilitate	
  a	
  specific	
  treatment.	
  
	
  
Treatment:	
  means	
  recovery	
  or	
  disposal	
  operations,	
  including	
  preparation	
  prior	
  to	
  recovery	
  or	
  
disposal.	
  
	
  
Waste:	
  means	
  any	
  substance	
  or	
  object	
  which	
  the	
  holder	
  disregards	
  or	
  intends	
  or	
  is	
  required	
  to	
  
discard.	
  
	
  
Waste	
  Management:	
  means	
  the	
  collection,	
  transport,	
  recovery	
  and	
  disposal	
  of	
  waste,	
  including	
  
the	
  supervision	
  of	
  such	
  operations	
  and	
  the	
  after-­‐‑care	
  of	
  disposal	
  sites,	
  and	
  including	
  actions	
  
taken	
  as	
  a	
  dealer	
  or	
  broker.	
  
	
  
	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
6	
  
1.	
  Historical	
  Context	
  
	
  
For	
  our	
  exemplary	
  object	
  analysis,	
  we	
  have	
  chosen	
  the	
  controversial	
  building	
  Rote	
  Flora.	
  
The	
  Rote	
  Flora	
  was	
  built	
  in	
  the	
  year	
  1888	
  in	
  Hamburg,	
  in	
  the	
  district	
  Sternschanze.	
  In	
  former	
  
days	
  it	
  was	
  used	
  as	
  a	
  concert	
  hall.	
  	
  Some	
  Parts	
  of	
  the	
  building	
  were	
  added	
  and	
  taken	
  away	
  again,	
  
like	
  the	
  conservatory	
  from	
  Gustave	
  Eiffel	
  in	
  1890.	
  	
  The	
  use	
  of	
  the	
  building	
  also	
  changed	
  a	
  few	
  
times.	
  	
  Over	
  the	
  last	
  128	
  years,	
  the	
  Flora	
  was	
  a	
  residential	
  building,	
  concert	
  hall,	
  Viennese	
  café,	
  
room	
  for	
  public	
  events,	
  theatre,	
  school,	
  factory,	
  cinema,	
  shop	
  and	
  much	
  more.	
  	
  
	
  
	
  
1.1.	
  Cultural	
  Significance	
  
Fortunately,	
  the	
  Rota	
  Flora	
  was	
  one	
  of	
  few	
  theatres	
  in	
  Hamburg	
  not	
  damaged	
  during	
  airstrikes	
  
of	
  the	
  2nd	
  world	
  war.	
  	
  In	
  the	
  year	
  1974,	
  the	
  two	
  upper	
  stories	
  were	
  removed	
  and	
  replaced	
  by	
  a	
  
flat	
  roof,	
  drastically	
  changing	
  the	
  appearance	
  of	
  the	
  building.	
  	
  In	
  1989,	
  the	
  building	
  had	
  been	
  
planned	
  to	
  be	
  sold	
  and	
  demolished.	
  	
  To	
  prevent	
  the	
  Flora	
  from	
  demolishment,	
  it	
  was	
  occupied	
  
by	
  an	
  autonomic	
  group	
  of	
  people	
  who	
  violently	
  rioted	
  against	
  militant	
  groups	
  attempting	
  
evection	
  on	
  numerous	
  occasions	
  over	
  the	
  past	
  37	
  years.	
  	
  Since	
  that	
  time,	
  the	
  building	
  is	
  an	
  
uncomfortable	
  subject	
  for	
  the	
  city	
  and	
  the	
  “autonomic	
  centre”	
  in	
  Hamburg.	
  	
  
	
  
	
  
1.2.	
  Refurbishment	
  Ambiguity	
  
The	
  Rote	
  Flora	
  was	
  constructed	
  in	
  the	
  Gründerzeit	
  at	
  the	
  end	
  of	
  the	
  19th	
  century.	
  The	
  typical	
  
materials	
  used	
  were	
  rarely	
  synthetically	
  fabricated;	
  but,	
  rather,	
  more	
  natural	
  compared	
  to	
  the	
  
materials	
  that	
  are	
  commonly	
  used	
  today.	
  	
  However,	
  due	
  to	
  the	
  many	
  changes	
  in	
  use	
  and	
  
modernization	
  projects	
  that	
  have	
  been	
  carried	
  out	
  on	
  the	
  Flora	
  over	
  the	
  past	
  128	
  years,	
  there	
  
exists	
  a	
  high	
  level	
  of	
  uncertainty	
  as	
  to	
  the	
  actual	
  material	
  composition	
  of	
  the	
  building.	
  	
  This	
  
analysis	
  has	
  reviewed	
  refurbishment	
  documents	
  for	
  the	
  building	
  and	
  has	
  made	
  assumptions	
  of	
  
the	
  materials	
  likely	
  employed	
  considering	
  the	
  most	
  common	
  materials	
  used	
  in	
  construction	
  in	
  
Germany	
  at	
  the	
  time	
  the	
  renovation	
  was	
  made.	
  
	
  
The	
  bearing	
  walls	
  and	
  foundation	
  of	
  the	
  building	
  are	
  made	
  out	
  of	
  bricks.	
  	
  These	
  are	
  still	
  the	
  
original	
  ones.	
  	
  The	
  ceiling	
  between	
  the	
  ground	
  and	
  the	
  first	
  floor	
  is	
  also	
  original.	
  	
  It	
  consists	
  of	
  
beams,	
  made	
  of	
  wood,	
  with	
  a	
  wooden	
  floor	
  and	
  a	
  rubble	
  filling	
  inside.	
  	
  The	
  ceiling	
  of	
  the	
  
basement	
  is	
  an	
  old	
  Kappendecke,	
  which	
  was	
  a	
  typical	
  way	
  of	
  constructing	
  at	
  that	
  time.	
  	
  It	
  is	
  
made	
  of	
  bricks	
  and	
  steel	
  beams.	
  	
  
	
  
After	
  the	
  two	
  upper	
  stories	
  were	
  removed	
  in	
  the	
  late	
  1970s,	
  a	
  new	
  roof	
  was	
  built.	
  	
  The	
  new	
  flat	
  
roof	
  is	
  a	
  simple,	
  wooden	
  construction	
  with	
  a	
  bitumen	
  sealant	
  on	
  it.	
  	
  Just	
  like	
  the	
  bitumen	
  on	
  the	
  
roof,	
  other	
  newer	
  materials	
  and	
  components,	
  such	
  as	
  new	
  windows,	
  electric-­‐‑,	
  sanitary-­‐‑	
  and	
  
heating	
  systems,	
  et	
  cetera	
  have	
  been	
  added	
  over	
  the	
  years.	
  	
  There	
  might	
  be	
  a	
  risk	
  of	
  having	
  
hazardous	
  materials,	
  such	
  as	
  various	
  kinds	
  of	
  sealants,	
  paints	
  or	
  even	
  asbestos	
  in	
  the	
  
construction	
  substance.	
  	
  In	
  case	
  of	
  an	
  unlikely	
  deconstruction	
  of	
  the	
  Flora,	
  the	
  building	
  
substance	
  has	
  to	
  be	
  carefully	
  tested	
  for	
  hazardous	
  materials.	
  
	
  
	
  
	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
7	
  
2.	
  Waste	
  Directive	
  
	
  
Commission	
  (2008/98/EC)	
  
In	
  2008,	
  the	
  European	
  Commission	
  adopted	
  the	
  Waste	
  Directive(2008/98/EC),	
  which	
  
prescribes	
  a	
  “Waste	
  Hierarchy”	
  as	
  “a	
  priority	
  order	
  in	
  the	
  waste	
  prevention	
  and	
  management	
  
legislation	
  and	
  policy.”	
  	
  The	
  “Waste	
  Hierarchy”	
  requires	
  that	
  waste	
  management	
  strategies	
  
prioritize	
  prevention,	
  followed	
  by	
  reuse,	
  then	
  recycling,	
  then	
  recovery	
  (including	
  energy	
  
recovery)	
  and	
  resulting	
  to	
  disposal	
  only	
  when	
  no	
  other	
  alternatives	
  exist.	
  
	
  
Circular	
  Economy	
  Package	
  (2014)	
  
The	
  existing	
  Waste	
  Directive	
  is	
  currently	
  under	
  review	
  within	
  the	
  proposed	
  Circular	
  Economy	
  
Package	
  (2014),	
  scheduled	
  to	
  come	
  into	
  effect	
  late	
  2017.	
  	
  The	
  new	
  proposal	
  outlines	
  that	
  
strategies	
  for	
  a	
  Circular	
  Economy,	
  which	
  maintain	
  materials	
  and	
  products	
  at	
  their	
  highest	
  value	
  
for	
  as	
  long	
  as	
  possible,	
  is	
  not	
  only	
  the	
  most	
  sustainable	
  option,	
  but	
  also	
  an	
  option	
  that	
  offers	
  
unprecedented	
  financial	
  gain	
  to	
  the	
  European	
  economy	
  in	
  the	
  form	
  of	
  forgone	
  losses.	
  	
  	
  	
  
	
  
This	
  assessment	
  has	
  been	
  completed	
  in	
  attempt	
  to	
  uphold	
  these	
  initiatives	
  and	
  ideals.	
  
	
  
	
  
3.	
  Materials	
  
	
  
All	
  masses	
  of	
  the	
  materials	
  are	
  estimated	
  according	
  to	
  our	
  analysis	
  of	
  the	
  building	
  by	
  on-­‐‑site-­‐‑
visiting,	
  literature,	
  photos	
  and	
  our	
  3D-­‐‑Modell.	
  	
  Due	
  to	
  the	
  different	
  users	
  and	
  refurbishing	
  since	
  
its	
  existent	
  it	
  is	
  difficult	
  to	
  determine	
  every	
  material	
  in	
  the	
  building.	
  This	
  is	
  the	
  reason	
  why	
  we	
  
have	
  decided	
  to	
  concentrate	
  on	
  the	
  main	
  materials:	
  
-­‐   Brick	
  
-­‐   Wood	
  
-­‐   Glass	
  
-­‐   Steel	
  
-­‐   Re-­‐‑enforced	
  concrete	
  
-­‐   Screed	
  
-­‐   Plaster	
  
	
  
	
  
Table	
  3.	
   Estimated	
  total	
  amount	
  of	
  materials	
  in	
  the	
  Rote	
  Flora,	
  by	
  volume	
  [m³]
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
8	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Figure	
  3.	
  Exploded	
  drawing:	
  Approximately	
  location	
  of	
  main	
  materials	
  
Chart	
  3.	
  Estimated	
  total	
  amount	
  of	
  materials	
  in	
  the	
  Rote	
  Flora,	
  by	
  volume	
  [m³]	
  
g	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
9	
  
	
  
3.1.	
  Brick	
  
	
  
Quantity	
  
Despite	
  its	
  historical	
  age	
  and	
  modernization,	
  the	
  main	
  material	
  is	
  brick.	
  The	
  outer	
  and	
  the	
  load	
  
bearing	
  walls	
  are	
  still	
  out	
  of	
  bricks.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Diagram	
  3.1.	
  Structural	
  use	
  of	
  brick.
	
  
Section	
  3.1.	
   Typical	
  brick	
  structure.	
  	
  Source:	
  Rudolf	
  Ahnert	
  and	
  Karl	
  Heinz	
  Krause,	
  2009,	
  page	
  47
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
10	
  
	
  
Quality	
  
The	
  quality	
  of	
  the	
  bricks	
  are	
  mainly,	
  despite	
  its	
  age,	
  still	
  in	
  a	
  good	
  condition.	
  The	
  primary	
  
problem	
  though,	
  is	
  to	
  deconstruct	
  the	
  bricks	
  without	
  damaging	
  them.	
  	
  
	
  
After-­‐‑Use	
  Markets	
  
Recycling	
  old	
  bricks	
  is	
  not	
  difficult,	
  because	
  of	
  its	
  natural	
  fabrication.	
  	
  It	
  is	
  therefore	
  not	
  a	
  big	
  
problem	
  to	
  transport	
  the	
  deconstructed	
  bricks	
  to	
  a	
  building	
  material	
  recycling	
  facility.	
  There	
  are	
  
several	
  located	
  in	
  Hamburg.	
  	
  One	
  of	
  them	
  is	
  the	
  Acht	
  GmbH	
  -­‐‑	
  Aufbereitungscentrum,	
  Hafen	
  und	
  
Transportlogistik	
  located	
  in	
  HH-­‐‑Veddel.	
  	
  They	
  transport	
  or	
  recycle	
  different	
  types	
  of	
  demolition	
  
waste.	
  Another	
  option	
  would	
  also	
  be	
  to	
  deconstruct	
  the	
  bricks	
  for	
  re-­‐‑usage	
  in	
  a	
  new	
  building.	
  
This	
  means	
  when	
  the	
  bricks	
  are	
  “detaches”	
  carefully,	
  they	
  can	
  be	
  sold.	
  	
  
	
  
Example:	
  	
  
20.000	
  hand-­‐‑made	
  bricks	
  from	
  an	
  old	
  monastery	
  were	
  sold	
  0,5€	
  per	
  brick.	
  	
  That	
  means	
  the	
  
bricks	
  had	
  a	
  value	
  of	
  10.000€.	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
Instead	
  of	
  selling	
  or	
  recycling	
  them,	
  which	
  is	
  the	
  most	
  common	
  case,	
  it	
  is	
  also	
  possible	
  to	
  keep	
  
several	
  parts	
  of	
  the	
  walls,	
  by	
  “detaching”	
  a	
  segment	
  of	
  the	
  wall	
  for	
  graffiti	
  or	
  street	
  art	
  purpose,	
  
similar	
  to	
  the	
  Berlin-­‐‑Wall.	
  	
  
	
  
	
  
	
  
	
  
Main	
  concerns	
  
The	
  main	
  concern,	
  as	
  already	
  mentioned,	
  would	
  be	
  the	
  deconstruction	
  method.	
  	
  It	
  has	
  to	
  be	
  
carefully	
  planned	
  depending	
  on	
  what	
  is	
  going	
  to	
  happen	
  with	
  the	
  bricks	
  after	
  the	
  demolition.	
  	
  If	
  
the	
  bricks	
  are	
  planned	
  to	
  be	
  re-­‐‑used	
  it	
  is	
  important	
  to	
  keep	
  the	
  quality	
  of	
  the	
  bricks.	
  	
  The	
  
damaged	
  ones	
  can	
  be	
  used	
  for	
  ground	
  filling.	
  
	
  
	
  
	
  
	
  
Figure	
  3.1.	
   Berlin-­‐‑Wall:	
  Street-­‐‑Art.	
  Source:	
  Uberding	
  
7
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
11	
  
	
  
3.2.	
  Wood	
   	
  
	
   	
   	
   	
  
Quantity	
  
The	
  first	
  floor	
  is	
  made	
  out	
  of	
  a	
  wooden	
  beam	
  construction.	
  	
  Based	
  on	
  our	
  research	
  we	
  assume	
  
the	
  construction	
  method	
  is	
  based	
  back	
  to	
  late	
  19th	
  century.	
  	
  The	
  surfaces	
  of	
  the	
  stair	
  cases	
  are	
  
also	
  made	
  out	
  of	
  wood.	
  	
  
	
  
	
  	
   	
  
	
  
Quality	
  
The	
  wood	
  is	
  in	
  a	
  good	
  condition.	
  It	
  is	
  possible	
  to	
  strip	
  the	
  wood	
  of	
  carefully	
  and	
  re-­‐‑use	
  them.	
  
	
  
After-­‐‑Use	
  Markets	
  
Similar	
  to	
  the	
  bricks,	
  wood	
  is	
  a	
  natural	
  building	
  material,	
  which	
  makes	
  it	
  easy	
  to	
  re-­‐‑use	
  or	
  even	
  
to	
  sell.	
  	
  There	
  are	
  several	
  recycling	
  facilities	
  in	
  Hamburg	
  which	
  can	
  handle	
  a	
  big	
  amount	
  of	
  
construction	
  wood.	
  	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
It	
  is	
  not	
  only	
  possible	
  to	
  re-­‐‑use	
  the	
  wood	
  for	
  construction	
  or	
  flooring	
  but	
  also	
  for	
  energy-­‐‑usage	
  
(pellets)	
  or	
  for	
  the	
  particleboard	
  industry	
  (Reiling,	
  2016).	
  	
  Another	
  option	
  is	
  also	
  using	
  bits	
  and	
  
pieces	
  of	
  old	
  wood	
  for	
  furniture	
  or	
  industrial	
  products.	
  	
  For	
  example,	
  the	
  company	
  HAFENHOLZ	
  
(2016),	
  which	
  is	
  located	
  in	
  Hamburg,	
  specializes	
  in	
  the	
  re-­‐‑using	
  of	
  wood.	
  
	
  
Main	
  concerns	
  
Wood	
  is	
  a	
  natural	
  building	
  material,	
  which	
  needs	
  treatment	
  depending	
  on	
  its	
  usage.	
  	
  It	
  is	
  
therefore	
  important	
  to	
  determine	
  how	
  damaged	
  or	
  how	
  much	
  impregnation	
  is	
  in	
  the	
  wood	
  for	
  
further	
  usage.	
  	
  It	
  is	
  also	
  important	
  to	
  detach	
  the	
  wood	
  first	
  when	
  demolishing	
  the	
  building	
  to	
  
prevent	
  any	
  damage.	
  
	
  
	
  
3.3.	
  Glass	
  
	
  
Quantity	
  
The	
  amount	
  of	
  glass	
  is	
  located	
  on	
  the	
  outer	
  walls	
  and	
  is	
  not	
  much	
  compared	
  to	
  bricks	
  or	
  wood.	
  
	
  
Quality	
  
Section	
  3.2.	
  Typical	
  wood	
  floor	
  construction.	
  	
  Source:	
  Rudolf	
  Ahnert	
  and	
  Karl	
  Heinz	
  Krause,	
  2009,	
  page	
  9	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
12	
  
Due	
  to	
  the	
  refurbishment	
  of	
  the	
  Rote	
  Flora	
  all	
  the	
  glass/windows	
  have	
  been	
  changed/renewed.	
  	
  
This	
  means	
  there	
  are	
  probably	
  different	
  types	
  of	
  windows	
  in	
  different	
  qualities.	
  
	
  
After-­‐‑Use	
  Markets	
  
The	
  glass	
  itself	
  is	
  usually	
  detached	
  from	
  the	
  frame	
  and	
  further	
  processed	
  for	
  glass-­‐‑recycling	
  
(Siventas	
  GmbH,	
  2016).	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
The	
  glass	
  is	
  brought	
  to	
  a	
  recycling	
  waste	
  management	
  and	
  processed	
  back	
  to	
  glass.	
  
	
  
Main	
  Concerns	
  
Nowadays,	
  glass	
  consist	
  of	
  different	
  types	
  of	
  mixtures	
  and	
  gases,	
  which	
  needs	
  to	
  be	
  sorted	
  out	
  
to	
  make	
  it	
  recyclable.	
  
	
  
	
  
3.4.	
  Steel	
  
	
  
Quantity	
  
There	
  a	
  four	
  steel	
  columns	
  in	
  the	
  ground	
  floor	
  and	
  steel	
  beams	
  
integrated	
  in	
  the	
  Kappendecke.	
  
	
  
Quality	
  
It	
  is	
  not	
  possible	
  to	
  determine	
  the	
  quality	
  of	
  the	
  steel	
  beam	
  in	
  the	
  
ceiling	
  of	
  the	
  basement,	
  but	
  we	
  assume	
  that	
  it	
  is	
  still	
  in	
  a	
  good	
  
condition.	
  The	
  steel	
  column	
  is	
  also	
  in	
  a	
  good	
  condition.	
  
	
  
After-­‐‑Use	
  Markets	
  
Steel	
  is	
  one	
  of	
  the	
  most	
  recycled	
  materials	
  in	
  world	
  and	
  doesn’t	
  
lose	
  its	
  quality.	
  It	
  is	
  therefore	
  no	
  problem	
  to	
  detach	
  the	
  steel	
  and	
  
recycle	
  it	
  (eBay,	
  2015).	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
Despite	
  its	
  high	
  recyclability	
  and	
  resistance,	
  it	
  is	
  also	
  a	
  possible	
  to	
  
deconstruct	
  the	
  steel	
  beams	
  or	
  columns	
  and	
  reuse	
  them	
  in	
  a	
  
different	
  building.	
  
	
  
Main	
  Concerns	
  
It	
  is	
  important	
  to	
  check	
  the	
  steel	
  for	
  any	
  corrosion	
  if	
  it	
  is	
  going	
  to	
  be	
  reused	
  in	
  a	
  new	
  building.	
  	
  
	
  
	
  
3.5.	
  Re-­‐‑Enforced	
  Concrete	
  
	
  
Quantity	
  
The	
  stair	
  cases	
  and	
  the	
  main	
  stair	
  case	
  are	
  made	
  out	
  of	
  reinforced	
  concrete.	
  	
  
	
  
Quality	
  
They	
  are	
  in	
  top	
  condition	
  and	
  show	
  no	
  damaged	
  areas	
  	
  
Figure	
  3.4.	
  Steel	
  column	
  on	
  the	
  ground	
  floor
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
13	
  
After-­‐‑Use	
  Markets	
  
Reinforced	
  concrete	
  is	
  often	
  recycled	
  by	
  crushing	
  it	
  to	
  be	
  used	
  as	
  granular	
  filling.	
  There	
  are	
  
several	
  facilities	
  which	
  can	
  recycle	
  a	
  big	
  amount	
  in	
  Hamburg.	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
Besides	
  the	
  concrete,	
  the	
  reinforcement	
  out	
  of	
  steel	
  is	
  often	
  melted	
  and	
  reused	
  for	
  other	
  steel	
  
components	
  (Buhck	
  Gruppe,	
  2016).	
  	
  The	
  environment	
  and	
  the	
  increase	
  usage	
  of	
  concrete	
  has	
  
also	
  led	
  to	
  a	
  new	
  type	
  of	
  concrete,	
  Recycling	
  concrete,	
  also	
  known	
  as	
  RC-­‐‑Concrete.	
  It	
  decreases	
  
the	
  costs	
  of	
  demolition	
  projects,	
  because	
  it	
  eliminates	
  the	
  costs	
  of	
  disposal	
  (Concrete	
  Network,	
  
2016).	
  
	
  
Main	
  Concerns	
  
It	
  is	
  important	
  to	
  separate	
  the	
  concrete	
  from	
  the	
  steel.	
  
	
  
	
  
3.7.	
  Screed	
  
	
  
Quantity	
  
The	
  surface/flooring	
  of	
  the	
  basement	
  and	
  ground	
  floor	
  is	
  made	
  out	
  of	
  screed.	
  	
  
	
  
Quality	
  
It	
  is	
  quit	
  damaged	
  and	
  lots	
  of	
  different	
  “patching”	
  has	
  been	
  done.	
  	
  It	
  means	
  that	
  the	
  different	
  
users	
  have	
  most	
  probably	
  tried	
  to	
  fix	
  or	
  repair	
  the	
  surface	
  with	
  different	
  materials.	
  
	
  
After-­‐‑Use	
  Markets	
  
Screed	
  is	
  crushed	
  and	
  sent	
  to	
  a	
  waste	
  disposal.	
  	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
It	
  is	
  usually	
  not	
  re-­‐‑used,	
  because	
  of	
  its	
  thin	
  layer	
  on	
  floorings.	
  	
  
	
  
Main	
  Concerns	
  
When	
  screed	
  is	
  detached	
  from	
  the	
  floor	
  there	
  are	
  usually	
  other	
  materials	
  stuck	
  to	
  it	
  (e.g.	
  tar	
  
paper,	
  bitumen,	
  etc.),	
  which	
  are	
  important	
  to	
  separate	
  (Ensortung,	
  2010).	
  	
  
	
  
	
  
3.7.	
  Plaster	
  
	
  
Quantity	
  
The	
  amount	
  of	
  plaster	
  is	
  mainly	
  located	
  on	
  the	
  inner	
  surface	
  of	
  the	
  Rote	
  Flora.	
  
	
  
Quality	
  
The	
  quality	
  is	
  overall	
  in	
  a	
  good	
  condition,	
  but	
  it	
  is	
  difficult	
  to	
  determine	
  where	
  and	
  how	
  many	
  
types	
  of	
  plaster	
  has	
  been	
  used	
  during	
  the	
  years.	
  
	
  
After-­‐‑Use	
  Markets	
  
The	
  gypsum	
  is	
  sent	
  to	
  a	
  recycling	
  management	
  facility	
  where	
  it	
  is	
  crushed	
  and	
  sieved	
  until	
  it	
  is	
  a	
  
fine	
  powder.	
  	
  After	
  the	
  process,	
  the	
  powder	
  is	
  re-­‐‑used	
  as	
  a	
  gypsum	
  substance.	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
14	
  
Re-­‐‑Use	
  Best	
  Practice	
  
It	
  is	
  possible	
  to	
  use	
  the	
  regained	
  “gypsum”-­‐‑powder	
  for	
  gypsum	
  cardboard.	
  
	
  
Main	
  Concerns	
  
The	
  main	
  concern	
  is	
  the	
  separation	
  of	
  other	
  materials	
  to	
  achieve	
  a	
  clean	
  “powdered”-­‐‑gypsum	
  
for	
  further	
  reuse	
  (Deutschlandfunk,	
  2016).	
  
	
  
3.8.	
  Bitumen	
  
	
  
Quantity	
  
The	
  only	
  area	
  where	
  bitumen	
  is	
  located	
  is	
  on	
  the	
  roof.	
  	
  
	
  
Quality	
  
We	
  were	
  not	
  able	
  to	
  go	
  on	
  the	
  roof,	
  but	
  we	
  assume	
  that	
  is	
  it	
  damage,	
  because	
  the	
  roof	
  is	
  not	
  fully	
  
waterproof.	
  
	
  
After-­‐‑Use	
  Markets	
  
Bituminous	
  tarred	
  paper	
  must	
  be	
  disposed	
  separately	
  from	
  other	
  buildings	
  materials,	
  because	
  
of	
  it	
  hazardous	
  substance	
  and	
  is	
  therefore	
  sent	
  to	
  	
  a	
  disposal	
  management	
  facility	
  (Otto	
  Dörner,	
  
2016).	
  
	
  
Re-­‐‑Use	
  Best	
  Practice	
  
As	
  already	
  mentioned,	
  due	
  to	
  its	
  hazardous	
  substance	
  it	
  cannot	
  be	
  re-­‐‑used.	
  	
  But,	
  it	
  is	
  possible	
  to	
  
convert	
  it	
  in	
  to	
  a	
  bituminous	
  granulate	
  for	
  asphalt	
  industry	
  (VLIE,	
  2016).	
  	
  
	
  
Main	
  Concerns	
  
The	
  main	
  concern	
  is	
  the	
  right	
  disposal,	
  because	
  it	
  has	
  to	
  be	
  disposed	
  separately	
  from	
  other	
  
materials.	
  
	
  
	
  
3.9.	
  Comparison	
  of	
  all	
  Materials	
  
The	
  table	
  gives	
  an	
  overview	
  of	
  all	
  the	
  analyzed	
  materials.	
  Our	
  scoring	
  is	
  based	
  on	
  the	
  different	
  
categories	
  for	
  each	
  material.	
  
	
  
	
  
	
  
	
  
Table	
  3.9.	
  Multi-­‐‑Criteria	
  Assessment	
  of	
  Main	
  Building	
  Materials	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
15	
  
	
  
4.	
  Main	
  Objectives	
  for	
  Sustainability	
  
	
  
The	
  aim	
  of	
  this	
  project	
  is	
  to	
  determine	
  the	
  most	
  sustainable	
  way	
  to	
  deconstruct	
  the	
  Rota	
  Flora,	
  
in	
  the	
  hypothetical	
  event	
  that	
  the	
  such	
  a	
  plan	
  would	
  be	
  necessary.	
  	
  We	
  have	
  adopted	
  the	
  
sustainability	
  assessment	
  criteria	
  outlined	
  by	
  the	
  German	
  Federal	
  Ministry	
  for	
  the	
  Environment,	
  
Nature	
  Conservation,	
  Building	
  and	
  Nuclear	
  Safety’s	
  (BMUB)	
  Guideline	
  for	
  Sustainable	
  Building	
  
(2014),	
  as	
  shown	
  in	
  Figure	
  4,	
  and	
  modified	
  it	
  to	
  fit	
  the	
  context	
  of	
  our	
  project,	
  and	
  to	
  only	
  focus	
  
on	
  the	
  deconstruction	
  life	
  cycle	
  phase.	
  
	
  
	
  
	
  
	
  
	
  
4.1.	
  Ecological	
  Quality	
  
The	
  Ecological	
  Quality	
  indicator	
  aims	
  to	
  assess	
  the	
  environmental	
  impact	
  (sometimes	
  called	
  the	
  
Environmental	
  Footprint)	
  of	
  the	
  deconstruction	
  plan.	
  	
  This	
  evaluation	
  considers	
  the	
  required	
  
energy	
  and	
  water	
  expenditures	
  of	
  the	
  actual	
  deconstruction	
  process,	
  such	
  as	
  physical	
  labor	
  and	
  
machine	
  use,	
  as	
  well	
  as	
  the	
  resource	
  expenditures	
  associated	
  with	
  various	
  post-­‐‑deconstruction	
  
material	
  treatment	
  processes.	
  	
  For	
  example,	
  associated	
  energy	
  recovered	
  from	
  incineration	
  
minus	
  the	
  impacts	
  of	
  managing	
  hazardous	
  incineration	
  ash	
  from,	
  for	
  example,	
  extruded	
  
polystyrene	
  (XPS)	
  insulation	
  panels.	
  
	
  
	
  
	
   4.2.	
  Economic	
  Quality	
  
Of	
  course,	
  economic	
  feasibility	
  must	
  be	
  considered	
  in	
  every	
  project.	
  	
  Genuine	
  achievement	
  of	
  
sustainability	
  must	
  incorporate	
  external	
  costs	
  traditionally	
  not	
  included	
  in	
  project	
  cost	
  
evaluations,	
  such	
  as	
  avoided	
  energy	
  and	
  operational	
  costs	
  especially	
  for	
  the	
  production	
  of	
  new	
  
materials	
  and	
  products	
  displaced	
  by	
  the	
  reuse	
  of	
  existing	
  materials	
  and	
  products.	
  	
  Life-­‐‑Cycle	
  
Costing	
  is	
  a	
  technique	
  prescribed	
  to	
  incorporate	
  non-­‐‑traditional	
  external	
  costs	
  by	
  the	
  German	
  
Sustainable	
  Building	
  Council	
  (DGNB)	
  (2014),	
  the	
  Building	
  Research	
  Establishment	
  
Environmental	
  Assessment	
  Methodology	
  (BREEAM)	
  (2014)	
  and	
  the	
  International	
  Standard	
  
Organization’s	
  “Buildings	
  and	
  Construction	
  Assets	
  –	
  Service	
  Life	
  Planning”	
  (ISO	
  15686-­‐‑5)	
  
(2008).	
  
Figure	
  4.	
  BMUBS’	
  Assessment	
  System	
  for	
  Sustainable	
  Building	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
16	
  
	
  
The	
  four	
  proposed	
  deconstruction	
  scenarios	
  for	
  the	
  Rota	
  Flora	
  are	
  evaluated	
  on	
  both	
  tradition	
  
costs	
  for	
  deconstruction:	
  labor,	
  equipment,	
  permits,	
  and	
  modified	
  to	
  reflect	
  reduced	
  costs	
  and	
  
economic	
  benefits	
  (both	
  calculated	
  as	
  negative	
  costs)	
  from	
  the	
  reusing	
  and	
  recycling	
  of	
  
materials.	
  	
  This	
  value	
  should	
  be	
  quantified	
  on	
  the	
  profits	
  resulting	
  from	
  sells	
  and	
  the	
  saved	
  costs	
  
for	
  water,	
  energy,	
  transportation	
  and	
  raw	
  materials	
  of	
  creating	
  new,	
  virgin	
  products	
  that	
  is	
  
prevented	
  in	
  recycling	
  and	
  reuse	
  scenarios.	
  
	
  
	
   4.3.	
  Socio-­‐‑Cultural	
  and	
  Functional	
  Quality	
  
In	
  every	
  project,	
  the	
  social	
  sustainability	
  must	
  be	
  a	
  crucial	
  element,	
  as	
  it	
  is	
  one	
  of	
  the	
  three	
  main	
  
pillars	
  of	
  sustainability:	
  people,	
  profit,	
  planet.	
  	
  Social	
  sustainability	
  can	
  be	
  measure	
  through	
  
inclusion	
  in	
  the	
  planning,	
  construction	
  and	
  deconstruction	
  process;	
  through	
  acceptance	
  of	
  the	
  
project;	
  the	
  expected	
  level	
  of	
  public	
  health	
  compared	
  to	
  the	
  background	
  condition;	
  among	
  other	
  
measures,	
  according	
  to	
  the	
  United	
  Nation’s	
  Sustainable	
  Development	
  Goals	
  (UNEP,	
  2015).	
  
	
  
This	
  indicator	
  is	
  of	
  heightened	
  importance	
  in	
  our	
  project	
  considering	
  the	
  cultural	
  significance	
  of	
  
the	
  building,	
  and	
  the	
  relevance	
  of	
  historical	
  violence	
  associated	
  with	
  attempts	
  to	
  remove	
  the	
  
building.	
  	
  The	
  aim	
  of	
  this	
  project	
  is	
  to	
  identify	
  a	
  best	
  case	
  scenario	
  for	
  deconstruction	
  of	
  this	
  
Hamburg	
  monument	
  in	
  the	
  hypothetical	
  situation	
  that	
  such	
  activity	
  would	
  be	
  necessary.	
  	
  	
  
	
  
In	
  this	
  situation,	
  the	
  project	
  can	
  only	
  be	
  sustainable	
  if	
  there	
  is	
  acceptance	
  by	
  from	
  society.	
  	
  
	
  
	
  
	
   4.4.	
  Technical	
  Quality	
  
Technical	
  Quality,	
  in	
  this	
  project,	
  reflects	
  the	
  overall	
  material	
  quality	
  and	
  quantity	
  distributions.	
  	
  
This	
  assessment	
  assumes	
  that	
  maintaining	
  each	
  material	
  at	
  its	
  highest	
  value	
  for	
  as	
  long	
  as	
  
possible	
  is	
  the	
  most	
  sustainable	
  option.	
  	
  This	
  assumption	
  is	
  in	
  accord	
  with	
  the	
  European	
  
Commission’s	
  proposed	
  Circular	
  Economy	
  Package	
  (2014)	
  and	
  the	
  “Waste	
  Hierarchy”	
  adopted	
  
by	
  the	
  Commission	
  (2008/98/EC)	
  as	
  “a	
  priority	
  order	
  in	
  the	
  waste	
  prevention	
  and	
  management	
  
legislation	
  and	
  policy.”	
  	
  The	
  “Waste	
  Hierarchy”	
  requires	
  that	
  waste	
  management	
  strategies	
  
prioritize	
  prevention,	
  followed	
  by	
  reuse,	
  then	
  recycling,	
  then	
  recovery	
  (including	
  energy	
  
recovery)	
  and	
  resulting	
  to	
  disposal	
  only	
  when	
  no	
  other	
  alternatives	
  exist.	
  
	
  
	
  
	
   4.5.	
  Process	
  Quality	
  
For	
  this	
  project,	
  Process	
  Quality	
  is	
  interpreted	
  to	
  reflect	
  time	
  efficiency.	
  	
  This	
  indicator	
  is	
  
generally	
  applicable	
  to	
  all	
  projects	
  as	
  time	
  directly	
  translates	
  into	
  costs	
  for	
  labor,	
  equipment	
  
and	
  permits.	
  	
  In	
  our	
  project,	
  there	
  is	
  an	
  additional	
  implication	
  for	
  reducing	
  risks	
  associated	
  with	
  
violent	
  protests.	
  	
  It	
  is	
  assumed	
  that	
  the	
  faster	
  the	
  project	
  is	
  completed	
  the	
  more	
  sustainable	
  the	
  
project,	
  considering	
  all	
  of	
  the	
  other	
  indicators.	
  
	
  
The	
  reader	
  should	
  not	
  that	
  the	
  first	
  four	
  indicators	
  are	
  measured	
  evenly	
  at	
  22.5%	
  per	
  indicator.	
  	
  
Process	
  Quality,	
  or	
  Time	
  Efficiency,	
  is	
  considered	
  less	
  than	
  half	
  as	
  influential	
  (only	
  10%)	
  in	
  
overall	
  project	
  sustainability	
  as	
  each	
  of	
  the	
  other	
  indicators.	
  	
  The	
  authors	
  think	
  that	
  this	
  
distribution	
  is	
  logical	
  because	
  the	
  direct	
  benefit	
  resulting	
  from	
  this	
  indicator	
  is	
  its	
  capacity	
  to	
  
positively	
  influence	
  other	
  indicators,	
  such	
  as	
  Economic	
  Quality	
  and	
  Socio-­‐‑Cultural	
  and	
  
Functional	
  Quality,	
  and	
  there	
  forth	
  is	
  an	
  indirect	
  indicator.	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
17	
  
5.	
  Possible	
  Routes	
  for	
  Deconstruction	
  
	
  
The	
  Rote	
  Flora	
  is	
  an	
  important	
  symbol	
  for	
  activists	
  and	
  other	
  people	
  in	
  Germany.	
  	
  The	
  decision	
  
for	
  a	
  deconstruction	
  of	
  this	
  building	
  would	
  cause	
  demonstrations,	
  which	
  would	
  escalade	
  to	
  
violence	
  undoubtedly.	
  	
  It	
  would	
  not	
  be	
  possible	
  to	
  get	
  the	
  activists	
  out	
  of	
  the	
  occupied	
  building	
  
without	
  using	
  violence.	
  	
  Considering	
  this,	
  deconstruction	
  of	
  the	
  Rota	
  Flora	
  would	
  be	
  
unfavourable	
  for	
  most	
  of	
  the	
  citizens	
  in	
  Hamburg	
  and	
  it	
  is	
  highly	
  unlikely	
  that	
  the	
  city	
  will	
  adopt	
  
a	
  strategy	
  to	
  accomplish	
  this.	
  	
  
	
  
	
  
5.1.	
  Scenario	
  One:	
  The	
  Quickest	
  
If	
  the	
  deconstruction	
  of	
  the	
  Flora	
  truly	
  happened,	
  it	
  would	
  have	
  to	
  happen	
  fast.	
  	
  In	
  scenario	
  one,	
  
the	
  quickest	
  way	
  will	
  be	
  described.	
  	
  For	
  a	
  quick	
  deconstruction,	
  a	
  lot	
  of	
  vehicles	
  and	
  machines	
  
are	
  needed,	
  and	
  it	
  has	
  to	
  be	
  well	
  planned.	
  	
  The	
  deconstruction	
  companies	
  need	
  to	
  be	
  ready	
  as	
  
soon	
  as	
  the	
  police	
  have	
  removed	
  the	
  activists	
  and	
  have	
  had	
  cleared	
  the	
  area.	
  	
  A	
  lot	
  of	
  security	
  
staff	
  is	
  needed	
  during	
  the	
  whole	
  deconstructing	
  process	
  to	
  ensure	
  the	
  safety	
  of	
  the	
  site	
  workers,	
  
the	
  security	
  staff	
  itself	
  and	
  the	
  violent	
  protesters,	
  which	
  will	
  likely	
  put	
  themselves	
  and	
  other	
  
members	
  of	
  the	
  community	
  in	
  risk	
  of	
  danger.	
  	
  The	
  construction	
  site	
  needs	
  to	
  be	
  covered	
  from	
  
being	
  seen	
  by	
  the	
  citizens	
  because	
  it	
  could	
  create	
  even	
  more	
  anger,	
  if	
  people	
  saw	
  how	
  
“violently”	
  the	
  Flora	
  was	
  being	
  demolished.	
  	
  All	
  these	
  arrangements	
  cost	
  a	
  lot	
  of	
  money,	
  but	
  
higher	
  investments	
  at	
  the	
  beginning	
  lead	
  to	
  a	
  quicker	
  demolishment	
  of	
  the	
  object	
  and	
  it	
  saves	
  
time,	
  which	
  means	
  saving	
  money.	
  	
  
	
  
Phase	
  One:	
  
The	
  buildings	
  next	
  to	
  the	
  Rote	
  Flora	
  need	
  to	
  be	
  protected,	
  and	
  the	
  entire	
  construction	
  
site	
  closed	
  off	
  from	
  public	
  view.	
  
	
  
Phase	
  Two:	
  
The	
  building	
  should	
  be	
  demolished	
  with	
  a	
  wrecking	
  ball.	
  	
  	
  
	
  
Phase	
  Three:	
  
The	
  construction	
  waste	
  needs	
  to	
  be	
  loaded	
  onto	
  trucks	
  and	
  carried	
  away.	
  	
  The	
  waste	
  can	
  
be	
  separated	
  later	
  for	
  further	
  recycling.	
  	
  The	
  deconstruction	
  could	
  be	
  performed	
  in	
  a	
  few	
  
days	
  depending	
  on	
  the	
  amount	
  of	
  inserted	
  machines	
  and	
  the	
  weight	
  of	
  political	
  affairs.	
  	
  	
  
	
  
Scenario	
  one	
  will	
  result	
  in	
  the	
  lowest	
  quality	
  of	
  recovered	
  material.	
  	
  This	
  will	
  result	
  in	
  the	
  
majority	
  of	
  the	
  recovered	
  masses	
  being	
  suitable	
  for	
  recycling	
  into	
  an	
  aggregate	
  for	
  construction	
  
of	
  roads,	
  or	
  as	
  backfill	
  on	
  construction	
  sites,	
  or	
  to	
  be	
  “recovered”	
  in	
  the	
  form	
  of	
  energy	
  
production	
  from	
  incineration.	
  
	
  
	
  
5.2.	
  Scenario	
  Two:	
  Recovery	
  of	
  the	
  Highest	
  Material	
  Quantity	
  and	
  Quality	
  
In	
  this	
  Scenario,	
  we	
  will	
  try	
  to	
  deconstruct	
  the	
  building	
  in	
  a	
  way	
  that	
  facilitates	
  the	
  greatest	
  
possibility	
  for	
  recycling	
  or	
  reusing	
  of	
  the	
  materials	
  and	
  components	
  in	
  the	
  building	
  as	
  possible,	
  
with	
  the	
  focus	
  on	
  the	
  materials	
  with	
  the	
  highest	
  volume,	
  value	
  or	
  risk.	
  	
  We	
  assume	
  that	
  most	
  of	
  
the	
  wooden	
  materials,	
  especially	
  the	
  old	
  floor	
  and	
  the	
  beams,	
  are	
  made	
  of	
  solid	
  wood,	
  
representing	
  a	
  great	
  value	
  and	
  potential	
  to	
  be	
  sold	
  and	
  reused.	
  	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
18	
  
	
  
Similarly,	
  the	
  bricks	
  in	
  the	
  walls	
  and	
  the	
  foundation,	
  which	
  is	
  representing	
  the	
  biggest	
  material	
  
volume	
  in	
  the	
  Flora,	
  will	
  have	
  to	
  be	
  specially	
  treated	
  if	
  they	
  are	
  to	
  be	
  removed	
  from	
  the	
  building	
  
and	
  their	
  quality	
  preserved	
  so	
  that	
  they	
  can	
  be	
  reused	
  and	
  recycled	
  too.	
  
	
  
Phase	
  One:	
  
At	
  first,	
  it	
  is	
  necessary	
  to	
  check	
  if	
  there	
  are	
  any	
  hazardous	
  materials	
  left	
  in	
  the	
  structure.	
  	
  
The	
  materials	
  have	
  to	
  be	
  taken	
  out	
  and	
  be	
  specially	
  treated	
  before	
  the	
  deconstruction	
  
begins.	
  	
  	
  
	
  
The	
  deconstruction	
  starts	
  on	
  the	
  first	
  floor.	
  	
  To	
  protect	
  the	
  value	
  of	
  the	
  wooden	
  floor,	
  it	
  
is	
  necessary	
  to	
  take	
  it	
  out	
  first.	
  	
  It	
  is,	
  however,	
  necessary	
  to	
  keep	
  a	
  floor	
  to	
  walk	
  on,	
  so	
  
additional	
  of	
  a	
  temporary	
  floor	
  construction	
  would	
  be	
  needed	
  before	
  the	
  deconstruction	
  
could	
  continue.	
  
	
  
Phase	
  Two:	
  
In	
  the	
  second	
  phase,	
  valuable	
  materials	
  that	
  may	
  be	
  directly	
  reusable	
  and	
  are	
  certainly	
  
recyclable	
  should	
  be	
  carefully	
  removed	
  in	
  a	
  manner	
  that	
  preserves	
  the	
  highest	
  quality.	
  	
  
Metals,	
  like	
  heating	
  systems,	
  piping,	
  copper	
  wires,	
  and	
  sanitary	
  fixtures;	
  window	
  
material,	
  like	
  glass	
  and	
  frames;	
  and	
  other	
  elemental	
  fixtures	
  in	
  the	
  building	
  would	
  be	
  of	
  
most	
  value	
  and	
  there	
  forth	
  importance.	
  These	
  material	
  should	
  be	
  separated	
  from	
  other	
  
bulk	
  construction	
  wastes	
  and	
  picked	
  up	
  by	
  certain	
  recycling	
  companies.	
  
	
  
Phase	
  Three:	
  
After	
  all	
  high-­‐‑value	
  material	
  has	
  been	
  taken	
  out	
  of	
  all	
  three	
  stories,	
  the	
  non-­‐‑load-­‐‑bearing	
  
walls	
  can	
  be	
  demolished	
  in	
  the	
  whole	
  building.	
  
	
  
Phase	
  Four:	
  
In	
  the	
  next	
  phase,	
  a	
  stage	
  has	
  to	
  be	
  built	
  on	
  top	
  of	
  the	
  new	
  floor,	
  which	
  was	
  made	
  of	
  
construction	
  boards,	
  to	
  make	
  the	
  deconstruction	
  of	
  the	
  roof	
  and	
  its	
  valuable	
  wooden	
  
beam	
  construction	
  possible.	
  	
  The	
  next	
  thing	
  to	
  do	
  is	
  to	
  remove	
  the	
  previously	
  
constructed	
  stage,	
  and	
  all	
  parts	
  of	
  the	
  first	
  floor.	
  	
  This	
  construction	
  element	
  also	
  consists	
  
of	
  reusable	
  wooden	
  beams,	
  which	
  could	
  be	
  sold	
  for	
  reuse.	
  
	
  
Phase	
  Five:	
  
The	
  load-­‐‑bearing	
  walls	
  can	
  be	
  now	
  deconstructed.	
  	
  The	
  old	
  bricks	
  of	
  the	
  walls	
  need	
  to	
  be	
  
kept	
  undamaged	
  for	
  continuing	
  reuse.	
  	
  To	
  make	
  that	
  possible,	
  the	
  wall	
  needs	
  to	
  be	
  taken	
  
down	
  carefully	
  in	
  bits	
  and	
  pieces.	
  	
  This	
  phase	
  is	
  expected	
  to	
  be	
  the	
  slowest	
  part	
  of	
  the	
  
entire	
  deconstruction.	
  	
  The	
  ground	
  floor	
  and	
  the	
  walls	
  of	
  the	
  basement	
  have	
  to	
  be	
  
deconstructed	
  by	
  using	
  the	
  same	
  procedure.	
  	
  But,	
  it	
  is	
  questionable	
  whether	
  the	
  effort	
  of	
  
this	
  difficult	
  deconstruction	
  is	
  worth	
  while	
  for	
  the	
  basement	
  because	
  the	
  moisture	
  of	
  the	
  
surrounding	
  soil	
  could	
  have	
  made	
  the	
  bricks	
  unusable.	
  	
  However,	
  the	
  bricks	
  would	
  still	
  
be	
  recyclable	
  as	
  an	
  aggregate.	
  	
  In	
  that	
  case,	
  it	
  is	
  enough	
  to	
  use	
  a	
  more	
  rapid	
  and	
  forceful	
  
demolish	
  technique	
  causing	
  structural	
  damage	
  to	
  the	
  bricks	
  of	
  the	
  walls	
  and	
  the	
  
foundation	
  and	
  then	
  lift	
  the	
  rubble	
  materials	
  out	
  of	
  the	
  pit.	
  	
  	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
19	
  
This	
  deconstruction	
  method,	
  which	
  places	
  high	
  importance	
  in	
  the	
  oldest	
  and	
  most	
  historical	
  
building	
  materials,	
  takes	
  time,	
  money	
  and	
  a	
  lot	
  of	
  effort;	
  but,	
  potentially	
  saves	
  energy	
  and	
  water	
  
expenditures	
  associated	
  with	
  manufacturing	
  new	
  materials,	
  which	
  the	
  preserved	
  materials	
  will	
  
replace	
  via	
  reuse.	
  	
  It	
  is	
  assumed	
  that	
  the	
  financial	
  benefits	
  of	
  reuse	
  of	
  Scenario	
  Two	
  will	
  not	
  
cover	
  the	
  increased	
  costs	
  for	
  the	
  time-­‐‑consuming	
  and	
  delegate	
  deconstruction.	
  Still,	
  it	
  shows	
  
that	
  high	
  volumes	
  of	
  materials	
  can	
  be	
  removed	
  from	
  the	
  building	
  at	
  a	
  reusable	
  quality	
  if	
  
deconstruction	
  plans	
  are	
  designed	
  with	
  this	
  aim.	
  
	
  
	
  
5.3.	
  Scenario	
  Three:	
  The	
  Cheapest	
  
The	
  cheapest	
  way	
  of	
  deconstructing	
  the	
  Flora	
  constitutes	
  of	
  a	
  mix	
  between	
  keeping	
  some	
  
construction	
  parts	
  for	
  selling	
  and	
  a	
  direct	
  demolishment.	
  	
  	
  
	
  
Phase	
  One:	
  
Just	
  like	
  in	
  scenario	
  two,	
  the	
  described	
  materials	
  of	
  high	
  value	
  like	
  wood,	
  metals	
  et	
  
cetera	
  should	
  be	
  taken	
  out	
  safely	
  for	
  profitable	
  reasons.	
  	
  	
  
	
  
Phase	
  Two:	
  
But,	
  instead	
  of	
  deconstructing	
  the	
  structural	
  parts,	
  which	
  are	
  made	
  of	
  bricks,	
  it	
  would	
  be	
  
much	
  cheaper	
  just	
  to	
  demolish	
  them	
  in	
  a	
  quick	
  and	
  rough	
  way.	
  	
  Later,	
  the	
  damaged	
  
bricks	
  could	
  be	
  separated	
  and	
  recycled.	
  	
  The	
  undamaged	
  bricks	
  could	
  be	
  cleaned	
  and	
  
sold	
  for	
  reuse.	
  The	
  idea	
  is	
  to	
  demolish	
  construction	
  parts,	
  which	
  would	
  create	
  more	
  
costs	
  if	
  conserved,	
  than	
  profit	
  they	
  will	
  bring	
  if	
  they	
  would	
  be	
  been	
  sold.	
  
	
  
	
  
5.4.	
  Scenario	
  Four:	
  Most	
  Socially	
  Agreeable	
  
This	
  scenario	
  tries	
  to	
  find	
  a	
  compromise	
  for	
  a	
  deconstruction	
  that	
  could	
  be	
  accepted	
  by	
  the	
  
society.	
  	
  Providing	
  that	
  keeping	
  parts	
  of	
  the	
  Flora	
  at	
  the	
  actual	
  site	
  would	
  not	
  be	
  an	
  option,	
  the	
  
compromise	
  could	
  be	
  keeping	
  some	
  special	
  building	
  parts	
  of	
  the	
  Flora	
  and	
  bring	
  it	
  to	
  another	
  
place,	
  which	
  exhibits	
  the	
  parts	
  and	
  deals	
  with	
  it	
  as	
  a	
  symbol	
  in	
  a	
  respectful	
  way,	
  assuming	
  that	
  
procedure	
  would	
  work	
  and	
  be	
  possible.	
  	
  Parts	
  of	
  the	
  East	
  Side	
  Gallery	
  of	
  the	
  Berlin	
  Wall	
  are	
  a	
  
best	
  practice	
  showing	
  that	
  this	
  is	
  a	
  viable	
  solution.	
  	
  Museums	
  and	
  establishments	
  across	
  Berlin,	
  
Germany,	
  Europe	
  and	
  beyond	
  showcase	
  small	
  sections	
  of	
  this	
  historic	
  monument.	
  	
  It	
  is	
  plausible	
  
that	
  there	
  would	
  be	
  an	
  eager	
  market	
  in	
  Hamburg	
  to	
  recover	
  intact,	
  structural	
  pieces	
  of	
  the	
  Rota	
  
Flora	
  exhibiting	
  her	
  characteristic	
  graffiti	
  to	
  be	
  showcased	
  in	
  businesses,	
  cultural	
  institutions	
  
and	
  possibly	
  people’s	
  homes.	
  	
  
	
  
Phase	
  One:	
  
In	
  this	
  scenario,	
  the	
  first	
  phase	
  would	
  also	
  be	
  to	
  remove	
  valuable	
  materials	
  for	
  reuse,	
  
such	
  as	
  metals,	
  fixtures	
  and	
  valuable	
  wood.	
  
	
  
Phase	
  Two:	
  
Once	
  the	
  building	
  has	
  been	
  gutted	
  of	
  easily	
  recoverable	
  and	
  high	
  value	
  materials,	
  then	
  
parts	
  of	
  the	
  walls	
  need	
  to	
  be	
  cut	
  out	
  and	
  lifted	
  by	
  a	
  crane.	
  These	
  processes	
  and	
  the	
  
necessary	
  machines	
  would	
  cost	
  a	
  lot	
  of	
  time	
  and	
  money,	
  but	
  it	
  could	
  be	
  worth	
  while	
  in	
  
order	
  to	
  avoid	
  bad	
  publicity	
  and	
  keep	
  peace	
  while	
  reaching	
  the	
  goal.	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
20	
  
6.	
  Comparison	
  of	
  the	
  Four	
  Scenarios	
  for	
  Optimal	
  Sustainability	
  
	
  
The	
  four	
  scenarios	
  have	
  been	
  compared	
  on	
  the	
  five	
  sustainability	
  indicators	
  prescribed	
  by	
  the	
  
German	
  Federal	
  Ministry	
  for	
  the	
  Environment,	
  Nature	
  Conservation,	
  Building	
  and	
  Nuclear	
  
Safety’s	
  (BMUB)	
  Guideline	
  for	
  Sustainable	
  Building	
  (2014).	
  	
  The	
  five	
  indicators	
  are	
  considered	
  in	
  
a	
  weighted	
  fashion	
  of	
  relevance	
  to	
  the	
  overall	
  sustainability	
  of	
  the	
  project	
  –	
  Ecological	
  Quality	
  
(22.5%),	
  Economic	
  Quality	
  (22.5%),	
  Socio-­‐‑Cultural	
  and	
  Functional	
  Quality	
  (22.5%)	
  Process	
  
Quality	
  (22.5%),	
  and	
  Process	
  Quality	
  (10%).	
  
	
  
The	
  author’s	
  support	
  this	
  division	
  of	
  relevance	
  as	
  it	
  holds	
  equal	
  weighting	
  of	
  the	
  three	
  pillars	
  of	
  
sustainability:	
  the	
  environment,	
  the	
  economy	
  and	
  society,	
  and	
  also	
  considers	
  the	
  Technical	
  
Quality	
  as	
  an	
  equal	
  measure.	
  	
  This	
  arrangement	
  supports	
  the	
  goals	
  of	
  the	
  EC	
  Waste	
  Directive	
  
and	
  the	
  principles	
  of	
  a	
  Circular	
  Economy,	
  which	
  set	
  maintaining	
  material	
  value	
  and	
  longevity	
  as	
  
the	
  greatest	
  priority,	
  and	
  also	
  compliments	
  the	
  concept	
  of	
  an	
  integrated	
  assessment	
  method	
  for	
  
sustainable	
  deconstruction.	
  	
  It	
  is	
  clear	
  that	
  achievement	
  of	
  sustainability	
  in	
  deconstruction	
  
requires	
  intentional	
  and	
  well	
  thought	
  out,	
  place-­‐‑specific	
  planning.	
  	
  As	
  such,	
  it	
  is	
  appropriate	
  that	
  
Technical	
  Quality	
  is	
  rating	
  evenly	
  with	
  the	
  three	
  pillars	
  of	
  sustainability.	
  
	
  
Process	
  Quality	
  is	
  a	
  modifier	
  indicator,	
  which	
  supports	
  the	
  project	
  by	
  enabling	
  enhanced	
  
performance	
  of	
  other	
  indicators.	
  	
  For	
  example,	
  reduced	
  deconstruction	
  time	
  directly	
  relates	
  to	
  
saved	
  costs	
  in	
  labour,	
  equipment	
  and	
  permits,	
  and	
  also	
  decreased	
  risks	
  of	
  violent	
  protests.	
  	
  As	
  
such,	
  this	
  indicator	
  should	
  not	
  be	
  as	
  influential	
  as	
  the	
  other	
  four.	
  
	
  
	
  
Criteria	
  
Weighting	
  
S1:	
  The	
  
Quickest	
  
S2:	
  Most	
  
Ecological	
  
S3:	
  The	
  
Cheapest	
  
S4:	
  Socially	
  
Agreeable	
  
Ecological	
  Quality	
   22.5%	
   1	
   10	
   5	
   8	
  
Economic	
  Quality	
   22.5%	
   5	
   1	
   10	
   1	
  
Socio-­‐‑Cultural	
  and	
  
Functional	
  Quality	
  
22.5%	
   1	
   6	
   2	
   10	
  
Technical	
  Quality	
   22.5%	
   1	
   8	
   6	
   10	
  
Process	
  Quality	
   10%	
   10	
   1	
   8	
   1	
  
Summation	
   1	
   2.8	
   5.725	
   5.975	
   6.625	
  
	
  
	
  
	
  
	
   6.1.	
  Ecological	
  Quality	
  
Ecological	
  Quality	
  is	
  the	
  measurement	
  of	
  the	
  amount	
  of	
  used	
  energy	
  and	
  produced	
  CO2	
  and	
  
other	
  greenhouse	
  gas	
  (GHG)	
  emissions	
  in	
  the	
  deconstruction	
  process	
  and	
  in	
  the	
  recycling	
  
chains.	
  This	
  indicator	
  also	
  measures	
  other	
  Environmental	
  Impact	
  Factors	
  commonly	
  used	
  as	
  
indicators	
  in	
  Life	
  Cycle	
  Assessment	
  (LCA),	
  such	
  as	
  those	
  incorporated	
  in	
  the	
  DGNB’s	
  
sustainability	
  rating	
  system,	
  shown	
  in	
  Table	
  6.1.	
  
	
  
Table	
  6.	
  Multi-­‐‑Criteria	
  Analysis	
  of	
  Deconstruction	
  Scenarios	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
21	
  
Scenario	
  Two:	
  Most	
  Ecological	
  was	
  rated	
  with	
  the	
  highest	
  possible,	
  10	
  points	
  because	
  this	
  
scenario	
  makes	
  it	
  possible	
  to	
  recycle	
  and	
  reuse	
  most	
  of	
  the	
  materials.	
  	
  Scenario	
  One:	
  The	
  
Quickest	
  just	
  gets	
  one	
  point	
  out	
  of	
  ten,	
  because	
  of	
  the	
  great	
  effort	
  and	
  energy	
  that	
  is	
  needed	
  to	
  
treat	
  the	
  non-­‐‑separated-­‐‑construction-­‐‑waste	
  after	
  deconstruction.	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
   6.2.	
  Economic	
  Quality	
  
Economic	
  Quality	
  assesses	
  the	
  total	
  cost	
  of	
  the	
  deconstruction	
  project	
  compared	
  to	
  average	
  cost	
  
for	
  deconstruction	
  in	
  Hamburg	
  (€/m3).	
  	
  These	
  costs	
  include	
  expenses	
  for	
  renting	
  the	
  machines	
  
and	
  vehicles,	
  labour,	
  permits,	
  and	
  either	
  waste	
  management	
  expenses	
  or	
  material	
  recovery	
  
economic	
  benefits.	
  The	
  longer	
  the	
  deconstruction	
  takes	
  the	
  higher	
  the	
  costs	
  will	
  grow.	
  	
  	
  
	
  
Scenario	
  Three:	
  The	
  Cheapest	
  is	
  awarded	
  10	
  points	
  because	
  of	
  the	
  combination	
  of	
  a	
  quick	
  
demolition	
  and	
  a	
  carefully	
  deconstruction	
  of	
  just	
  a	
  few	
  components	
  with	
  the	
  highest	
  value;	
  
resulting	
  in	
  both	
  monies	
  saved	
  and	
  simultaneously	
  earned	
  for	
  selling	
  the	
  components.	
  	
  
Table	
  6.1.	
  Environmental	
  Impact	
  Categories.	
  Source:	
  Authors’	
  reconstruction	
  of	
  DGNB	
  (2014)	
  	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
22	
  
	
  
Scenario	
  Two:	
  Most	
  Ecological	
  and	
  Scenario	
  Four:	
  Socially	
  Agreeable	
  are	
  both	
  awarded	
  the	
  
minimum,	
  only	
  1	
  point,	
  because	
  it	
  costs	
  a	
  lot	
  of	
  money	
  and	
  time	
  to	
  deconstruct	
  and	
  separate	
  the	
  
components	
  for	
  a	
  proper	
  reuse	
  or	
  recycling.	
  
	
  
	
  
	
   6.3.	
  Socio-­‐‑Cultural	
  and	
  Functional	
  Quality	
  
Socio-­‐‑Cultural	
  and	
  Functional	
  Quality	
  is	
  an	
  especially	
  important	
  indicator	
  for	
  our	
  chosen	
  
project.	
  	
  As	
  already	
  mentioned,	
  the	
  Rota	
  Flora	
  is	
  more	
  than	
  just	
  a	
  building	
  for	
  the	
  people	
  of	
  
Hamburg.	
  	
  In	
  the	
  fictional	
  scenario	
  of	
  a	
  deconstruction,	
  a	
  rating	
  of	
  ten	
  points	
  means	
  that	
  a	
  
compromise	
  has	
  been	
  found	
  that	
  satisfies	
  the	
  local	
  community	
  and	
  causes	
  no	
  violent	
  protests,	
  
like	
  in	
  Scenario	
  Four:	
  Socially	
  Agreeable.	
  	
  A	
  quick	
  and	
  cheap	
  demolishing	
  would	
  not	
  be	
  accepted,	
  
like	
  in	
  Scenario	
  One:	
  The	
  Quickest	
  and	
  Scenario	
  Three:	
  The	
  Cheapest.	
  	
  	
  
	
  
Scenario	
  Two:	
  Most	
  Ecological	
  is	
  awarded	
  at	
  least	
  five	
  points	
  because	
  the	
  sustainable	
  way	
  of	
  
deconstruction	
  fits	
  to	
  a	
  non-­‐‑capitalism	
  way	
  of	
  thinking,	
  which	
  fits	
  to	
  the	
  basic	
  adjustment	
  of	
  the	
  
activists.	
  	
  	
  
	
  
	
  
	
   6.4.	
  Technical	
  Quality	
  
This	
  indicator	
  assesses	
  the	
  quality	
  and	
  quantity	
  of	
  materials	
  preserved	
  for	
  re-­‐‑use	
  and,	
  as	
  a	
  
second	
  and	
  less	
  preferable	
  option,	
  recycled.	
  	
  	
  
	
  
Scenario	
  Four:	
  Socially	
  Agreeable	
  is	
  awarded	
  a	
  ten	
  because	
  of	
  the	
  concept	
  to	
  bring	
  most	
  of	
  the	
  
building	
  parts	
  to	
  another	
  place.	
  	
  This	
  scenario	
  provides	
  for	
  the	
  possibility	
  of	
  reconstruction	
  or	
  
the	
  exhibition	
  of	
  some	
  parts	
  of	
  the	
  structure.	
  	
  Scenario	
  One:	
  The	
  Quickest	
  gets	
  only	
  one	
  point	
  
because	
  of	
  the	
  quick	
  deconstruction,	
  which	
  would	
  destroy	
  most	
  of	
  the	
  components	
  depleting	
  
them	
  of	
  value	
  and	
  greatly	
  limiting	
  their	
  potential	
  for	
  reuse.	
  
	
  
	
  
	
   6.5.	
  Process	
  Quality	
  
Process	
  Quality	
  measures	
  the	
  duration	
  of	
  the	
  complete	
  deconstruction.	
  	
  This	
  indicator	
  assumes	
  
that	
  a	
  long	
  phase	
  of	
  deconstruction	
  will	
  lead	
  to	
  higher	
  costs	
  and	
  disturbance	
  of	
  the	
  community,	
  
which	
  are	
  living	
  and	
  walking	
  close	
  to	
  the	
  construction	
  site.	
  
	
  
A	
  quick	
  demolition,	
  like	
  in	
  Scenario	
  One:	
  The	
  Quickest,	
  is	
  awarded	
  10	
  points	
  and	
  a	
  slow	
  
deconstruction,	
  like	
  in	
  Scenario	
  Two:	
  Most	
  Ecological	
  and	
  Scenario	
  Four:	
  Socially	
  Agreeable,	
  are	
  
awarded	
  only	
  one	
  point.	
  	
  	
  
	
  
	
  
	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
23	
  
6.6.	
  Results	
  
	
  
Scenario	
  Four:	
  Socially	
  Agreeable	
  is	
  rated	
  as	
  the	
  most	
  sustainable	
  option,	
  with	
  a	
  strong	
  lead	
  on	
  
the	
  other	
  scenarios.	
  	
  This	
  scenario	
  scores	
  well	
  above	
  average	
  in	
  the	
  categories	
  of	
  Ecological	
  
Quality,	
  Socio-­‐‑Cultural	
  and	
  Functional	
  Quality,	
  and	
  Technical	
  Quality	
  because	
  it	
  upholds	
  two	
  
fundamental	
  principles	
  of	
  sustainability:	
  preservation	
  and	
  inclusion.	
  
	
  
In	
  comparison,	
  Scenario	
  One:	
  The	
  Quickest	
  rates	
  as	
  being	
  less	
  than	
  half	
  as	
  sustainable	
  as	
  
Scenario	
  Four:	
  Socially	
  Agreeable	
  because	
  it	
  does	
  not	
  prioritize	
  material	
  value	
  or	
  the	
  social	
  
importance	
  of	
  the	
  building.	
  	
  
	
  
	
  Figure	
  6.6.	
  Summary	
  of	
  Multi-­‐‑Criteria	
  Assessment	
  of	
  Deconstruction	
  
Scenarios	
  	
  	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
24	
  
7.	
  Conclusion:	
  Planned	
  Deconstruction	
  for	
  Enhanced	
  Sustainability	
  
	
  
The	
  best	
  solution,	
  according	
  to	
  our	
  rating	
  system,	
  is	
  a	
  mixture	
  of	
  all	
  four	
  scenarios	
  reflecting	
  
compromises.	
  	
  Considering	
  the	
  high	
  cultural	
  significance	
  as	
  well	
  as	
  the	
  history	
  of	
  violent	
  
protests	
  tied	
  to	
  the	
  Rota	
  Flora,	
  this	
  analysis	
  assumes	
  that	
  the	
  acceptance	
  by	
  the	
  society	
  is	
  
possibly	
  more	
  important	
  for	
  the	
  city	
  than	
  money,	
  time	
  or	
  ecology.	
  	
  
	
  
Even	
  though	
  Scenario	
  Four:	
  Socially	
  Agreeable	
  clearly	
  out-­‐‑performs	
  the	
  other	
  scenarios	
  in	
  
regards	
  to	
  overall	
  project	
  sustainability,	
  the	
  scenario	
  is	
  rated	
  the	
  worst	
  possible	
  score	
  in	
  
Economical	
  Quality,	
  which	
  is	
  one	
  of	
  three	
  basic	
  pillars	
  of	
  sustainability.	
  	
  The	
  authors	
  reflect	
  
upon	
  this	
  as	
  an	
  opportunity	
  to	
  further	
  improve	
  the	
  project.	
  
	
  
In	
  this	
  case,	
  the	
  deconstruction	
  Scenario	
  Five:	
  Public	
  Participation	
  should	
  be	
  the	
  same	
  as	
  
Scenario	
  Four:	
  Socially	
  Agreeable,	
  but	
  enhanced	
  with	
  a	
  new	
  model	
  to	
  balance	
  the	
  economic	
  
costs	
  of	
  preserving	
  parts	
  of	
  the	
  building.	
  	
  Potential	
  funding	
  schemes	
  include	
  donations,	
  Crowd	
  
Funding,	
  crown	
  funding	
  via	
  festivals	
  or	
  other	
  cultural	
  events,	
  or	
  a	
  direct	
  subsidy	
  from	
  the	
  city.	
  	
  
Therefore,	
  Hamburg	
  and	
  some	
  charity	
  organisations	
  could	
  handle	
  the	
  higher	
  costs	
  and	
  the	
  
duration	
  of	
  the	
  deconstruction.	
  	
  Under	
  this	
  proposal,	
  Scenario	
  Five:	
  Public	
  Participation	
  would	
  
reach	
  93%	
  of	
  the	
  possible	
  points,	
  showing	
  high	
  levels	
  of	
  sensitivity	
  to	
  all	
  sustainability	
  
parameters.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
HCU	
  -­‐‑	
  REAP	
  –	
  TSMC	
  
Sustainable	
  Deconstruction	
  –	
  Rota	
  Flora	
  	
  
25	
  
Resources	
  
Ahnert,	
  Rudolf;	
  Heinz,	
  Karl.	
  	
  (2009)	
  	
  Typische	
  Baukonstruktionen	
  von	
  1860	
  bis	
  1960.	
  	
  Pg.47	
  
	
  
BMUB	
  –	
  German	
  Federal	
  Ministry	
  for	
  the	
  Environment,	
  Nature	
  Conservation,	
  Building	
  and	
  
Nuclear	
  Safety	
  (2014)	
  	
  Guideline	
  for	
  Sustainable	
  Building	
  
	
  
BREEAM	
  –	
  Building	
  Research	
  Establishment	
  Environmental	
  Assessment	
  Methodology	
  (2014)	
  
Green	
  Buildings	
  Pay:	
  Investors	
  and	
  Developers	
  are	
  Using	
  Sustainability	
  to	
  Drive	
  Value	
  
	
  
Buhck	
  Gruppe	
  (2016)	
  	
  Entsorgung	
  von	
  Bauschutt	
  in	
  Hamburg	
  und	
  Norddeutschland.	
  	
  	
  
< http://www.buhck.de/buhck/entsorgung/abfallarten/bauschutt/bauschutt.php	
  >	
  
	
  
Concrete	
  Network	
  (2016)	
  Recycling	
  Concrete	
  
	
  < http://www.concretenetwork.com/concrete/demolition/recycling_concrete.htm	
  >	
  
	
  
Deutschlandfunk	
  (2016)	
  	
  Recycling:	
  Gips-­‐‑Abfälle	
  neu	
  verwertet.	
  	
  	
  
< http://www.deutschlandfunk.de/recycling-­‐‑gips-­‐‑abfaelle-­‐‑neu-­‐‑
verwertet.676.de.html?dram:article_id=307646>	
  
	
  
DGNB	
  –	
  German	
  Sustainable	
  Building	
  Council	
  (2014)	
  Excellence	
  Defined:	
  Sustainable	
  Building	
  
with	
  a	
  System’s	
  Approach	
  
	
  
eBay	
  (2015)	
  	
  Das	
  sollten	
  Sie	
  als	
  Hausbauer	
  über	
  Stahl-­‐‑Träger	
  wissen	
  
<http://www.ebay.de/gds/Das-­‐‑sollten-­‐‑Sie-­‐‑als-­‐‑Hausbauer-­‐‑ueber-­‐‑Stahl-­‐‑Traeger-­‐‑wissen-­‐‑
/10000000178524139/g.html	
  >
	
  
EC	
  -­‐‑	
  European	
  Commission	
  (2014)	
  “Towards	
  a	
  Circular	
  Economy:	
  A	
  Zero	
  Waste	
  Programme	
  for	
  
Europe”	
  Communication	
  from	
  the	
  Commission	
  to	
  the	
  European	
  Parliament,	
  The	
  Council,	
  
The	
  European	
  Economic	
  and	
  Social	
  Committee	
  and	
  the	
  Committee	
  of	
  the	
  Regions.	
  	
  	
  
	
  
EC	
  -­‐‑	
  European	
  Commission	
  (2008)	
  	
  Waste	
  Directive.	
  2008/98/EC	
  
	
  
Entsorgung	
  (2016)	
  	
  Estrich	
  fachgerecht	
  entsorgen.	
  	
  
	
  < http://www.entsorgung-­‐‑blog.de/2010/09/estrich-­‐‑fachgerecht-­‐‑entsorgen/>	
  
	
  
HAFENHOLZ	
  (2016)	
  < http://www.hafenholz.de/home.html	
  >	
  	
  
	
  
ISO	
  –	
  International	
  Standard	
  Organization	
  (2008)	
  “Part	
  5.	
  Life-­‐‑Cycle	
  Costing”	
  Buildings	
  and	
  
Constructed	
  Assets:	
  Service	
  Life	
  Planning.	
  ISO	
  15686-­‐‑5:2008	
  
	
  
Otto	
  Dörner	
  (2016)	
  	
  “Sie	
  möchten	
  Dachpappe	
  entsorgen?”	
  	
  <http://www.doerner	
  
shop.de/container/entsorgung-­‐‑ratgeber/abfallarten-­‐‑glossar/dachpappe/>	
  
	
  
Reiling	
  Unternehmensgruppe	
  (2016)	
  Wood	
  Recycling.	
  	
  < http://reiling.de/holz-­‐‑recycling/	
  >	
  
	
  
Siventas	
  GmbH	
  (2016)	
  	
  Altfenster.	
  	
  
	
  <https://www.wer-­‐‑entsorgt-­‐‑was.de/entsorgungstipps/abfall/Altfenster.html>	
  
	
  
UNEP	
  –	
  United	
  Nations	
  Environmental	
  Programme	
  (2015)	
  	
  The	
  United	
  Nations	
  Environmental	
  
Programme	
  and	
  the	
  2030	
  Agenda:	
  Global	
  Action	
  for	
  People	
  and	
  the	
  Planet	
  
	
  
VLEI	
  –	
  Verwertung	
  Logistik	
  Entsorgung	
  Industrieberatung	
  (2016)	
  “Verwertung	
  von	
  
Dachbahnen”	
  <http://www.vlei.de/leistungen/verwertung-­‐‑von-­‐‑dachbahnen>

More Related Content

Similar to Deconstruction Management for Optimized Material Recovery: Rota Flora

Plastic Waste Handling and its Influence on Household Waste Incineration – ...
Plastic Waste Handling and its Influence on Household Waste Incineration   – ...Plastic Waste Handling and its Influence on Household Waste Incineration   – ...
Plastic Waste Handling and its Influence on Household Waste Incineration – ...Paolo Fornaseri
 
Jahresrueckblick CLEW Dossiers
Jahresrueckblick CLEW DossiersJahresrueckblick CLEW Dossiers
Jahresrueckblick CLEW DossiersClean Energy Wire
 
COP21 - The view from Germany
COP21 - The view from GermanyCOP21 - The view from Germany
COP21 - The view from GermanyClean Energy Wire
 
Building Existing Retrofitting A key driver for GHG mitigation_Report
Building Existing Retrofitting  A key driver for GHG mitigation_ReportBuilding Existing Retrofitting  A key driver for GHG mitigation_Report
Building Existing Retrofitting A key driver for GHG mitigation_ReportBorja San Martin
 
Biodegradable municipal waste_management_europe_part3
Biodegradable municipal waste_management_europe_part3Biodegradable municipal waste_management_europe_part3
Biodegradable municipal waste_management_europe_part3Iramayi Romero
 
Climate_Economics_in_Progress_2013.compressed
Climate_Economics_in_Progress_2013.compressedClimate_Economics_in_Progress_2013.compressed
Climate_Economics_in_Progress_2013.compressedPreety Nadarasapillay
 
Environmental comparison of the use of anaerobic digestion to produce energy ...
Environmental comparison of the use of anaerobic digestion to produce energy ...Environmental comparison of the use of anaerobic digestion to produce energy ...
Environmental comparison of the use of anaerobic digestion to produce energy ...Alex Marques
 
Green concrete prospects challengesnew
Green concrete prospects challengesnewGreen concrete prospects challengesnew
Green concrete prospects challengesnewTăng Văn Lâm
 
How to develop an adaptation city plan to climate change jrc2
How to  develop an adaptation city plan to climate change jrc2How to  develop an adaptation city plan to climate change jrc2
How to develop an adaptation city plan to climate change jrc2PatrickTanz
 
đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...
đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...
đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...https://www.facebook.com/garmentspace
 
Continuously reinforced concrete pavement seminar report by chandramohan lodha
Continuously reinforced concrete pavement seminar report by chandramohan lodhaContinuously reinforced concrete pavement seminar report by chandramohan lodha
Continuously reinforced concrete pavement seminar report by chandramohan lodhaChandra Mohan Lodha
 
Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Man_Ebook
 
Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Man_Ebook
 
Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Man_Ebook
 
Conference #alu16 - Aluminium recycling essentials by olivier neel
Conference #alu16 - Aluminium recycling essentials by olivier neelConference #alu16 - Aluminium recycling essentials by olivier neel
Conference #alu16 - Aluminium recycling essentials by olivier neelConstellium
 
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresAnalysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresMile Bezbradica
 

Similar to Deconstruction Management for Optimized Material Recovery: Rota Flora (20)

Plastic Waste Handling and its Influence on Household Waste Incineration – ...
Plastic Waste Handling and its Influence on Household Waste Incineration   – ...Plastic Waste Handling and its Influence on Household Waste Incineration   – ...
Plastic Waste Handling and its Influence on Household Waste Incineration – ...
 
Jahresrueckblick CLEW Dossiers
Jahresrueckblick CLEW DossiersJahresrueckblick CLEW Dossiers
Jahresrueckblick CLEW Dossiers
 
The CLEW Yearbook 2014/2015
The CLEW Yearbook 2014/2015The CLEW Yearbook 2014/2015
The CLEW Yearbook 2014/2015
 
Tham Thau Nguoc
Tham Thau NguocTham Thau Nguoc
Tham Thau Nguoc
 
COP21 - The view from Germany
COP21 - The view from GermanyCOP21 - The view from Germany
COP21 - The view from Germany
 
Building Existing Retrofitting A key driver for GHG mitigation_Report
Building Existing Retrofitting  A key driver for GHG mitigation_ReportBuilding Existing Retrofitting  A key driver for GHG mitigation_Report
Building Existing Retrofitting A key driver for GHG mitigation_Report
 
Biodegradable municipal waste_management_europe_part3
Biodegradable municipal waste_management_europe_part3Biodegradable municipal waste_management_europe_part3
Biodegradable municipal waste_management_europe_part3
 
Climate_Economics_in_Progress_2013.compressed
Climate_Economics_in_Progress_2013.compressedClimate_Economics_in_Progress_2013.compressed
Climate_Economics_in_Progress_2013.compressed
 
Blue corridor
Blue corridorBlue corridor
Blue corridor
 
Environmental comparison of the use of anaerobic digestion to produce energy ...
Environmental comparison of the use of anaerobic digestion to produce energy ...Environmental comparison of the use of anaerobic digestion to produce energy ...
Environmental comparison of the use of anaerobic digestion to produce energy ...
 
Engineering BIOCHAR.pdf
Engineering  BIOCHAR.pdfEngineering  BIOCHAR.pdf
Engineering BIOCHAR.pdf
 
Green concrete prospects challengesnew
Green concrete prospects challengesnewGreen concrete prospects challengesnew
Green concrete prospects challengesnew
 
How to develop an adaptation city plan to climate change jrc2
How to  develop an adaptation city plan to climate change jrc2How to  develop an adaptation city plan to climate change jrc2
How to develop an adaptation city plan to climate change jrc2
 
đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...
đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...
đáNh giá hiện trạng và đề xuất các giải pháp quản lý chất thải rắn sinh hoạt ...
 
Continuously reinforced concrete pavement seminar report by chandramohan lodha
Continuously reinforced concrete pavement seminar report by chandramohan lodhaContinuously reinforced concrete pavement seminar report by chandramohan lodha
Continuously reinforced concrete pavement seminar report by chandramohan lodha
 
Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...
 
Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...
 
Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...Proceedings of 2022 6th International Conference on Green Technology and Sust...
Proceedings of 2022 6th International Conference on Green Technology and Sust...
 
Conference #alu16 - Aluminium recycling essentials by olivier neel
Conference #alu16 - Aluminium recycling essentials by olivier neelConference #alu16 - Aluminium recycling essentials by olivier neel
Conference #alu16 - Aluminium recycling essentials by olivier neel
 
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresAnalysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
 

More from Heather Troutman

Report of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate Change
Report of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate ChangeReport of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate Change
Report of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate ChangeHeather Troutman
 
Wastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, GhanaWastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, GhanaHeather Troutman
 
Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...
Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...
Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...Heather Troutman
 
Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...
Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...
Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...Heather Troutman
 
Food Saving and Food Sharing as an Urban Revitalization Effort
Food Saving and Food Sharing as an Urban Revitalization EffortFood Saving and Food Sharing as an Urban Revitalization Effort
Food Saving and Food Sharing as an Urban Revitalization EffortHeather Troutman
 
Urban Planning with Water: Learning from the Dutch
Urban Planning with Water: Learning from the Dutch Urban Planning with Water: Learning from the Dutch
Urban Planning with Water: Learning from the Dutch Heather Troutman
 
Comparison between the Energy Policies of Sweden and German
Comparison between the Energy Policies of Sweden and GermanComparison between the Energy Policies of Sweden and German
Comparison between the Energy Policies of Sweden and GermanHeather Troutman
 
The Contamination Challenge
The Contamination Challenge The Contamination Challenge
The Contamination Challenge Heather Troutman
 
Managing at the same time too much and not enough water in Accra, Ghana
Managing at the same time too much and not enough water in Accra, GhanaManaging at the same time too much and not enough water in Accra, Ghana
Managing at the same time too much and not enough water in Accra, GhanaHeather Troutman
 
Storm Water Management in Accra, Ghana - Presentation
Storm Water Management in Accra, Ghana - PresentationStorm Water Management in Accra, Ghana - Presentation
Storm Water Management in Accra, Ghana - PresentationHeather Troutman
 
Olympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debrisOlympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debrisHeather Troutman
 
Olympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debrisOlympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debrisHeather Troutman
 
Identifying influencing factors for increased coal consumption in Germany des...
Identifying influencing factors for increased coal consumption in Germany des...Identifying influencing factors for increased coal consumption in Germany des...
Identifying influencing factors for increased coal consumption in Germany des...Heather Troutman
 
Electricity Grids: Conventional vs. Micro
Electricity Grids: Conventional vs. MicroElectricity Grids: Conventional vs. Micro
Electricity Grids: Conventional vs. MicroHeather Troutman
 
Decentralized Solutions to Urban Flooding in Guzelyurt, North Cyprus
Decentralized Solutions to Urban Flooding in Guzelyurt, North CyprusDecentralized Solutions to Urban Flooding in Guzelyurt, North Cyprus
Decentralized Solutions to Urban Flooding in Guzelyurt, North CyprusHeather Troutman
 
Waste water treatment with anaerobic digestion
Waste water treatment with anaerobic digestion Waste water treatment with anaerobic digestion
Waste water treatment with anaerobic digestion Heather Troutman
 
Hydrocarbons: what modern societies are made from
Hydrocarbons: what modern societies are made fromHydrocarbons: what modern societies are made from
Hydrocarbons: what modern societies are made fromHeather Troutman
 
Using Municipal Solid Waste as a Biofuel Feedstock
Using Municipal Solid Waste as a Biofuel FeedstockUsing Municipal Solid Waste as a Biofuel Feedstock
Using Municipal Solid Waste as a Biofuel FeedstockHeather Troutman
 
Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)Heather Troutman
 

More from Heather Troutman (20)

Report of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate Change
Report of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate ChangeReport of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate Change
Report of UNDP Ghana "Nkitahodie" Policy Dialogue on Climate Change
 
Wastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, GhanaWastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, Ghana
 
Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...
Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...
Minimizing Environmental Impact of Urban Districts with Life Cycle Assessment...
 
Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...
Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...
Reducing Plastic Litter Waste in Accra, Ghana: Improving public health, acces...
 
Food Saving and Food Sharing as an Urban Revitalization Effort
Food Saving and Food Sharing as an Urban Revitalization EffortFood Saving and Food Sharing as an Urban Revitalization Effort
Food Saving and Food Sharing as an Urban Revitalization Effort
 
Urban Planning with Water: Learning from the Dutch
Urban Planning with Water: Learning from the Dutch Urban Planning with Water: Learning from the Dutch
Urban Planning with Water: Learning from the Dutch
 
Comparison between the Energy Policies of Sweden and German
Comparison between the Energy Policies of Sweden and GermanComparison between the Energy Policies of Sweden and German
Comparison between the Energy Policies of Sweden and German
 
The Contamination Challenge
The Contamination Challenge The Contamination Challenge
The Contamination Challenge
 
Managing at the same time too much and not enough water in Accra, Ghana
Managing at the same time too much and not enough water in Accra, GhanaManaging at the same time too much and not enough water in Accra, Ghana
Managing at the same time too much and not enough water in Accra, Ghana
 
Storm Water Management in Accra, Ghana - Presentation
Storm Water Management in Accra, Ghana - PresentationStorm Water Management in Accra, Ghana - Presentation
Storm Water Management in Accra, Ghana - Presentation
 
Olympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debrisOlympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debris
 
Olympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debrisOlympia in Hamburg: managing plastic marine debris
Olympia in Hamburg: managing plastic marine debris
 
Identifying influencing factors for increased coal consumption in Germany des...
Identifying influencing factors for increased coal consumption in Germany des...Identifying influencing factors for increased coal consumption in Germany des...
Identifying influencing factors for increased coal consumption in Germany des...
 
Electricity Grids: Conventional vs. Micro
Electricity Grids: Conventional vs. MicroElectricity Grids: Conventional vs. Micro
Electricity Grids: Conventional vs. Micro
 
Decentralized Solutions to Urban Flooding in Guzelyurt, North Cyprus
Decentralized Solutions to Urban Flooding in Guzelyurt, North CyprusDecentralized Solutions to Urban Flooding in Guzelyurt, North Cyprus
Decentralized Solutions to Urban Flooding in Guzelyurt, North Cyprus
 
Waste water treatment with anaerobic digestion
Waste water treatment with anaerobic digestion Waste water treatment with anaerobic digestion
Waste water treatment with anaerobic digestion
 
Plastic Marine Debris
Plastic Marine DebrisPlastic Marine Debris
Plastic Marine Debris
 
Hydrocarbons: what modern societies are made from
Hydrocarbons: what modern societies are made fromHydrocarbons: what modern societies are made from
Hydrocarbons: what modern societies are made from
 
Using Municipal Solid Waste as a Biofuel Feedstock
Using Municipal Solid Waste as a Biofuel FeedstockUsing Municipal Solid Waste as a Biofuel Feedstock
Using Municipal Solid Waste as a Biofuel Feedstock
 
Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)
 

Recently uploaded

Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 

Recently uploaded (20)

Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 

Deconstruction Management for Optimized Material Recovery: Rota Flora

  • 1. HafenCity  University  Hamburg   M.Sc.  Resource  Efficiency  in  Architecture  and  Planning   Technologies  for  Sustainable  Material  Cycles   Winter  Semester  2015/16       Final  Report     Deconstruction  Management  for  Optimized  Material  Recovery:   Rota  Flora   Submitted  to:  Dr.  Wolfram  Trinius   Submitted  on:  March  14th,  2016     Contributing  Authors:   Arrash-­‐‑Jan  Paivasteh  Bueno  –  000000   Heather  Troutman  –  6028601   Tobias  Kelm  –  000000    
  • 2. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     2   Abstract     “The  goal  is  to  move  the  fundamental  thinking  away  from  ‘waste  disposal’  to  ‘waste   management’  and  from  ‘waste’  to  ‘resources’  –  hence  the  updated  terminology  ‘waste  and   resource  management’  and  ‘resource  management’,  as  part  of  the  Circular  Economy”  (UNEP,   2015).       Waste  management  and,  now,  resource  management  have  become  regular  topics  on  the  global   agenda,  especially  in  the  context  of  sustainable  development  and  Circular  Economy.    Of  the   United  Nations’  (2015)  17  Sustainable  Development  Goals:  the  2030  agenda,  12  of  the  17  goals   are  related  to  improved  waste  management,  which  is  seen  as  an  entry  point  for  sustainable   development  and  a  most  basic  indicator  for  quality  of  life.     According  to  the  United  Nations  Environmental  Programme’s  (UNEP)  (2015)  “Global  Waste   Management  Outlook”  (GWMO),  36%  of  all  waste  produced  globally  in  2013  was  construction   and  demolition  wastes  (C&D),  representing  the  largest  waste  category.    30%  of  global  C&D   wastes,  or  821  million  tonnes,  was  produced  in  the  European  Union  (EU).     “Due  to  the  high  variety  of  materials,  it  is  important  that  the  C&D  waste  be  segregated  at  source,   with  each  stream  managed  as  required”  (UNEP,  2015).           This  report  examines  the  original  construction  and  long  history  of  renovations  of  the  culturally   significant  Rota  Flora  in  Hamburg,  Germany,  developing  a  multi-­‐‑criteria  analysis  tool  based   upon  the  German  Sustainable  Building  Council’s  (DGNB)  Sustainable  Construction  Methodology   adopted  to  the  unique  situation  of  the  Rota  Flora.    The  aim  of  this  assessment  is  to  identify  the   most  sustainable  deconstruction  pathway  from  four  scenarios,  considering  the:     •   Ecological  Quality,   •   Economic  Quality,   •   Socio-­‐‑Cultural  and  Functional  Quality,   •   Technical  Quality,  and   •   Process  Quality.     The  analysis  concludes  that  the  most  sustainable  deconstruction  scenario  is  one  that   incorporates  the  concerns  and  ideas  of  the  citizens  and  preserves  the  highest  quality  and   quantity  of  building  materials  for  direct  re-­‐‑use  as  a  main  priority  and  recycling  as  a  second   priority,  following  the  European  Commission’s  “Waste  Hierarchy”  as  prescribed  in  the  Waste   Directive  (2008/98/EC).                    
  • 3. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     3   Table  of  Contents     1.  Historical  Context………………………………………………..…………………………………….……………….06                 1.1  Cultural  Significance……………………………………………………………………………………..06     1.2.  Refurbishment  Ambiguity……………………………………..……………………………………..06     2.  Waste  Directive….…………………………………………………………………………...………………………….07     3.  Materials………….…………………………..……………………………………………………………………………..07         3.1  Brick………….…………………………………………………………………………………………………..09       3.2.  Wood………….…………………………………………………………………………………………………11       3.3.  Glass………..……………………………………………………………………………………………………11     3.4.  Steel…………….……………….……………………………………………………………………………….12         3.5.  Re-­‐‑enforced  Concrete……………………………………………………………………………………12     3.6.  Screed…………………………………………………………………………………………………………..13     3.7.  Plaster………………………….……………………………………………………………………………….13     3.8.  Bitumen…………………………………………………….………………………………………………….14     3.9.  Comparison  of  all  materials  ……………….…….………………………………………………….14       4.  Main  Objectives  for  Sustainability………………………………………………….………...…..…………….15       4.1.  Ecological  Quality  ……….………………………………………………………………………………..15     4.2.  Economic  Quality  …………………………………………………………………………………………15       4.3.  Socio-­‐‑Cultural  and  Functional  Quality  …………………………………………………………16     4.4.  Technical  Quality  …………………………………………………………………………………………16     4.5.  Process  Quality  …………………..…….………………………………………………………………….16     5.  Deconstruction  Scenarios…………………………………………………………….….………………………….17       5.1.  Scenario  One:  The  Quickest…………………………………………………………………………..17       5.2.  Scenario  Two:  Recovery  of  the  Highest  Material  Quantity  and  Quality…………17     5.3.  Scenario  Three:  The  Cheapest………………………………………………………………………19     5.4.  Scenario  Four:  Most  Socially  Agreeable………….…………………………………………….19      
  • 4. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     4   6.  Comparison  of  the  Four  Scenarios  for  Optimal  Sustainability…………….………………………20     6.1.  Ecological  Quality…………………………………………………………………………………………20     6.2.  Economic  Quality…………………………………….……………………………………………………21     6.3.  Socio-­‐‑Cultural  and  Functional  Quality…………………………………………………..………22     6.4.  Technical  Quality…………………….……………………………………………………………………22     6.5.  Process  Quality……………………………..………………………………………………………………22     6.6.  Results…………………………….……………………………………………………………………………23     7.  Conclusion:  Planned  Deconstruction  for  Enhanced  Sustainability…………………...…………24             Diagrams,  Figures  and  Tables     Table  3.   Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]…………...07     Figure  3.  Exploded  drawing:  Approximately  location  of  main  materials………………………..08     Chart  3.  Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]…………….08     Diagram  3.1.  Structural  use  of  brick…………………………………………………..…………………………..09     Section  3.1.   Typical  brick  structure.....................................................................................................09     Figure  3.1.   Berlin-­‐‑Wall:  Street-­‐‑Art…………………………………………………………………………………10     Section  3.2.  Typical  wood  floor  construction....................................................................................11     Figure  3.4.  Steel  column  on  the  ground  floor………………………………………………………………….12     Table  3.9.  Multi-­‐‑Criteria  Assessment  of  Main  Building  Materials……………………………………14     Figure  4.  BMUBS’  Assessment  System  for  Sustainable  Building………………………………………15     Table  6.  Multi-­‐‑Criteria  Analysis  of  Deconstruction  Scenarios…………………………………………20     Table  6.1.  Environmental  Impact  Categories………………………………………………………………….21     Figure  6.6.  Summary  of  Multi-­‐‑Criteria  Assessment  of  Deconstruction  Scenarios……………23          
  • 5. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     5   Definitions     The  definitions  used  in  this  report  are  taken  form  the  European  Commission’s  Waste  Directive   (2008/98/EC),  Article  3.           Collection:  means  the  gathering  of  waste,  including  the  preliminary  sorting  and  preliminary   storage  of  waste  for  the  purposes  of  transport  to  a  waste  treatment  facility.     Disposal:  means  any  operation  which  is  not  recovery  even  where  the  operation  has  as  a   secondary  consequence  the  reclamation  of  substance  or  energy.    Annex  I  sets  out  a  non-­‐‑ exhaustive  list  of  disposal  operations  [of  2008/98/EC].       Hazardous  Waste:  means  waste  which  displays  one  or  more  of  the  hazardous  properties  listed   in  Annex  III  [of  2008/98/EC].     Prevention:  means  measures  taken  before  a  substance,  material  or  product  has  become  waste,   that  reduce:   (a)  the  quantity  of  waste,  including  through  the  re-­‐‑use  of  products  or  the  extension  of   the  life  span  of  products;   (b)  the  adverse  impacts  of  the  generated  waste  on  the  environment  and  human  health;   or   (c)   the  contents  of  harmful  substances  in  materials  and  products.     Recovery:  means  any  operation  the  principle  result  of  which  is  waste  serving  a  useful  purpose   by  replacing  other  materials  which  would  otherwise  have  been  to  fulfil  a  particular  function,  or   waste  being  prepared  to  fulfil  that  function,  in  the  plant  or  in  the  wider  economy.    Annex  II  [of   2008/98/EC]  sets  out  a  non-­‐‑exhaustive  list  of  recovery  operations.     Recycling:  means  any  recovery  operation  by  which  waste  materials  or  substances  whether  for   the  original  or  other  purposes.    It  includes  the  reprocessing  of  organic  material  but  does  not   include  energy  recovery  and  the  reprocessing  into  materials  that  are  to  be  used  as  fuels  or  for   backfilling  operations.     Re-­‐‑Use:  means  any  operation  by  which  products  or  components  that  are  not  waste  are  used   again  for  the  same  purpose  for  which  they  were  conceived.       Separate  Collection:  means  the  collection  where  a  waste  stream  is  kept  separately  by  type  and   nature  so  as  to  facilitate  a  specific  treatment.     Treatment:  means  recovery  or  disposal  operations,  including  preparation  prior  to  recovery  or   disposal.     Waste:  means  any  substance  or  object  which  the  holder  disregards  or  intends  or  is  required  to   discard.     Waste  Management:  means  the  collection,  transport,  recovery  and  disposal  of  waste,  including   the  supervision  of  such  operations  and  the  after-­‐‑care  of  disposal  sites,  and  including  actions   taken  as  a  dealer  or  broker.          
  • 6. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     6   1.  Historical  Context     For  our  exemplary  object  analysis,  we  have  chosen  the  controversial  building  Rote  Flora.   The  Rote  Flora  was  built  in  the  year  1888  in  Hamburg,  in  the  district  Sternschanze.  In  former   days  it  was  used  as  a  concert  hall.    Some  Parts  of  the  building  were  added  and  taken  away  again,   like  the  conservatory  from  Gustave  Eiffel  in  1890.    The  use  of  the  building  also  changed  a  few   times.    Over  the  last  128  years,  the  Flora  was  a  residential  building,  concert  hall,  Viennese  café,   room  for  public  events,  theatre,  school,  factory,  cinema,  shop  and  much  more.         1.1.  Cultural  Significance   Fortunately,  the  Rota  Flora  was  one  of  few  theatres  in  Hamburg  not  damaged  during  airstrikes   of  the  2nd  world  war.    In  the  year  1974,  the  two  upper  stories  were  removed  and  replaced  by  a   flat  roof,  drastically  changing  the  appearance  of  the  building.    In  1989,  the  building  had  been   planned  to  be  sold  and  demolished.    To  prevent  the  Flora  from  demolishment,  it  was  occupied   by  an  autonomic  group  of  people  who  violently  rioted  against  militant  groups  attempting   evection  on  numerous  occasions  over  the  past  37  years.    Since  that  time,  the  building  is  an   uncomfortable  subject  for  the  city  and  the  “autonomic  centre”  in  Hamburg.         1.2.  Refurbishment  Ambiguity   The  Rote  Flora  was  constructed  in  the  Gründerzeit  at  the  end  of  the  19th  century.  The  typical   materials  used  were  rarely  synthetically  fabricated;  but,  rather,  more  natural  compared  to  the   materials  that  are  commonly  used  today.    However,  due  to  the  many  changes  in  use  and   modernization  projects  that  have  been  carried  out  on  the  Flora  over  the  past  128  years,  there   exists  a  high  level  of  uncertainty  as  to  the  actual  material  composition  of  the  building.    This   analysis  has  reviewed  refurbishment  documents  for  the  building  and  has  made  assumptions  of   the  materials  likely  employed  considering  the  most  common  materials  used  in  construction  in   Germany  at  the  time  the  renovation  was  made.     The  bearing  walls  and  foundation  of  the  building  are  made  out  of  bricks.    These  are  still  the   original  ones.    The  ceiling  between  the  ground  and  the  first  floor  is  also  original.    It  consists  of   beams,  made  of  wood,  with  a  wooden  floor  and  a  rubble  filling  inside.    The  ceiling  of  the   basement  is  an  old  Kappendecke,  which  was  a  typical  way  of  constructing  at  that  time.    It  is   made  of  bricks  and  steel  beams.       After  the  two  upper  stories  were  removed  in  the  late  1970s,  a  new  roof  was  built.    The  new  flat   roof  is  a  simple,  wooden  construction  with  a  bitumen  sealant  on  it.    Just  like  the  bitumen  on  the   roof,  other  newer  materials  and  components,  such  as  new  windows,  electric-­‐‑,  sanitary-­‐‑  and   heating  systems,  et  cetera  have  been  added  over  the  years.    There  might  be  a  risk  of  having   hazardous  materials,  such  as  various  kinds  of  sealants,  paints  or  even  asbestos  in  the   construction  substance.    In  case  of  an  unlikely  deconstruction  of  the  Flora,  the  building   substance  has  to  be  carefully  tested  for  hazardous  materials.            
  • 7. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     7   2.  Waste  Directive     Commission  (2008/98/EC)   In  2008,  the  European  Commission  adopted  the  Waste  Directive(2008/98/EC),  which   prescribes  a  “Waste  Hierarchy”  as  “a  priority  order  in  the  waste  prevention  and  management   legislation  and  policy.”    The  “Waste  Hierarchy”  requires  that  waste  management  strategies   prioritize  prevention,  followed  by  reuse,  then  recycling,  then  recovery  (including  energy   recovery)  and  resulting  to  disposal  only  when  no  other  alternatives  exist.     Circular  Economy  Package  (2014)   The  existing  Waste  Directive  is  currently  under  review  within  the  proposed  Circular  Economy   Package  (2014),  scheduled  to  come  into  effect  late  2017.    The  new  proposal  outlines  that   strategies  for  a  Circular  Economy,  which  maintain  materials  and  products  at  their  highest  value   for  as  long  as  possible,  is  not  only  the  most  sustainable  option,  but  also  an  option  that  offers   unprecedented  financial  gain  to  the  European  economy  in  the  form  of  forgone  losses.           This  assessment  has  been  completed  in  attempt  to  uphold  these  initiatives  and  ideals.       3.  Materials     All  masses  of  the  materials  are  estimated  according  to  our  analysis  of  the  building  by  on-­‐‑site-­‐‑ visiting,  literature,  photos  and  our  3D-­‐‑Modell.    Due  to  the  different  users  and  refurbishing  since   its  existent  it  is  difficult  to  determine  every  material  in  the  building.  This  is  the  reason  why  we   have  decided  to  concentrate  on  the  main  materials:   -­‐   Brick   -­‐   Wood   -­‐   Glass   -­‐   Steel   -­‐   Re-­‐‑enforced  concrete   -­‐   Screed   -­‐   Plaster       Table  3.   Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]  
  • 8. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     8                                                       Figure  3.  Exploded  drawing:  Approximately  location  of  main  materials   Chart  3.  Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]   g  
  • 9. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     9     3.1.  Brick     Quantity   Despite  its  historical  age  and  modernization,  the  main  material  is  brick.  The  outer  and  the  load   bearing  walls  are  still  out  of  bricks.                     Diagram  3.1.  Structural  use  of  brick.   Section  3.1.   Typical  brick  structure.    Source:  Rudolf  Ahnert  and  Karl  Heinz  Krause,  2009,  page  47  
  • 10. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     10     Quality   The  quality  of  the  bricks  are  mainly,  despite  its  age,  still  in  a  good  condition.  The  primary   problem  though,  is  to  deconstruct  the  bricks  without  damaging  them.       After-­‐‑Use  Markets   Recycling  old  bricks  is  not  difficult,  because  of  its  natural  fabrication.    It  is  therefore  not  a  big   problem  to  transport  the  deconstructed  bricks  to  a  building  material  recycling  facility.  There  are   several  located  in  Hamburg.    One  of  them  is  the  Acht  GmbH  -­‐‑  Aufbereitungscentrum,  Hafen  und   Transportlogistik  located  in  HH-­‐‑Veddel.    They  transport  or  recycle  different  types  of  demolition   waste.  Another  option  would  also  be  to  deconstruct  the  bricks  for  re-­‐‑usage  in  a  new  building.   This  means  when  the  bricks  are  “detaches”  carefully,  they  can  be  sold.       Example:     20.000  hand-­‐‑made  bricks  from  an  old  monastery  were  sold  0,5€  per  brick.    That  means  the   bricks  had  a  value  of  10.000€.     Re-­‐‑Use  Best  Practice   Instead  of  selling  or  recycling  them,  which  is  the  most  common  case,  it  is  also  possible  to  keep   several  parts  of  the  walls,  by  “detaching”  a  segment  of  the  wall  for  graffiti  or  street  art  purpose,   similar  to  the  Berlin-­‐‑Wall.             Main  concerns   The  main  concern,  as  already  mentioned,  would  be  the  deconstruction  method.    It  has  to  be   carefully  planned  depending  on  what  is  going  to  happen  with  the  bricks  after  the  demolition.    If   the  bricks  are  planned  to  be  re-­‐‑used  it  is  important  to  keep  the  quality  of  the  bricks.    The   damaged  ones  can  be  used  for  ground  filling.           Figure  3.1.   Berlin-­‐‑Wall:  Street-­‐‑Art.  Source:  Uberding   7
  • 11. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     11     3.2.  Wood             Quantity   The  first  floor  is  made  out  of  a  wooden  beam  construction.    Based  on  our  research  we  assume   the  construction  method  is  based  back  to  late  19th  century.    The  surfaces  of  the  stair  cases  are   also  made  out  of  wood.               Quality   The  wood  is  in  a  good  condition.  It  is  possible  to  strip  the  wood  of  carefully  and  re-­‐‑use  them.     After-­‐‑Use  Markets   Similar  to  the  bricks,  wood  is  a  natural  building  material,  which  makes  it  easy  to  re-­‐‑use  or  even   to  sell.    There  are  several  recycling  facilities  in  Hamburg  which  can  handle  a  big  amount  of   construction  wood.       Re-­‐‑Use  Best  Practice   It  is  not  only  possible  to  re-­‐‑use  the  wood  for  construction  or  flooring  but  also  for  energy-­‐‑usage   (pellets)  or  for  the  particleboard  industry  (Reiling,  2016).    Another  option  is  also  using  bits  and   pieces  of  old  wood  for  furniture  or  industrial  products.    For  example,  the  company  HAFENHOLZ   (2016),  which  is  located  in  Hamburg,  specializes  in  the  re-­‐‑using  of  wood.     Main  concerns   Wood  is  a  natural  building  material,  which  needs  treatment  depending  on  its  usage.    It  is   therefore  important  to  determine  how  damaged  or  how  much  impregnation  is  in  the  wood  for   further  usage.    It  is  also  important  to  detach  the  wood  first  when  demolishing  the  building  to   prevent  any  damage.       3.3.  Glass     Quantity   The  amount  of  glass  is  located  on  the  outer  walls  and  is  not  much  compared  to  bricks  or  wood.     Quality   Section  3.2.  Typical  wood  floor  construction.    Source:  Rudolf  Ahnert  and  Karl  Heinz  Krause,  2009,  page  9  
  • 12. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     12   Due  to  the  refurbishment  of  the  Rote  Flora  all  the  glass/windows  have  been  changed/renewed.     This  means  there  are  probably  different  types  of  windows  in  different  qualities.     After-­‐‑Use  Markets   The  glass  itself  is  usually  detached  from  the  frame  and  further  processed  for  glass-­‐‑recycling   (Siventas  GmbH,  2016).     Re-­‐‑Use  Best  Practice   The  glass  is  brought  to  a  recycling  waste  management  and  processed  back  to  glass.     Main  Concerns   Nowadays,  glass  consist  of  different  types  of  mixtures  and  gases,  which  needs  to  be  sorted  out   to  make  it  recyclable.       3.4.  Steel     Quantity   There  a  four  steel  columns  in  the  ground  floor  and  steel  beams   integrated  in  the  Kappendecke.     Quality   It  is  not  possible  to  determine  the  quality  of  the  steel  beam  in  the   ceiling  of  the  basement,  but  we  assume  that  it  is  still  in  a  good   condition.  The  steel  column  is  also  in  a  good  condition.     After-­‐‑Use  Markets   Steel  is  one  of  the  most  recycled  materials  in  world  and  doesn’t   lose  its  quality.  It  is  therefore  no  problem  to  detach  the  steel  and   recycle  it  (eBay,  2015).     Re-­‐‑Use  Best  Practice   Despite  its  high  recyclability  and  resistance,  it  is  also  a  possible  to   deconstruct  the  steel  beams  or  columns  and  reuse  them  in  a   different  building.     Main  Concerns   It  is  important  to  check  the  steel  for  any  corrosion  if  it  is  going  to  be  reused  in  a  new  building.         3.5.  Re-­‐‑Enforced  Concrete     Quantity   The  stair  cases  and  the  main  stair  case  are  made  out  of  reinforced  concrete.       Quality   They  are  in  top  condition  and  show  no  damaged  areas     Figure  3.4.  Steel  column  on  the  ground  floor  
  • 13. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     13   After-­‐‑Use  Markets   Reinforced  concrete  is  often  recycled  by  crushing  it  to  be  used  as  granular  filling.  There  are   several  facilities  which  can  recycle  a  big  amount  in  Hamburg.     Re-­‐‑Use  Best  Practice   Besides  the  concrete,  the  reinforcement  out  of  steel  is  often  melted  and  reused  for  other  steel   components  (Buhck  Gruppe,  2016).    The  environment  and  the  increase  usage  of  concrete  has   also  led  to  a  new  type  of  concrete,  Recycling  concrete,  also  known  as  RC-­‐‑Concrete.  It  decreases   the  costs  of  demolition  projects,  because  it  eliminates  the  costs  of  disposal  (Concrete  Network,   2016).     Main  Concerns   It  is  important  to  separate  the  concrete  from  the  steel.       3.7.  Screed     Quantity   The  surface/flooring  of  the  basement  and  ground  floor  is  made  out  of  screed.       Quality   It  is  quit  damaged  and  lots  of  different  “patching”  has  been  done.    It  means  that  the  different   users  have  most  probably  tried  to  fix  or  repair  the  surface  with  different  materials.     After-­‐‑Use  Markets   Screed  is  crushed  and  sent  to  a  waste  disposal.       Re-­‐‑Use  Best  Practice   It  is  usually  not  re-­‐‑used,  because  of  its  thin  layer  on  floorings.       Main  Concerns   When  screed  is  detached  from  the  floor  there  are  usually  other  materials  stuck  to  it  (e.g.  tar   paper,  bitumen,  etc.),  which  are  important  to  separate  (Ensortung,  2010).         3.7.  Plaster     Quantity   The  amount  of  plaster  is  mainly  located  on  the  inner  surface  of  the  Rote  Flora.     Quality   The  quality  is  overall  in  a  good  condition,  but  it  is  difficult  to  determine  where  and  how  many   types  of  plaster  has  been  used  during  the  years.     After-­‐‑Use  Markets   The  gypsum  is  sent  to  a  recycling  management  facility  where  it  is  crushed  and  sieved  until  it  is  a   fine  powder.    After  the  process,  the  powder  is  re-­‐‑used  as  a  gypsum  substance.  
  • 14. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     14   Re-­‐‑Use  Best  Practice   It  is  possible  to  use  the  regained  “gypsum”-­‐‑powder  for  gypsum  cardboard.     Main  Concerns   The  main  concern  is  the  separation  of  other  materials  to  achieve  a  clean  “powdered”-­‐‑gypsum   for  further  reuse  (Deutschlandfunk,  2016).     3.8.  Bitumen     Quantity   The  only  area  where  bitumen  is  located  is  on  the  roof.       Quality   We  were  not  able  to  go  on  the  roof,  but  we  assume  that  is  it  damage,  because  the  roof  is  not  fully   waterproof.     After-­‐‑Use  Markets   Bituminous  tarred  paper  must  be  disposed  separately  from  other  buildings  materials,  because   of  it  hazardous  substance  and  is  therefore  sent  to    a  disposal  management  facility  (Otto  Dörner,   2016).     Re-­‐‑Use  Best  Practice   As  already  mentioned,  due  to  its  hazardous  substance  it  cannot  be  re-­‐‑used.    But,  it  is  possible  to   convert  it  in  to  a  bituminous  granulate  for  asphalt  industry  (VLIE,  2016).       Main  Concerns   The  main  concern  is  the  right  disposal,  because  it  has  to  be  disposed  separately  from  other   materials.       3.9.  Comparison  of  all  Materials   The  table  gives  an  overview  of  all  the  analyzed  materials.  Our  scoring  is  based  on  the  different   categories  for  each  material.           Table  3.9.  Multi-­‐‑Criteria  Assessment  of  Main  Building  Materials  
  • 15. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     15     4.  Main  Objectives  for  Sustainability     The  aim  of  this  project  is  to  determine  the  most  sustainable  way  to  deconstruct  the  Rota  Flora,   in  the  hypothetical  event  that  the  such  a  plan  would  be  necessary.    We  have  adopted  the   sustainability  assessment  criteria  outlined  by  the  German  Federal  Ministry  for  the  Environment,   Nature  Conservation,  Building  and  Nuclear  Safety’s  (BMUB)  Guideline  for  Sustainable  Building   (2014),  as  shown  in  Figure  4,  and  modified  it  to  fit  the  context  of  our  project,  and  to  only  focus   on  the  deconstruction  life  cycle  phase.             4.1.  Ecological  Quality   The  Ecological  Quality  indicator  aims  to  assess  the  environmental  impact  (sometimes  called  the   Environmental  Footprint)  of  the  deconstruction  plan.    This  evaluation  considers  the  required   energy  and  water  expenditures  of  the  actual  deconstruction  process,  such  as  physical  labor  and   machine  use,  as  well  as  the  resource  expenditures  associated  with  various  post-­‐‑deconstruction   material  treatment  processes.    For  example,  associated  energy  recovered  from  incineration   minus  the  impacts  of  managing  hazardous  incineration  ash  from,  for  example,  extruded   polystyrene  (XPS)  insulation  panels.         4.2.  Economic  Quality   Of  course,  economic  feasibility  must  be  considered  in  every  project.    Genuine  achievement  of   sustainability  must  incorporate  external  costs  traditionally  not  included  in  project  cost   evaluations,  such  as  avoided  energy  and  operational  costs  especially  for  the  production  of  new   materials  and  products  displaced  by  the  reuse  of  existing  materials  and  products.    Life-­‐‑Cycle   Costing  is  a  technique  prescribed  to  incorporate  non-­‐‑traditional  external  costs  by  the  German   Sustainable  Building  Council  (DGNB)  (2014),  the  Building  Research  Establishment   Environmental  Assessment  Methodology  (BREEAM)  (2014)  and  the  International  Standard   Organization’s  “Buildings  and  Construction  Assets  –  Service  Life  Planning”  (ISO  15686-­‐‑5)   (2008).   Figure  4.  BMUBS’  Assessment  System  for  Sustainable  Building  
  • 16. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     16     The  four  proposed  deconstruction  scenarios  for  the  Rota  Flora  are  evaluated  on  both  tradition   costs  for  deconstruction:  labor,  equipment,  permits,  and  modified  to  reflect  reduced  costs  and   economic  benefits  (both  calculated  as  negative  costs)  from  the  reusing  and  recycling  of   materials.    This  value  should  be  quantified  on  the  profits  resulting  from  sells  and  the  saved  costs   for  water,  energy,  transportation  and  raw  materials  of  creating  new,  virgin  products  that  is   prevented  in  recycling  and  reuse  scenarios.       4.3.  Socio-­‐‑Cultural  and  Functional  Quality   In  every  project,  the  social  sustainability  must  be  a  crucial  element,  as  it  is  one  of  the  three  main   pillars  of  sustainability:  people,  profit,  planet.    Social  sustainability  can  be  measure  through   inclusion  in  the  planning,  construction  and  deconstruction  process;  through  acceptance  of  the   project;  the  expected  level  of  public  health  compared  to  the  background  condition;  among  other   measures,  according  to  the  United  Nation’s  Sustainable  Development  Goals  (UNEP,  2015).     This  indicator  is  of  heightened  importance  in  our  project  considering  the  cultural  significance  of   the  building,  and  the  relevance  of  historical  violence  associated  with  attempts  to  remove  the   building.    The  aim  of  this  project  is  to  identify  a  best  case  scenario  for  deconstruction  of  this   Hamburg  monument  in  the  hypothetical  situation  that  such  activity  would  be  necessary.         In  this  situation,  the  project  can  only  be  sustainable  if  there  is  acceptance  by  from  society.           4.4.  Technical  Quality   Technical  Quality,  in  this  project,  reflects  the  overall  material  quality  and  quantity  distributions.     This  assessment  assumes  that  maintaining  each  material  at  its  highest  value  for  as  long  as   possible  is  the  most  sustainable  option.    This  assumption  is  in  accord  with  the  European   Commission’s  proposed  Circular  Economy  Package  (2014)  and  the  “Waste  Hierarchy”  adopted   by  the  Commission  (2008/98/EC)  as  “a  priority  order  in  the  waste  prevention  and  management   legislation  and  policy.”    The  “Waste  Hierarchy”  requires  that  waste  management  strategies   prioritize  prevention,  followed  by  reuse,  then  recycling,  then  recovery  (including  energy   recovery)  and  resulting  to  disposal  only  when  no  other  alternatives  exist.         4.5.  Process  Quality   For  this  project,  Process  Quality  is  interpreted  to  reflect  time  efficiency.    This  indicator  is   generally  applicable  to  all  projects  as  time  directly  translates  into  costs  for  labor,  equipment   and  permits.    In  our  project,  there  is  an  additional  implication  for  reducing  risks  associated  with   violent  protests.    It  is  assumed  that  the  faster  the  project  is  completed  the  more  sustainable  the   project,  considering  all  of  the  other  indicators.     The  reader  should  not  that  the  first  four  indicators  are  measured  evenly  at  22.5%  per  indicator.     Process  Quality,  or  Time  Efficiency,  is  considered  less  than  half  as  influential  (only  10%)  in   overall  project  sustainability  as  each  of  the  other  indicators.    The  authors  think  that  this   distribution  is  logical  because  the  direct  benefit  resulting  from  this  indicator  is  its  capacity  to   positively  influence  other  indicators,  such  as  Economic  Quality  and  Socio-­‐‑Cultural  and   Functional  Quality,  and  there  forth  is  an  indirect  indicator.  
  • 17. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     17   5.  Possible  Routes  for  Deconstruction     The  Rote  Flora  is  an  important  symbol  for  activists  and  other  people  in  Germany.    The  decision   for  a  deconstruction  of  this  building  would  cause  demonstrations,  which  would  escalade  to   violence  undoubtedly.    It  would  not  be  possible  to  get  the  activists  out  of  the  occupied  building   without  using  violence.    Considering  this,  deconstruction  of  the  Rota  Flora  would  be   unfavourable  for  most  of  the  citizens  in  Hamburg  and  it  is  highly  unlikely  that  the  city  will  adopt   a  strategy  to  accomplish  this.         5.1.  Scenario  One:  The  Quickest   If  the  deconstruction  of  the  Flora  truly  happened,  it  would  have  to  happen  fast.    In  scenario  one,   the  quickest  way  will  be  described.    For  a  quick  deconstruction,  a  lot  of  vehicles  and  machines   are  needed,  and  it  has  to  be  well  planned.    The  deconstruction  companies  need  to  be  ready  as   soon  as  the  police  have  removed  the  activists  and  have  had  cleared  the  area.    A  lot  of  security   staff  is  needed  during  the  whole  deconstructing  process  to  ensure  the  safety  of  the  site  workers,   the  security  staff  itself  and  the  violent  protesters,  which  will  likely  put  themselves  and  other   members  of  the  community  in  risk  of  danger.    The  construction  site  needs  to  be  covered  from   being  seen  by  the  citizens  because  it  could  create  even  more  anger,  if  people  saw  how   “violently”  the  Flora  was  being  demolished.    All  these  arrangements  cost  a  lot  of  money,  but   higher  investments  at  the  beginning  lead  to  a  quicker  demolishment  of  the  object  and  it  saves   time,  which  means  saving  money.       Phase  One:   The  buildings  next  to  the  Rote  Flora  need  to  be  protected,  and  the  entire  construction   site  closed  off  from  public  view.     Phase  Two:   The  building  should  be  demolished  with  a  wrecking  ball.         Phase  Three:   The  construction  waste  needs  to  be  loaded  onto  trucks  and  carried  away.    The  waste  can   be  separated  later  for  further  recycling.    The  deconstruction  could  be  performed  in  a  few   days  depending  on  the  amount  of  inserted  machines  and  the  weight  of  political  affairs.         Scenario  one  will  result  in  the  lowest  quality  of  recovered  material.    This  will  result  in  the   majority  of  the  recovered  masses  being  suitable  for  recycling  into  an  aggregate  for  construction   of  roads,  or  as  backfill  on  construction  sites,  or  to  be  “recovered”  in  the  form  of  energy   production  from  incineration.       5.2.  Scenario  Two:  Recovery  of  the  Highest  Material  Quantity  and  Quality   In  this  Scenario,  we  will  try  to  deconstruct  the  building  in  a  way  that  facilitates  the  greatest   possibility  for  recycling  or  reusing  of  the  materials  and  components  in  the  building  as  possible,   with  the  focus  on  the  materials  with  the  highest  volume,  value  or  risk.    We  assume  that  most  of   the  wooden  materials,  especially  the  old  floor  and  the  beams,  are  made  of  solid  wood,   representing  a  great  value  and  potential  to  be  sold  and  reused.    
  • 18. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     18     Similarly,  the  bricks  in  the  walls  and  the  foundation,  which  is  representing  the  biggest  material   volume  in  the  Flora,  will  have  to  be  specially  treated  if  they  are  to  be  removed  from  the  building   and  their  quality  preserved  so  that  they  can  be  reused  and  recycled  too.     Phase  One:   At  first,  it  is  necessary  to  check  if  there  are  any  hazardous  materials  left  in  the  structure.     The  materials  have  to  be  taken  out  and  be  specially  treated  before  the  deconstruction   begins.         The  deconstruction  starts  on  the  first  floor.    To  protect  the  value  of  the  wooden  floor,  it   is  necessary  to  take  it  out  first.    It  is,  however,  necessary  to  keep  a  floor  to  walk  on,  so   additional  of  a  temporary  floor  construction  would  be  needed  before  the  deconstruction   could  continue.     Phase  Two:   In  the  second  phase,  valuable  materials  that  may  be  directly  reusable  and  are  certainly   recyclable  should  be  carefully  removed  in  a  manner  that  preserves  the  highest  quality.     Metals,  like  heating  systems,  piping,  copper  wires,  and  sanitary  fixtures;  window   material,  like  glass  and  frames;  and  other  elemental  fixtures  in  the  building  would  be  of   most  value  and  there  forth  importance.  These  material  should  be  separated  from  other   bulk  construction  wastes  and  picked  up  by  certain  recycling  companies.     Phase  Three:   After  all  high-­‐‑value  material  has  been  taken  out  of  all  three  stories,  the  non-­‐‑load-­‐‑bearing   walls  can  be  demolished  in  the  whole  building.     Phase  Four:   In  the  next  phase,  a  stage  has  to  be  built  on  top  of  the  new  floor,  which  was  made  of   construction  boards,  to  make  the  deconstruction  of  the  roof  and  its  valuable  wooden   beam  construction  possible.    The  next  thing  to  do  is  to  remove  the  previously   constructed  stage,  and  all  parts  of  the  first  floor.    This  construction  element  also  consists   of  reusable  wooden  beams,  which  could  be  sold  for  reuse.     Phase  Five:   The  load-­‐‑bearing  walls  can  be  now  deconstructed.    The  old  bricks  of  the  walls  need  to  be   kept  undamaged  for  continuing  reuse.    To  make  that  possible,  the  wall  needs  to  be  taken   down  carefully  in  bits  and  pieces.    This  phase  is  expected  to  be  the  slowest  part  of  the   entire  deconstruction.    The  ground  floor  and  the  walls  of  the  basement  have  to  be   deconstructed  by  using  the  same  procedure.    But,  it  is  questionable  whether  the  effort  of   this  difficult  deconstruction  is  worth  while  for  the  basement  because  the  moisture  of  the   surrounding  soil  could  have  made  the  bricks  unusable.    However,  the  bricks  would  still   be  recyclable  as  an  aggregate.    In  that  case,  it  is  enough  to  use  a  more  rapid  and  forceful   demolish  technique  causing  structural  damage  to  the  bricks  of  the  walls  and  the   foundation  and  then  lift  the  rubble  materials  out  of  the  pit.        
  • 19. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     19   This  deconstruction  method,  which  places  high  importance  in  the  oldest  and  most  historical   building  materials,  takes  time,  money  and  a  lot  of  effort;  but,  potentially  saves  energy  and  water   expenditures  associated  with  manufacturing  new  materials,  which  the  preserved  materials  will   replace  via  reuse.    It  is  assumed  that  the  financial  benefits  of  reuse  of  Scenario  Two  will  not   cover  the  increased  costs  for  the  time-­‐‑consuming  and  delegate  deconstruction.  Still,  it  shows   that  high  volumes  of  materials  can  be  removed  from  the  building  at  a  reusable  quality  if   deconstruction  plans  are  designed  with  this  aim.       5.3.  Scenario  Three:  The  Cheapest   The  cheapest  way  of  deconstructing  the  Flora  constitutes  of  a  mix  between  keeping  some   construction  parts  for  selling  and  a  direct  demolishment.         Phase  One:   Just  like  in  scenario  two,  the  described  materials  of  high  value  like  wood,  metals  et   cetera  should  be  taken  out  safely  for  profitable  reasons.         Phase  Two:   But,  instead  of  deconstructing  the  structural  parts,  which  are  made  of  bricks,  it  would  be   much  cheaper  just  to  demolish  them  in  a  quick  and  rough  way.    Later,  the  damaged   bricks  could  be  separated  and  recycled.    The  undamaged  bricks  could  be  cleaned  and   sold  for  reuse.  The  idea  is  to  demolish  construction  parts,  which  would  create  more   costs  if  conserved,  than  profit  they  will  bring  if  they  would  be  been  sold.       5.4.  Scenario  Four:  Most  Socially  Agreeable   This  scenario  tries  to  find  a  compromise  for  a  deconstruction  that  could  be  accepted  by  the   society.    Providing  that  keeping  parts  of  the  Flora  at  the  actual  site  would  not  be  an  option,  the   compromise  could  be  keeping  some  special  building  parts  of  the  Flora  and  bring  it  to  another   place,  which  exhibits  the  parts  and  deals  with  it  as  a  symbol  in  a  respectful  way,  assuming  that   procedure  would  work  and  be  possible.    Parts  of  the  East  Side  Gallery  of  the  Berlin  Wall  are  a   best  practice  showing  that  this  is  a  viable  solution.    Museums  and  establishments  across  Berlin,   Germany,  Europe  and  beyond  showcase  small  sections  of  this  historic  monument.    It  is  plausible   that  there  would  be  an  eager  market  in  Hamburg  to  recover  intact,  structural  pieces  of  the  Rota   Flora  exhibiting  her  characteristic  graffiti  to  be  showcased  in  businesses,  cultural  institutions   and  possibly  people’s  homes.       Phase  One:   In  this  scenario,  the  first  phase  would  also  be  to  remove  valuable  materials  for  reuse,   such  as  metals,  fixtures  and  valuable  wood.     Phase  Two:   Once  the  building  has  been  gutted  of  easily  recoverable  and  high  value  materials,  then   parts  of  the  walls  need  to  be  cut  out  and  lifted  by  a  crane.  These  processes  and  the   necessary  machines  would  cost  a  lot  of  time  and  money,  but  it  could  be  worth  while  in   order  to  avoid  bad  publicity  and  keep  peace  while  reaching  the  goal.    
  • 20. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     20   6.  Comparison  of  the  Four  Scenarios  for  Optimal  Sustainability     The  four  scenarios  have  been  compared  on  the  five  sustainability  indicators  prescribed  by  the   German  Federal  Ministry  for  the  Environment,  Nature  Conservation,  Building  and  Nuclear   Safety’s  (BMUB)  Guideline  for  Sustainable  Building  (2014).    The  five  indicators  are  considered  in   a  weighted  fashion  of  relevance  to  the  overall  sustainability  of  the  project  –  Ecological  Quality   (22.5%),  Economic  Quality  (22.5%),  Socio-­‐‑Cultural  and  Functional  Quality  (22.5%)  Process   Quality  (22.5%),  and  Process  Quality  (10%).     The  author’s  support  this  division  of  relevance  as  it  holds  equal  weighting  of  the  three  pillars  of   sustainability:  the  environment,  the  economy  and  society,  and  also  considers  the  Technical   Quality  as  an  equal  measure.    This  arrangement  supports  the  goals  of  the  EC  Waste  Directive   and  the  principles  of  a  Circular  Economy,  which  set  maintaining  material  value  and  longevity  as   the  greatest  priority,  and  also  compliments  the  concept  of  an  integrated  assessment  method  for   sustainable  deconstruction.    It  is  clear  that  achievement  of  sustainability  in  deconstruction   requires  intentional  and  well  thought  out,  place-­‐‑specific  planning.    As  such,  it  is  appropriate  that   Technical  Quality  is  rating  evenly  with  the  three  pillars  of  sustainability.     Process  Quality  is  a  modifier  indicator,  which  supports  the  project  by  enabling  enhanced   performance  of  other  indicators.    For  example,  reduced  deconstruction  time  directly  relates  to   saved  costs  in  labour,  equipment  and  permits,  and  also  decreased  risks  of  violent  protests.    As   such,  this  indicator  should  not  be  as  influential  as  the  other  four.       Criteria   Weighting   S1:  The   Quickest   S2:  Most   Ecological   S3:  The   Cheapest   S4:  Socially   Agreeable   Ecological  Quality   22.5%   1   10   5   8   Economic  Quality   22.5%   5   1   10   1   Socio-­‐‑Cultural  and   Functional  Quality   22.5%   1   6   2   10   Technical  Quality   22.5%   1   8   6   10   Process  Quality   10%   10   1   8   1   Summation   1   2.8   5.725   5.975   6.625           6.1.  Ecological  Quality   Ecological  Quality  is  the  measurement  of  the  amount  of  used  energy  and  produced  CO2  and   other  greenhouse  gas  (GHG)  emissions  in  the  deconstruction  process  and  in  the  recycling   chains.  This  indicator  also  measures  other  Environmental  Impact  Factors  commonly  used  as   indicators  in  Life  Cycle  Assessment  (LCA),  such  as  those  incorporated  in  the  DGNB’s   sustainability  rating  system,  shown  in  Table  6.1.     Table  6.  Multi-­‐‑Criteria  Analysis  of  Deconstruction  Scenarios  
  • 21. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     21   Scenario  Two:  Most  Ecological  was  rated  with  the  highest  possible,  10  points  because  this   scenario  makes  it  possible  to  recycle  and  reuse  most  of  the  materials.    Scenario  One:  The   Quickest  just  gets  one  point  out  of  ten,  because  of  the  great  effort  and  energy  that  is  needed  to   treat  the  non-­‐‑separated-­‐‑construction-­‐‑waste  after  deconstruction.                   6.2.  Economic  Quality   Economic  Quality  assesses  the  total  cost  of  the  deconstruction  project  compared  to  average  cost   for  deconstruction  in  Hamburg  (€/m3).    These  costs  include  expenses  for  renting  the  machines   and  vehicles,  labour,  permits,  and  either  waste  management  expenses  or  material  recovery   economic  benefits.  The  longer  the  deconstruction  takes  the  higher  the  costs  will  grow.         Scenario  Three:  The  Cheapest  is  awarded  10  points  because  of  the  combination  of  a  quick   demolition  and  a  carefully  deconstruction  of  just  a  few  components  with  the  highest  value;   resulting  in  both  monies  saved  and  simultaneously  earned  for  selling  the  components.     Table  6.1.  Environmental  Impact  Categories.  Source:  Authors’  reconstruction  of  DGNB  (2014)    
  • 22. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     22     Scenario  Two:  Most  Ecological  and  Scenario  Four:  Socially  Agreeable  are  both  awarded  the   minimum,  only  1  point,  because  it  costs  a  lot  of  money  and  time  to  deconstruct  and  separate  the   components  for  a  proper  reuse  or  recycling.         6.3.  Socio-­‐‑Cultural  and  Functional  Quality   Socio-­‐‑Cultural  and  Functional  Quality  is  an  especially  important  indicator  for  our  chosen   project.    As  already  mentioned,  the  Rota  Flora  is  more  than  just  a  building  for  the  people  of   Hamburg.    In  the  fictional  scenario  of  a  deconstruction,  a  rating  of  ten  points  means  that  a   compromise  has  been  found  that  satisfies  the  local  community  and  causes  no  violent  protests,   like  in  Scenario  Four:  Socially  Agreeable.    A  quick  and  cheap  demolishing  would  not  be  accepted,   like  in  Scenario  One:  The  Quickest  and  Scenario  Three:  The  Cheapest.         Scenario  Two:  Most  Ecological  is  awarded  at  least  five  points  because  the  sustainable  way  of   deconstruction  fits  to  a  non-­‐‑capitalism  way  of  thinking,  which  fits  to  the  basic  adjustment  of  the   activists.             6.4.  Technical  Quality   This  indicator  assesses  the  quality  and  quantity  of  materials  preserved  for  re-­‐‑use  and,  as  a   second  and  less  preferable  option,  recycled.         Scenario  Four:  Socially  Agreeable  is  awarded  a  ten  because  of  the  concept  to  bring  most  of  the   building  parts  to  another  place.    This  scenario  provides  for  the  possibility  of  reconstruction  or   the  exhibition  of  some  parts  of  the  structure.    Scenario  One:  The  Quickest  gets  only  one  point   because  of  the  quick  deconstruction,  which  would  destroy  most  of  the  components  depleting   them  of  value  and  greatly  limiting  their  potential  for  reuse.         6.5.  Process  Quality   Process  Quality  measures  the  duration  of  the  complete  deconstruction.    This  indicator  assumes   that  a  long  phase  of  deconstruction  will  lead  to  higher  costs  and  disturbance  of  the  community,   which  are  living  and  walking  close  to  the  construction  site.     A  quick  demolition,  like  in  Scenario  One:  The  Quickest,  is  awarded  10  points  and  a  slow   deconstruction,  like  in  Scenario  Two:  Most  Ecological  and  Scenario  Four:  Socially  Agreeable,  are   awarded  only  one  point.                          
  • 23. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     23   6.6.  Results     Scenario  Four:  Socially  Agreeable  is  rated  as  the  most  sustainable  option,  with  a  strong  lead  on   the  other  scenarios.    This  scenario  scores  well  above  average  in  the  categories  of  Ecological   Quality,  Socio-­‐‑Cultural  and  Functional  Quality,  and  Technical  Quality  because  it  upholds  two   fundamental  principles  of  sustainability:  preservation  and  inclusion.     In  comparison,  Scenario  One:  The  Quickest  rates  as  being  less  than  half  as  sustainable  as   Scenario  Four:  Socially  Agreeable  because  it  does  not  prioritize  material  value  or  the  social   importance  of  the  building.        Figure  6.6.  Summary  of  Multi-­‐‑Criteria  Assessment  of  Deconstruction   Scenarios      
  • 24. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     24   7.  Conclusion:  Planned  Deconstruction  for  Enhanced  Sustainability     The  best  solution,  according  to  our  rating  system,  is  a  mixture  of  all  four  scenarios  reflecting   compromises.    Considering  the  high  cultural  significance  as  well  as  the  history  of  violent   protests  tied  to  the  Rota  Flora,  this  analysis  assumes  that  the  acceptance  by  the  society  is   possibly  more  important  for  the  city  than  money,  time  or  ecology.       Even  though  Scenario  Four:  Socially  Agreeable  clearly  out-­‐‑performs  the  other  scenarios  in   regards  to  overall  project  sustainability,  the  scenario  is  rated  the  worst  possible  score  in   Economical  Quality,  which  is  one  of  three  basic  pillars  of  sustainability.    The  authors  reflect   upon  this  as  an  opportunity  to  further  improve  the  project.     In  this  case,  the  deconstruction  Scenario  Five:  Public  Participation  should  be  the  same  as   Scenario  Four:  Socially  Agreeable,  but  enhanced  with  a  new  model  to  balance  the  economic   costs  of  preserving  parts  of  the  building.    Potential  funding  schemes  include  donations,  Crowd   Funding,  crown  funding  via  festivals  or  other  cultural  events,  or  a  direct  subsidy  from  the  city.     Therefore,  Hamburg  and  some  charity  organisations  could  handle  the  higher  costs  and  the   duration  of  the  deconstruction.    Under  this  proposal,  Scenario  Five:  Public  Participation  would   reach  93%  of  the  possible  points,  showing  high  levels  of  sensitivity  to  all  sustainability   parameters.                                                        
  • 25. HCU  -­‐‑  REAP  –  TSMC   Sustainable  Deconstruction  –  Rota  Flora     25   Resources   Ahnert,  Rudolf;  Heinz,  Karl.    (2009)    Typische  Baukonstruktionen  von  1860  bis  1960.    Pg.47     BMUB  –  German  Federal  Ministry  for  the  Environment,  Nature  Conservation,  Building  and   Nuclear  Safety  (2014)    Guideline  for  Sustainable  Building     BREEAM  –  Building  Research  Establishment  Environmental  Assessment  Methodology  (2014)   Green  Buildings  Pay:  Investors  and  Developers  are  Using  Sustainability  to  Drive  Value     Buhck  Gruppe  (2016)    Entsorgung  von  Bauschutt  in  Hamburg  und  Norddeutschland.       < http://www.buhck.de/buhck/entsorgung/abfallarten/bauschutt/bauschutt.php  >     Concrete  Network  (2016)  Recycling  Concrete    < http://www.concretenetwork.com/concrete/demolition/recycling_concrete.htm  >     Deutschlandfunk  (2016)    Recycling:  Gips-­‐‑Abfälle  neu  verwertet.       < http://www.deutschlandfunk.de/recycling-­‐‑gips-­‐‑abfaelle-­‐‑neu-­‐‑ verwertet.676.de.html?dram:article_id=307646>     DGNB  –  German  Sustainable  Building  Council  (2014)  Excellence  Defined:  Sustainable  Building   with  a  System’s  Approach     eBay  (2015)    Das  sollten  Sie  als  Hausbauer  über  Stahl-­‐‑Träger  wissen   <http://www.ebay.de/gds/Das-­‐‑sollten-­‐‑Sie-­‐‑als-­‐‑Hausbauer-­‐‑ueber-­‐‑Stahl-­‐‑Traeger-­‐‑wissen-­‐‑ /10000000178524139/g.html  >   EC  -­‐‑  European  Commission  (2014)  “Towards  a  Circular  Economy:  A  Zero  Waste  Programme  for   Europe”  Communication  from  the  Commission  to  the  European  Parliament,  The  Council,   The  European  Economic  and  Social  Committee  and  the  Committee  of  the  Regions.         EC  -­‐‑  European  Commission  (2008)    Waste  Directive.  2008/98/EC     Entsorgung  (2016)    Estrich  fachgerecht  entsorgen.      < http://www.entsorgung-­‐‑blog.de/2010/09/estrich-­‐‑fachgerecht-­‐‑entsorgen/>     HAFENHOLZ  (2016)  < http://www.hafenholz.de/home.html  >       ISO  –  International  Standard  Organization  (2008)  “Part  5.  Life-­‐‑Cycle  Costing”  Buildings  and   Constructed  Assets:  Service  Life  Planning.  ISO  15686-­‐‑5:2008     Otto  Dörner  (2016)    “Sie  möchten  Dachpappe  entsorgen?”    <http://www.doerner   shop.de/container/entsorgung-­‐‑ratgeber/abfallarten-­‐‑glossar/dachpappe/>     Reiling  Unternehmensgruppe  (2016)  Wood  Recycling.    < http://reiling.de/holz-­‐‑recycling/  >     Siventas  GmbH  (2016)    Altfenster.      <https://www.wer-­‐‑entsorgt-­‐‑was.de/entsorgungstipps/abfall/Altfenster.html>     UNEP  –  United  Nations  Environmental  Programme  (2015)    The  United  Nations  Environmental   Programme  and  the  2030  Agenda:  Global  Action  for  People  and  the  Planet     VLEI  –  Verwertung  Logistik  Entsorgung  Industrieberatung  (2016)  “Verwertung  von   Dachbahnen”  <http://www.vlei.de/leistungen/verwertung-­‐‑von-­‐‑dachbahnen>